
November 11, 2013 Presented by: Merhawit Habte

1.	 Introduc,on	 	
u Emerging mobile applications that sense context

are very important; e.g. for timely news and events,
health tracking, social connections, etc.

u But, continuously computing context drains mobile
batteries quickly.

u Techniques available are not applicable for every
scenario.

u Often developer must choose the appropriate
algorithm and its parameters. This increases
programming burden.

u An appropriate abstraction is required to make
context sensing both efficient and widely useful.

2.	 Objec,ves	 	 	
u The paper shows:

u LAB abstraction captures a wide variety of application
requirements and simplifies context programming;

u Senergy efficiently satisfies application constraints by

choosing among the multiple algorithms; and

u Senergy may optimize for multiple simultaneous

applications.

3.	 Senergy	 API	 Design	 	

u To increase both programmer productivity and energy
efficiency, API Design should be organized based on:
u Piority order among accuracy, latency, and energy use

(battery); and
u Partial quantitative specification of latency and/or

battery consumption.
u The LAB abstraction is implemented in the Senergy API,

which exposes location and activity context through an
asynchronous method, ChangeAlert.

u The application registers a callback method, and Senergy
invokes it each time Senergy detects the specified
change in location or activity.

u Applications may unsubscribe with UnsubscribeAlert.

API	 and	 Arguments	

u First argument specifies the context, which consists of
locations and activities in Senergy.

u Location elements are geographic coordinates.
u Activities are values in an enumerated type and

currently include all, driving, walking, and stationary.
 e.g., Activity.DRIVING detects the beginning of driving

 ~Activity.WALK detects when the user stops walking
 Activity.ALL result in a callback on all activity changes
 Location.ALL result in a callback on all location changes
 ChangeAlert(Location.ALL)continuously tracks user location

u Second argument (optional) specifies the highest
priority choice of accuracy, latency, or energy.

u Third argument (optional) specifies either the next
highest priority dimension or quantifies the prioritized
dimension for latency or energy.

API	 and	 Arguments	 Cont…	

Example	 API	 and	 Usage	
u To detect when the user starts walking without any

constraints, an application invokes:
Activity[] activities = {Activity.WALKING};
ChangeAlert(activities);

u To detect each time a user starts driving and count car
trips, assuming the application can tolerate a 5 minute
latency for the start driving notification, it invokes:
Activity[]acts = {Activity.DRIVING};
ChangeAlert(acts,Priority.Latency,300);

u Similar as above, the developer now also wants to
restrict the battery impact of the application to 1% over
24 hours, the application invokes:
ChangeAlert(acts,Priority.BATTERY,1,

Priority.Latency,300,Priority.Accuracy);

4.	 Senergy	 Resource	 Op,miza,on	
u Senergy is implement on top of existing sensing

capabilities in mobile devices
u Senergy needs multiple algorithms for each context

type
u At runtime, Senergy selects the most suitable

algorithms and parameter values

u The hardware absraction
layer (HAL) consists of
components that already
exist in mobile OSs

5.	 Ac,vity	 Context	
u The following are implemented:

u Three binary classifiers that detect the presence or
absence of driving, walking, and stationary, and

u A multi-state activity classifier that infers if the user is
driving, walking, or stationary.

u Activity inference algorithms employ a typical machine
learning approach:
u sense over a time window,
u compute features from the sensor data, and
u classify the data using a model previously trained on

ground truth.
u In Senergy a Naive Bayes classifier with supervised

discretization is used.

Driving	 Ac;vity	

u Seven algorithms are implemented for driving
detection; using the accelerometer, cellular, and GPS
data

u These algorithms provide a design space that Senergy
uses to tradeoff accuracy, latency, and energy.

u The tradeoffs are quantified to select the best
operating point.

Driving	 Ac;vity	 Cont..	

u Figures shows the
accuracy and latency
trade-offs

u All algorithms have
reasonable accuracy,
precision, and recall.

u Precision indicates how
many of the detected
instances were indeed
correct

u Recall measures how
many of all true instances
were detected.

u Different algorithms may be suitable for different
application requirements.

u For instance:
u D-CELL minimizes energy if the application can tolerate

a few minutes of latency.
u D-ACC is a good candidate if the application requires

low latency.
u D-CA yields a small advantage in accuracy at a modest

increase in energy but has a much higher latency.

Driving	 Ac;vity	 Cont..	

Walking, Stationary, and All Activities
u The classifiers use accelerometer data, GPS data, and

their combination.
u The following binary classification algorithms are

implemented:
u Walking: W-ACC, W-GPS, and W-AG,
u Stationary: S-ACC, S-GPS, and S-AG, and
u Multi-state activity: M-ACC, M-GPS, and M-AG.

u Figures below shows the accuracy and latency trade-offs
with energy for walking detection.

Walking, Stationary, and All Activities Cont…

u The algorithms that rely on GPS (W-GPS and W-AG)
use significantly more energy than W-ACC, but do not
always improve accuracy and hence are excluded.

u Figures below show the accuracy of stationary
context and the multi-class detector.

u They consume the same amount of energy as walking
detection.

6.	 Loca,on	 Context	
u Applications may invoke the Senergy API with
Location. ALL to track all location changes or with a set
of specific locations to monitor proximity to just that
set.

u Continuous Tracking:
u Senergy detects if the user is moving, using S-ACC.
u The movement check interval is the smaller of the

requested location update latency or 2 minutes
u If the user is not stationary, location is updated.
u Senergy first attempts to update location using GPS and

if that fails, it uses network fingerprint based location.

u Location Proximity:
u Senergy performs optimization for proximity to specific

locations
u Number of location updates is reduced based on the

current distance from the nearest interesting location.
u If the time it takes to reach a location (tmin) is smaller

than the delay tolerated by the application, Senergy will
use the tolerable delay.

u If tmin is so large movement sensing is dropped until tmin
reduces.

u Whenever Senergy updates location, the algorithm
checks if the location is within a specific radius of one or
more of interesting locations.

Loca;on	 Context	 Cont..	

u  Most users move less than 16% of the time during a day.
u  Assuming that motion is detected every 2 minutes, Figure below

shows the latency and energy tradeoff for tracking location for six
different options.

u  Senergy uses this analysis to select the most appropriate algorithm
at runtime.

u  The actual energy use for a user over a day will vary since Senergy
will dynamically switch between GPS and fingerprint.

Loca;on	 Context	 Cont..	

7.	 Run,me	 Algorithm	 Selec,on	

u Algorithms that are worse on battery use are better in
accuracy.

u For the same energy drain, a lower accuracy algorithm
can provide better latency, and vice versa.

u Senergy selects the appropriate algorithm at runtime
when an application makes an API call specifying its
requirement

Run;me	 Algorithm	 Selec;on	 Cont…	

u Senergy chooses D-GA as it has the highest accuracy.
u Senergy defaults to maximizing energy efficiency

when the API call is under-constrained
u Senergy would chooses D-ACC, the most battery

efficient option.
u If multiple applications are simultaneously active,

Senergy considers the constraints jointly and enforces
the tightest constraints.
u First it drops any battery related constraints and satisfy

the accuracy and latency requirements.
u If these are conflicting, latency is prioritized.

8.	 Evalua,on	 	

u Senegy improves efficiency compared to the other API
design to meet the requirement.

u The proposed API yields multiple orders of magnitude
savings compared to the existing context API
(addProximityAlert)

u Datasets used in Evaluation:
1. Driving Data

u  10 people labeled when they were driving for up to 5 days
each.

u  Users tapped a button in logging application when they
entered and exited their car.

u  Background collects ACC, GPS and network fingerprint scans.

2. Multiple Activity Data
u  10 participants for driving, walking and sitting in 1 hour.
u  This data evaluted all of the activity sensing algorithms and

application scenarios involving multiple activities.
3. Routine Location Data.

u  collected location and ACC data of 18 participants on their own
device for 1 to 12 days.

u  they collectd data for 5 second in every minute to ensure the
batteries last at least a day.

4. Workday Data:
u  They logged continous Acc data from 11 participants for 6-8

hours on one workday each
u  This data use to evaluate activity applications at extremely low

latency setting.

Datasets	 used	 in	 Evalua;on	

API	 Configura;on	 	

1.  Raw
u  They implemented simple algorithm over raw sensor data on

checking location,if the user is near desired location.
u  In theory, developers could implement the best algorithms in

Senergy, energy consumption is the same, unless the user
executes multiple background applications where Senergy has
the additional advantage of sharing context.

2.  Default:
u  They emulate existing implementation in the Android OS.
u  for deleting set of locations of continuous check (Android API).
u  for those don’t have Android API, they created a default

algorithm with the lowest latency implement
(addProximityAlert).

3. Fixed mode
u  Implemented 3 modes prioritize energy, accuracy or latency.

4. Fixed-E
u  Prioritizes energy efficiency.
u  Uses the lowest energy inference algorithm sufficiently accurate

to be included in the OS
u  E.g: location tracking use low power sensors every 2 minute and

updates if the user moving.

5. Fixed-A:
u  Prioritizes accuracy.
u  It does not use low power sensor for track location.
u  Since the error in detection may miss movements and increase

the overall error in location.

API	 Configura;on	 Cont…	 	

6. Fixed-L:
u  prioritizes latency by supplying the lowest possible latency.
u  Detect movement at 5sec before sensing location.

7. Senegy-S:
u  application developer expresses one primary priority, LAB and

optionally a quantitative constraint.
8. Senergy-M:

u  multiple priorities and constraint values

API	 Configura;on	 Cont…	 	

u ClubPoint
u  Senergy-S call:

Location[] locations = GetAAALocations();

ChangeAlert(locations,Priority.LATENCY,300)

Senergy-S checks for movement using the Acc and
updates the location at the specified latency.

u  Senergy-M call (If the User add a 5% battery budget
and request high accuracy as a third priority):

ChangeAlert (locations,Priority.BATTERY,5,

Priority.LATENCY,300,Priority.ACCURACY)

Because of 5% battery, Senergy can sense movement
more frequently than the default 2 minutes

Loca;on	 Context	 Case	 Study	 	

Loca;on	 Context	 Case	 Study	 Cont..	 	

u SimplySave: Detect proximity to participating
locations with a lower latency of 60 s.

u  Senery-S call:
 ChangeAlert (locations,Priority.LATENCY,60)

 Update location and optimizes energy over accuracy
 by checking location if the user is mobile.

u  Senergy-M call:
ChangeAlert (locations,Priority.LATENCY,60,Priority.BATTERY,5)

u GeoReminder: Senergy only needs to detect one
location with low latency.

Update location at that latency when the user is close to
the desired location.

Loca;on	 Context	 Case	 Study	 Cont..	 	

u  Values greater more than 100% indicate the battery is
exhausted in less than a day.

u  Error bars show standard deviation in behavior across 18
participants.

u  Fixed-A, Raw, and Default do not depend on user
behavior and have zero standard deviation.

	

Ac;vity	 Context	 Case	 Studies	 	
u DriverMode:

u DriverMode activates a driver-mode user experience on the phone
when it detects the user is in a moving vehicle

u A simple Senergy-S API call is
 ChangeAlert(Activity.DRIVING,Priority.ACCURACY)

u Another developer may use Senergy-M specifying three constraints,
prioritized: latency 60 s, 5% of the battery per day, and high
accuracy as
 ChangeAlert(Activity.DRIVING,Priority.LATENCY,

 60,Priority.BATTERY,5,Priority.ACCURACY)

u  Figure compares the energy use
for all API choices

u  Fixed-A and Senergy-S both
provide high accuracy at
significantly lower energy, due to
increased latency

Ac;vity	 Context	 Case	 Studies	 	

u  Figure compares the energy use
for all API choices

u  Senergy-M does use less energy
than the other APIs, but more than
Senergy-S, since it improves
accuracy

u RadioGuide:
u RadioGuide publishes free local radio station schedules. Users

allow the application to anonymously track when they drive and
listen to the radio.

u RadioGuide sets its latency to 5 minutes. The Senergy-S API call is:
 ChangeAlert (Activity.DRIVING,Priority.LATENCY,300)

u The Senergy-M configuration uses the same latency, restricts
battery use to 5%, and requests high accuracy:
 ChangeAlert(Activity.DRIVING,Priority.LATENCY,

 300,Priority.BATTERY,5,Priority.ACCURACY)

Ac;vity	 Context	 Case	 Studies	 Cont..	 	
u FitnessTracker

u FitnessTracker counts a user’s daily steps to estimate calorie use.
u FitnessTracker wants a callback whenever the OS detects walking.
u To not miss short walks, the developer requests a 10 s latency with

the Senergy-S API call:
 ChangeAlert(Activity.WALKING,Priority.LATENCY,10)

u To control battery use, Senergy-M call includes a 5% battery limit as
the first priority constraint:
 ChangeAlert(Activity.WALKING, Priority.BATTERY,5, Priority.

 LATENCY,10,Priority.ACCURACY)

Mul;ple	 Simultaneous	 Applica;ons	 	
u With Senergy, energy is spent on the sensors once and the

sensor data is used to compute all context outputs needed.

u If the algorithm used for one application suffices for others,
Senergy does not use other sensors or algorithm.

u If one algorithm senses with more accuracy or lower
latency, other applications benefit from it.

u  Loc. apps consists of all three
location apps. executing at the
same time

u  Act. apps consists of the three
activity context based apps.

u  All apps denotes all six of
these applications.

u  Acc.Loc is the forth app

9.	 Discussions	 	
u Hardware Architectures

u New hardware broadens the range of choices available to
Senergy and it may consequently satisfy more application
constraints.

u The tradeoff space should be characterized to include these
options. The API does not change, but applications benefit
from hardware advances.

u If hardware advances make new types of context and
activities feasible the API does not change but starts
delivering these additional context types to applications.

u Predictive and Historic Context
u Senergy does not maintain historical state.
u If Senergy records context, it could learn user behavior

models and use them to optimize context sensing.

Discussions	 Cont..	 	
u Reporting Latency

u Latency is the delay in detecting and reporting a context
change to the application.

u Additional optimization opportunities arise by decoupling the
detection and reporting latency.

u The API would evolve to add a reporting latency.
u Privacy

u Any privacy related parameters have not been included in the
API design.

u When Senergy operates in a battery efficient mode that
satisfies multiple simultaneous applications, the accuracy
achieved may not be appropriate for all applications.

u This work contributed the following:
u The paper identified the LAB abstraction and showed how

to implement energy efficient continuous context sensing
and how it improves programmer productivity.

u The paper described a prototype implementation using 22
activity and location tracking algorithms.

u The paper illustrated how the Senergy runtime uses the
LAB requirements specified by applications and the
algorithm tradeoffs to deliver energy efficient context
sensing under a wide variety of accuracy and latency
requirements.

u It was shown for six realistic applications, how Senergy
uses a small amount of application flexibility to reduce the
battery drain to much more practical levels, compared to
using existing APIs.

10.	 Conclusion	 	

