
ProfileDroid: Multi-layer
Profiling of Android

Applications

Xuetao Wei
Lorenzo Gomez
Iulian Neamtiu

Michalis Faloutsos

How do we know what is occuring in
an app? Description, connections,

services?

>550 000 apps on

Goal - Complete app
profile given limited: -Time

-User Effort
-Cost

Comprehensive
profile:

-resource use(sys calls/network traffic)
-device resources & permissions(camera,
microphone, sensors)
-entities app communicates(cloud/third party)

Potential Users:
-app developers
-system administrators
-owner Android app market
-end user

Profile Uses:
-enhance user control
-improve user experience
-assess performance & security
-facilitate troubleshooting

Proposed Solution → ProfileDroid
Comprehensive, systematic app profile

spanning 4 layers

Testing Method
-Motorola Droid Bionic phone
-Android 2.3.4
-Linux Kernel 2.6.35
-Profile 27 Apps
-19 Free
-8 Paid Counterparts
-30 runs/app

ProfileDroid Overview

Each layer composed of
monitoring & profiling

Monitor running app on device

Information fed into computer and profiled

Layer Implementation I

Static Layer

User Layer

-examine apk using apktool
-Manifest.xml
-/smali bytecode

-user generated events
-touchscreen, sensors
-system debug & log msg output
using adb

Layer Implementation II

OS Layer

Network Layer

-system calls using strace
- 4 classifications (filesys,
network,VM/IPC, misc)

-data packets using tcpdump
-parse, domain-resolve & classify
traffic

Apps

>1 000 000 downloads
 Top 130 free apps

Many Categories
-entertainment
-productivity
-tools

Experiment Conditions

-no other apps running
-Wifi strong signal
-install one app at a time
-3 users x 10 runs/app x 5 minutes/run

Layer Analysis: Static
Analyze app without
running it (apk/
manifest)

Functionality

Intent

Layer Analysis: User
Input events from user interaction → presses/swipes
Phone events → generated by phone (sensor readings)

Layer Analysis: OS

System Call Intensity

System Call class
-File System
-Network
-VM&IPC
-Misc

49 system calls used
of possible 370

Layer Analysis: Network

Data communication via Wifi or 3G/4G

Traffic intensity

CDN+Cloud traffic

Traffic origin

Google traffic

Third party traffic

Incoming/Outgoing traffic ratio

distinct traffic sources

Percentage of traffic HTTP or
HTTPS

Layer Analysis: Network

Results Analysis – Multi-layer Intensity
Tuple consisting of (static, user, OS, network) intensity

Layer Min Q1 Med Q3 Max

Static 1 1 2 2 3

User 0.57 3.27 7.57 13.62 24.42

OS 30.46 336.14 605.63 885.06 1728.13

Net 0 227.37 2992.76 6495.53 109655.2
3

Easy method to classify apps
into coarse behavioural

categories

Min < L < Q1

Q1 < M < Q3

Q3 < H < Max

Results Analysis – Cross-layer Intensity

Behaviour across layers
-identify potential discrepancies
-further characterization when one layer insufficient

Network Traffic Disambiguation
-cross check user & network layers, distinguish
advertisement and expected traffic

Application Disambiguation
-behavioural fingerprinting,
eg file manager vs database

Results Analysis – Free/Paid Apps
Static Layer
-no difference

User Layer
-similar behaviour, same GUI between versions

OS Layer
-free app system call significantly higher (50-100%)
-lower performance, higher energy consumption

Network Layer
-majority of paid apps show reduced net traffic,
fewers ads/analytics
-paid apps communicate to fewer sources

Results Analysis – VM&IPC Security/
Performance trade-off

Apps isolated from hardware via VM

Apps isolated from each other on
seperate VM copies

Isolation provides security and
reliability advantages

Disadvantage is high overhead from
running bytecode
on top of VM and significant IPC

VM & IPC account for 63-87% of
total system calls

Results Analysis – Network Encryption

Android apps communicate sensitive
data (GPS, contacts, account info)

Network analysis reveals most apps
don't use HTTPS, only HTTP

¼ of Facebook traffic uses HTTP

HTTPS deployment is lagging on
Android, undesirable security
implications

Results Analysis – Traffic Sources/
Google Once app receives Internet

permission, user blind to
communication sources

Most apps communicate with 2
sources

Some apps communicate with
10 or more sources

Paid apps have fewer traffic
sources than free apps

Android a Google platform,
interesting to note how apps
differ in communicating with
Google

Limitations & Conclusions
l  ProfileDroid is an

Android app monitor and
profiling tool

l  Characterizes app via a
multi-layer approach

l  Proposed an ensemble
of metric to compare
apps

l  Used to better
understand apps with
limited resource
commitment to foster
improvements in many
areas, end-user and
development

l  Requires both Android

device and PC,
lightweight version only
on mobile

l  No layer collects/
analyses power
consumption data,
crucial for mobile

Thanks for your attention

Questions?

