Objectives:
1) Understanding some popular service discovery protocols
2) Understanding mobility management in WLAN and cellular networks

Readings:
1. Fundamentals of Mobile and Pervasive Computing (chapt7)
Part 1: Service Discovery
Service discovery

- **What is service?**
 - Storage, printing, display ...

- Allows **automatic** detection of devices and services offered by these devices in a network
 - Done without human intervention
 - Particularly relevant in mobile settings
Service discovery entities

- **Client (or user):** the entity that is interested in finding and using a service
- **Server:** the entity that offers the service
- **Directory (or server, broker, central, resolver):** a node in the network that hosts partially or entirely the service description information
Components

- **Directory repository**
 - Centralized
 - Distributed
 - Hierarchical
 - Structured P2P
 - Ad hoc

- **Service description**
 - Attribute/value
 - Tree-like
 - XML
 - Ontologies (DAML)

- **Announcement**
 - Register
 - Multicast/broadcast

- **Query/Service Access**
 - Syntax
 - Ontology
 - Programming language dependency
Requirements for SD

- Use of descriptive language: services need to be semantically described
- Storage of service information
- Search for services
- Maintenance against changes in service description
- Maintenance against topology changes
Some Service Discovery Protocols (SDP)

<table>
<thead>
<tr>
<th>Main Entities</th>
<th>Jini</th>
<th>SLP</th>
<th>UPnP</th>
<th>Bluetooth</th>
<th>Bonjour</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Lookup Service, Client, Service</td>
<td>Directory Agent, Service Agent, User Agent</td>
<td>Control Point, Devices (Services)</td>
<td>SDP Client, SDP Server (or both)</td>
<td>SDP client, SDP server</td>
</tr>
<tr>
<td>Service Repository</td>
<td>Lookup Service</td>
<td>DA (directory agent)</td>
<td>None</td>
<td>SDP Server</td>
<td>SDP server</td>
</tr>
<tr>
<td>Service Announcement</td>
<td>Discovery/Join protocol</td>
<td>Service Registration</td>
<td>Multicast advertisement</td>
<td>Not Supported</td>
<td>Registration</td>
</tr>
<tr>
<td>Access to Service</td>
<td>Service proxy object based on RMI</td>
<td>Service type for discovered service</td>
<td>Invoking Action to service</td>
<td>Not Supported</td>
<td>mDNS query</td>
</tr>
<tr>
<td>Service Description</td>
<td>Interface type and attribute matching</td>
<td>Service type and attribute matching</td>
<td>Description in XML</td>
<td>Attribute ID and Attribute Value</td>
<td>Domain name</td>
</tr>
<tr>
<td>Adoption</td>
<td>🔄</td>
<td>🔄</td>
<td>🔄</td>
<td>🔄</td>
<td>🔄</td>
</tr>
</tbody>
</table>
UPnP stack

GENA -- General Event Notification Architecture
SOAP – Simple object access protocol
SSDP – Simple service discovery protocol
The Universal Plug and Play Protocol (UPnP) uses the Simple Service Discovery Protocol (SSDP) to locate the service in IP networks.

- Both searching and advertising use HTTP Multicast.
- The response uses HTTP Unicast.
- UPnP targets to home-networking environments.
Joining and discovery

- UPnP control points are devices which use UPnP protocols to control UPnP devices
 - UPnP can work with or without control points (lookup service).
- JOINING: A joining device sends out an advertisement (ssdp:alive) multicast message to advertise its services to control points
- A control point, if present, can record the advertisement, but other devices might also directly see this multicast message.
- DISCOVERY: UPnP sends a search (ssdp:discover) multicast message when a new control point is added to a network. Any device that hears this multicast will respond with a unicast response message.
Service description

- UPnP uses XML to describe device features and capabilities.
- An advertisement message contains a URL that points to an XML file in the network that describes the UPnP device’s capability.
- By retrieving this XML file, other devices can inspect the advertised device’s features and decide whether it is important or relevant to them.
- XA UPnP description for a service includes a list of actions (control) to which the service responds and a list of variables that model the service’s state at runtime:
 - Control is expressed as a collection of Simple Object Access Protocol (SOAP) objects and their URLs in the XML file.
An example: A remote UIIClient controls a TVDevice

1. UIIClient and TVDevice use SSDP to discover each other.

2. UIIClient retrieves the TVDevice description and get a list of associated services.

3. UIIClient retrieves the service descriptions of interesting services.

4. UIIClient starts interacting with TVDevice.
Service Location Protocol (SLP)

- An Internet Engineering Task Force (IETF) standard for decentralized, lightweight, and extensible service discovery
- It uses service URLs, which define the service type and address for a particular service.
 - `service:<service-type>://<addrspec>`
 - Example: “`service:printer:lpr://hostname`” is the service URL for a line printer service available at hostname.
SLP: Actors

- **User Agent (UA)**
 - SLP Client communicates with SA or DA to access services

- **Service Agent (SA)**
 - Offers services directly or by registering with DA on behalf of application

- **Directory Agent (DA)**
 - Optional actor to which all services register
 - DA can be discovered either by active or passive discovery

- **SLP messages are transmitted over UDP or TCP**
SLP: Service Discovery with DA
SLP: Service Discovery without DA

Bonjour

- Based on IETF zero configure IP networking (ZeroConf)
 - addressing (allocating IP addresses to hosts)
 - naming (using names to refer to hosts instead of IP addresses)
 - service discovery (finding services on the network automatically)

Link-local addressing

- No Central Address Server
- Pick a Random Address
 - In 169.254.0.0/16 range
- Communication done locally
- Can use ARP to check if the address is in use
mDNS

- DNS-like Protocol
- Every Host Runs Responder
- Hosts Pick Own Names
- Communication over IP Multicast
- Link-local
- Resolves to Link-local or Regular Address
- Naming convention in Bonjour: XYZ-LaserPrinter.local
“Browsing”

- Return the list of all available instances of a particular type of service
- Local caching for past results

Who can run “Air Play”

169.254.10.29
XYZ-speaker.local.

169.254.4.51
ABC-speaker.local.

I am!

I am!
Part 2: Mobility management
Issues

- Point-of-attachment changes with mobility in infrastructure networks
 - Within the same network
 - Across heterogeneous networks
- Try to hide the mobility from IP point of view
 - TCP Sockets are specified by the tuples (IP address, port #)
 - Sol: keep it at layer-2 if possible
Message exchange

Source: Mishra, “An Empirical Analysis of the IEEE 802.11 MAC Layer Handoff Process”
Remedy 1 – 802.11r

Can reduce the latency down to 40ms

Remedy 2 – Virtual APs

- All cells share the same channel
- Each user is assigned an virtual AP upon association
 - The virtual AP is handoff from one physical AP to another as users move
Mobile IP

- Mobile IP protocol allows location-independent routing of IP datagrams on the Internet
- Three components to standard:
 - indirect routing of datagrams
 - agent discovery
 - registration with home agent
Mobile IP Entities

- Home Network
- HA
- IPv4 Network
- FA
- Visited Network
- Mobile Node
- Correspondent Node/Host
 That is communicating with the mobile node
Mobile IP Entities

- **Mobile Node (MN)**
 - The entity that may change its point of attachment from network to network in the Internet
 - Detects it has moved and registers with “best” FA
 - Assigned a permanent IP called its home address to which other hosts send packets regardless of MN’s location
 - Since this IP doesn’t change it can be used by long-lived applications as MN’s location changes

- **Home Agent (HA)**
 - This is router with additional functionality
 - Located on home network of MN
 - Does mobility binding of MN’s IP with its “foreign address”
 - Forwards packets to appropriate network when MN is away
 - Does this through encapsulation
Mobile IP Entities contd.

- **Foreign Agent (FA)**
 - Another router with enhanced functionality
 - If MN is away from HA then it uses an FA to send/receive data to/from HA
 - Advertises itself periodically
 - Forward’s MN’s registration request
 - Decapsulates messages for delivery to MN

- **Care-of-address (COA)**
 - Address which identifies MN’s current location
 - Sent by FA to HA when MN attaches
 - Usually the IP address of the FA

- **Correspondent Node (CN)**
 - End host to which MN is corresponding (e.g., a web server)
How does Mobile IP Work?

1. Registration Request
2. Forward Registration Request
3. Update MN’s address
4. Acknowledge registration
4. Registration completed
How does Mobile IP Work? (Cont’d)

IPv4

Home Network

HA

IPv4 Network

Correspondent Node
That is communicating with the mobile node

Visited Network

FA

Mobile Node

Send message using MN’s permanent address

Encapsulate packets

IP routing

Forward message; decapsulation
Mobile IP Routing in Action

Permanent address: 128.119.40.186

Care-of address: 79.129.13.2

Packet sent by home agent to foreign agent: a packet within a packet

Packet sent by correspondent

Foreign-agent-to-mobile packet

dest: 128.119.40.186

dest: 79.129.13.2
Mobile IP Tunneling

Across Internet
Problems with Mobile IP

- Suboptimal “triangle” routing
 - What if MN is in same subnetwork as the CN to which it is communicating and HA is on the other side of the world?
 - It would be nice if we could directly route packets
Route Optimization

- **a) First Packet to a MN**
 - Binding Update
 - HA to FA

- **b) Subsequent Packets to a MN**
 - HA to FA

- **c) First Packet to a MN after hand-off**
 - Binding Update
 - FA1 to FA2
 - HA to FA2
Mobility management in LTE

- UE: user equipment
- eNodeB: base station
- S-GW: serving gateway
- P-GW: packet data network gateway
- MME: mobility management entity
- HSS: home subscriber server
- PCRF: policy charging and rule function
eNodeB, S-GW and P-GW are involved in session setup, handoff, routing.
Access Procedure

- **Cell Search**
 - Base station broadcasts synchronization signals and cell system information (similar to WiFi)
 - UE obtains physical layer information
 - UE acquires frequency and synchronizes to a cell
 - Determine the start of the downlink frame
 - Determine the cell identity

- Random access to establish a radio link
Random Access

Client

- Step 1: random access request (pick one of 64 preambles)

Base station

- Step 2: random access response
- Adjust uplink timing
- Step 3: transmission of mobile ID
- Step 4: contention resolution msg

Core network

- Only if UE is not known in Base station
 - If ID in msg matches UE ID, succeed.
 - If collision, ID will not match!
Why not carrier sensing like WiFi?

- Base station coverage is much larger than WiFi AP
 - UEs most likely cannot hear each other
- How come base station can hear UEs’ transmissions?
 - Base station receivers are much more sensitive and expensive
Connection Setup

- **Session Requests**
 - UE to base station
 - Base station to MME
 - MME obtains subscriber info from HSS, selects S-GW and P-GW
 - S-GW sends to P-GW
 - P-GW obtains policy from PCRF
Connection Setup (Cont’d)

- **Session Response**
 - Establishes GPRS Tunnels (GTP) between S-GW and P-GW, between S-GW and UE
 - Base station allocates radio resources to UE
Mobility Management

Handoff

- Handoff without change of S-GW
 - No change at P-GW
- Handoff with change of S-GW or MME
- Inter-technology handoff (LTE to 3G)
Mobility Management (Cont’d)

Paging

- If S-GW receives a packet to a UE in IDLE state, inform MME
- MME pages UE through base station