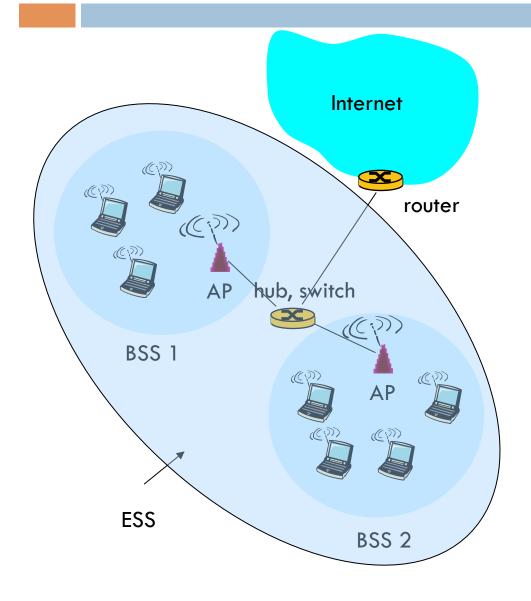
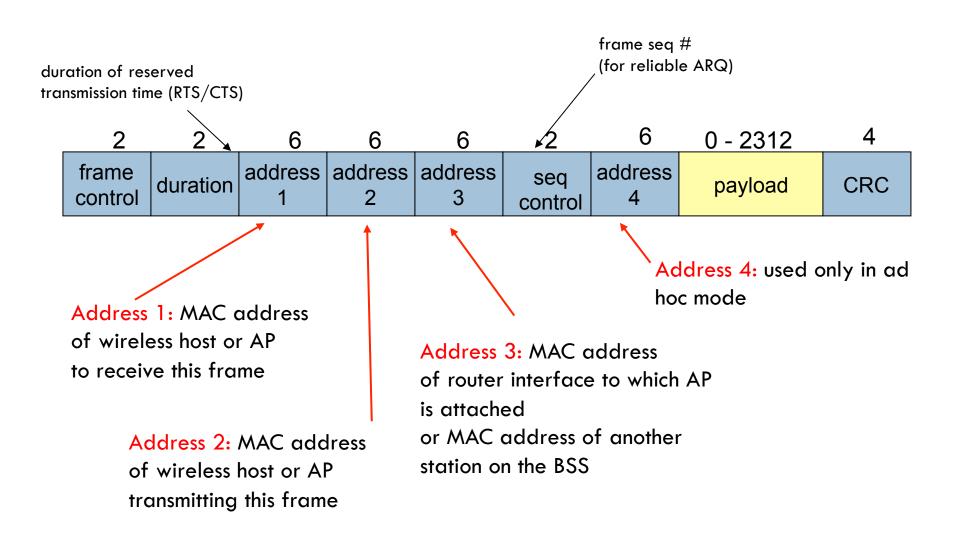
Objectives:

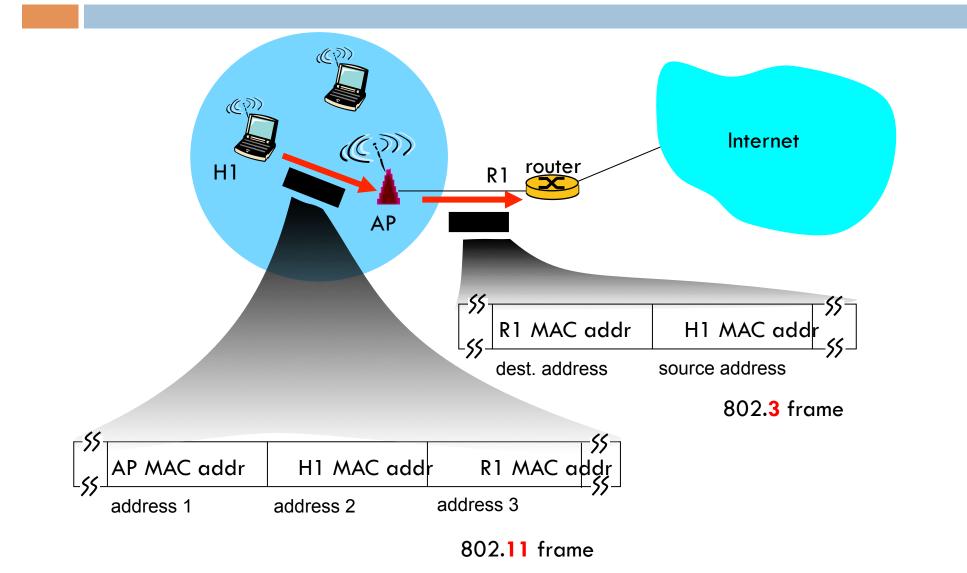

- 1) Understanding the basic operations of WLANs
- 2) WLAN security
- 3) Wireless body area networks (IEEE 802.15.6)

Readings:

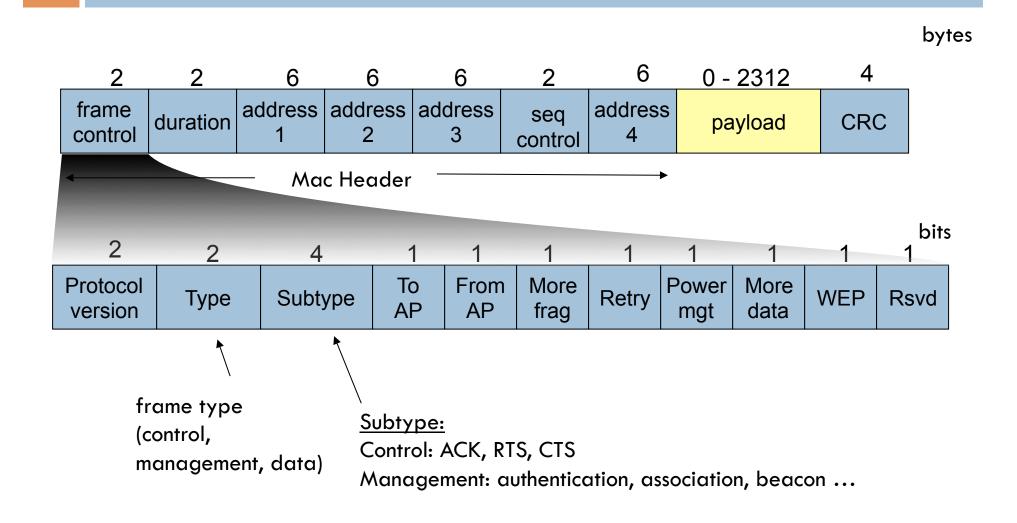
 Kurose & Ross, Computer Networking: A Top-Down Approach (6th Edition), Chapt 6.3


WIRELESS LAN/PAN/BAN

802.11 LAN architecture



- wireless host communicates with base station
 - base station = access point (AP)
- Basic Service Set (BSS) (aka "cell")
 - in infrastructure mode contains wireless hosts and access point (AP): base station
 - ad hoc mode: hosts only (IBSS)
- Distribution system (DS)
- Extended service set (ESS)
 - Two or more basic service sets interconnected by DS


802.11 frame: addressing

802.11 frame: addressing

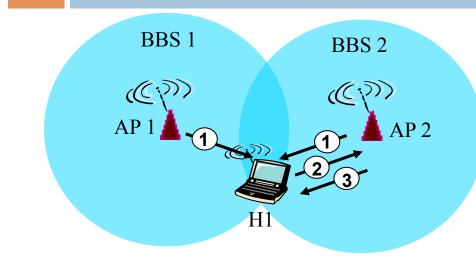
802.11 frame: more

Where is MAC Frame?

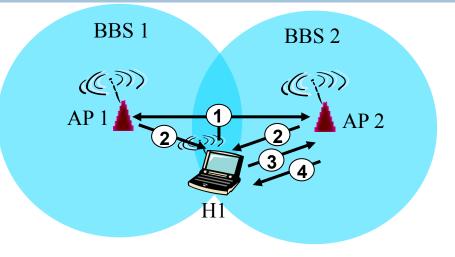
	otap	802.11	802.3	IP he	ader	TCP/UDP	App payload
nea	ıder	header	header	in ne		header	
00	0			shark 1.10.2 (SVN Rev 5	1934 from /trunk-1.	10)]	
<u>F</u> ile <u>I</u>	<u>E</u> dit <u>V</u> iew <u>G</u> o <u>(</u>	<u>Capture A</u> nalyze <u>S</u> tatistics	Telephony <u>T</u> ools <u>I</u> nterna				
	ک 🔳 👗 🖲	🖻 📗 🗶 🔁 🔍 🤞	Þ 🔿 🐳 🛧 😫 🗏	¥ ⊕ ⊖ @	- 🏹 🗹 📲	2 🔏 💢	
Filter:	:		▼ Expression Clear	Apply Save			
No.	Time	Source	Destination	Protocol Length Ir			le l
	6 4.198958000	220.181.56.113	172.25.212.76		TP/1.1 200 OK	1.1	L
	7 4.199422000 8 4.199486000	172.25.212.76 220.181.56.113	123.58.180.177 172.25.212.76			POST /locate HTTP/1.1 n] HTTP/1.1 200 OK	
	9 4.203138000	203.205.166.148	172.25.212.76	· · · · · ·		n] HTTP/I.1 200 OK H, ACK] Seq=1 Ack=1 Win=1428 Len=	0 TSval=3385519149 TSecr=76711:
	10 4.204021000	203.205.166.148	172.25.212.76			https > 34966 [FIN, ACK] Seq=1	
	11 4.204131000 12 4.221525000	203.205.166.148 172.25.212.76	172.25.212.76 203.205.166.148			https > 34966 [FIN, ACK] Seq=1] Seq=1 Win=0 Len=0	Ack=1 Win=1428 Len=0 Sval=338
	13 4.222061000	172.25.212.76	220.181.56.113	TCP 130.46	6523 > http [ACK]	Seq=1 Ack=231 Win=1041 Len=0 TS	
	14 4.272259000	172.25.212.76	220.181.56.113	TCP 130 46	523 > http [FIN,	ACK] Seq=1 Ack=231 Win=1041 Ler	=0 TSval=7760141 TSecr=1141878
Re De Tr BS So	eceiver address: estination addres ransmitter addres SS Id: 2a:a7:5f:7 ource address: La ragment number: 0 equence number: 3	02 ce: Oxe9efaf3a [correct]	5:74) 9:a5:74) :5f:79:a5:74)				
Se ▷ Fr ▷ Qo > Logi > Inte		rsion 4, Src: 203.205.166.14	48 (203.205.166.148), Dst: 1 (443), Dst Port: 34966 (3496				

Frame Types

- Management frame (0)
 - Beacon (8)
 - (De)association request/respond (0/1)
 - Announcement traffic indication message
 - Authentication/Deauthentication
- □ Control frame (1)
 - Poll frame & poll response frame
 - RTS
 - CTS
 - ACK
 - Power save (PS-poll)
- Data frame (2)
 - Data (2)
 - QoS Data (8)
 - There is no limitation on the frame size unlike Ethernet


http://www.willhackforsushi.com/papers/80211_Pocket_Reference_Guide.pdf

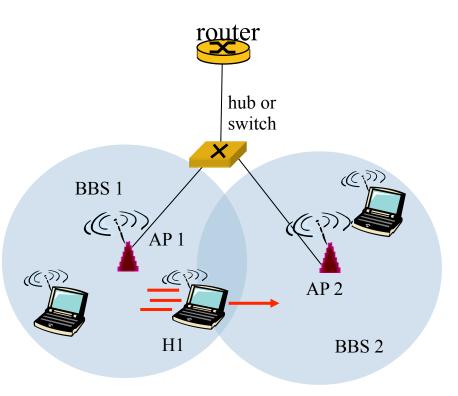
Association


host: must associate with an AP

- scans channels, listening for beacon frames containing service set identifier and AP's MAC address
 - SSID is 32 octets long
 - One SSID per network (BSS or IBSS)
- selects AP to associate with; initiates association protocol
- may perform authentication
- will typically run DHCP to get IP address in AP's subnet

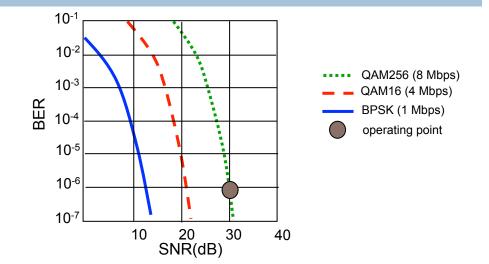
802.11: passive/active scanning

- Passive Scanning:
- (1) beacon frames sent from APs
- (2) association Request frame sent: H1 to selected AP
- (3) association Response frame sent: H1 to selected AP



□ <u>Active Scanning</u>

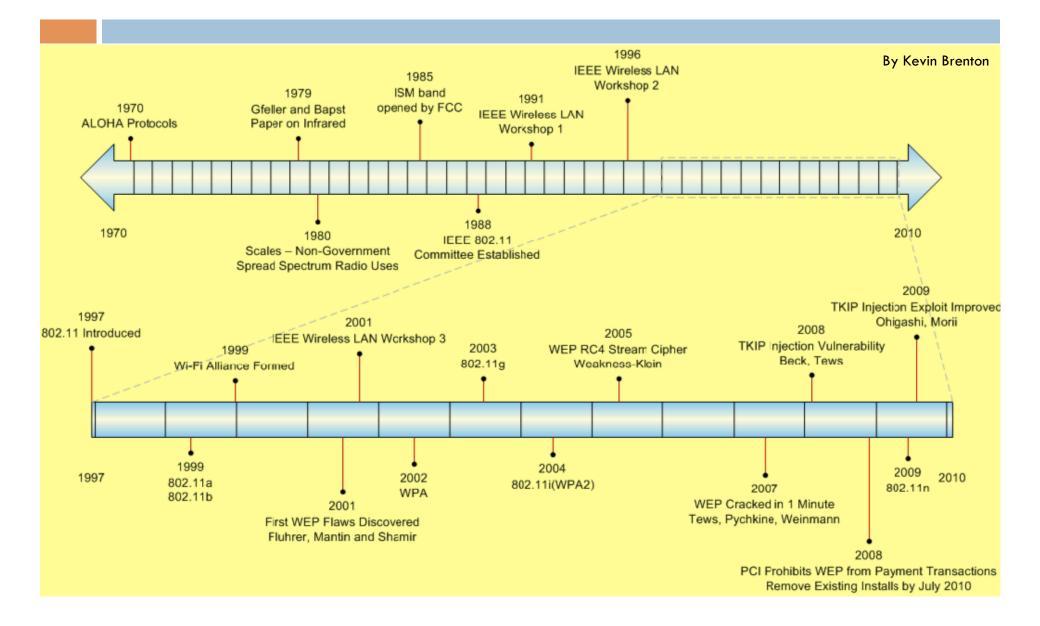
- (1) Probe Request frame broadcast from H1
- (2) Probes response frame sent from APs
- (3) Association Request frame sent: H1 to selected AP
- (4) Association Response frame sent: H1 to selected AP


802.11: mobility within same subnet

- H1 remains in same IP subnet: IP address can remain same
- switch: which AP is associated with H1?
 - self-learning : switch will see frame from H1 and "remember" which switch port can be used to reach H1

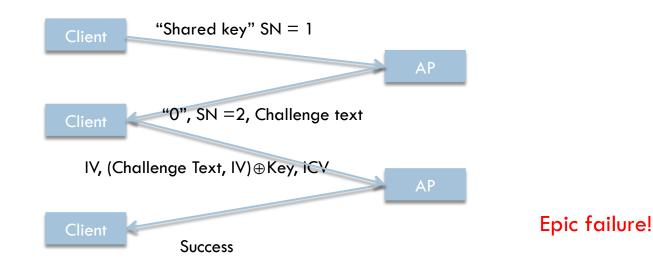
Rate Adaptaion

- Rate Adaptation
- base station, mobile dynamically change transmission rate (physical layer modulation technique) as mobile moves, SNR varies



 SNR decreases, BER increase as node moves away from base station
 When BER becomes too high, switch to lower transmission rate but with lower BER

Power Management


- node-to-AP: "I am going to sleep until next beacon frame"
 - OAP knows not to transmit frames to this node
 - Onode wakes up before next beacon frame
- beacon frame: contains list of mobiles with AP-tomobile frames waiting to be sent
 - Onode will stay awake if AP-to-mobile frames to be sent; otherwise sleep again until next beacon frame

WLAN Security Timeline

Authentication in WEP

- Open authentication (= no authentication)
 - The station identifies authentication algorithm as "Open system"
 - The AP responds with status code "0" for success
- Shared key authentication

Wired Equivalent Privacy (WEP)

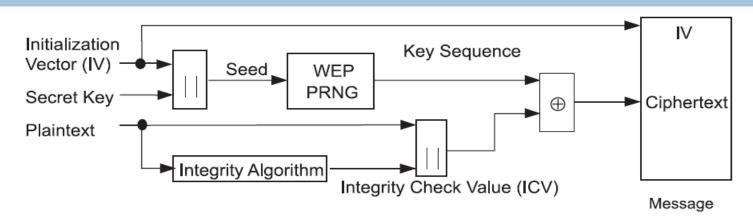


Figure 44—WEP encipherment block diagram

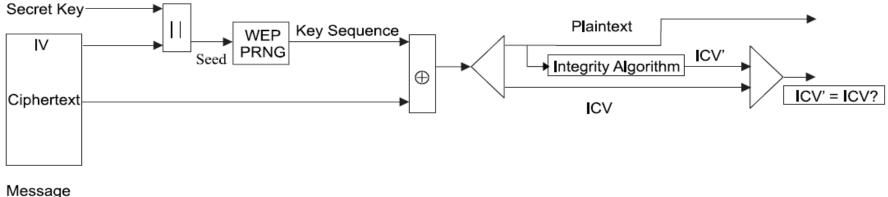
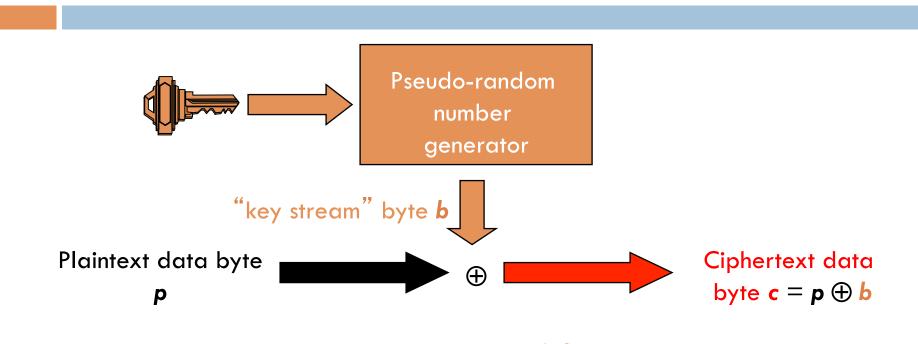
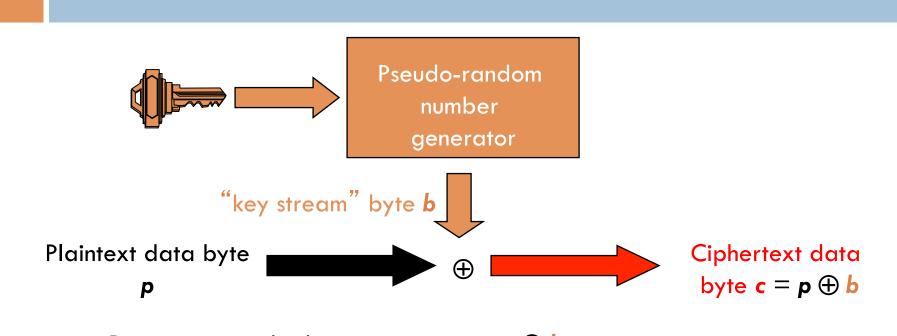



Figure 45 – WEP decipherment block diagram


Review of the cipher RC4

Decryption works the same way: $\mathbf{p} = \mathbf{c} \oplus \mathbf{b}$ **Thought experiment**: what happens when \mathbf{p}_1 and \mathbf{p}_2 are encrypted under the same "key stream" byte \mathbf{b} ?

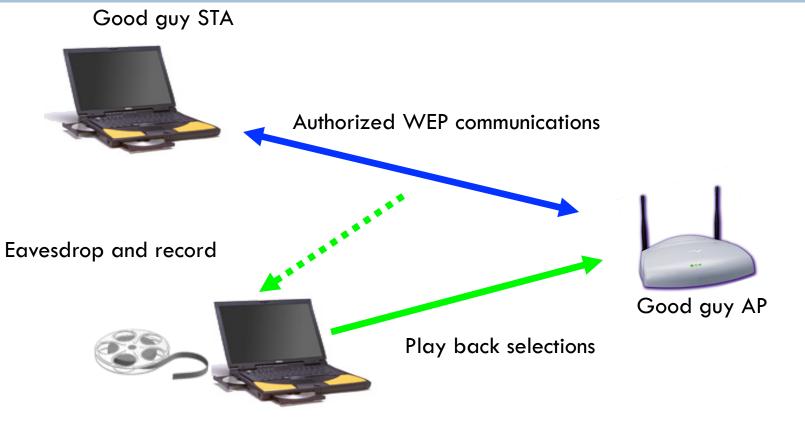
$$\mathbf{c}_1 = \mathbf{p}_1 \oplus \mathbf{b} \ \mathbf{c}_2 = \mathbf{p}_2 \oplus \mathbf{b}$$

Review of the cipher RC4

Decryption works the same way: $\mathbf{p} = \mathbf{c} \oplus \mathbf{b}$ **Thought experiment**: what happens when \mathbf{p}_1 and \mathbf{p}_2 are encrypted under the same "key stream" byte \mathbf{b} ? $\mathbf{c}_1 = \mathbf{p}_1 \oplus \mathbf{b} \ \mathbf{c}_2 = \mathbf{p}_2 \oplus \mathbf{b}$ **Then:** $\mathbf{c}_1 \oplus \mathbf{c}_2 = (\mathbf{p}_1 \oplus \mathbf{b}) \oplus (\mathbf{p}_2 \oplus \mathbf{b}) = \mathbf{p}_1 \oplus \mathbf{p}_2$

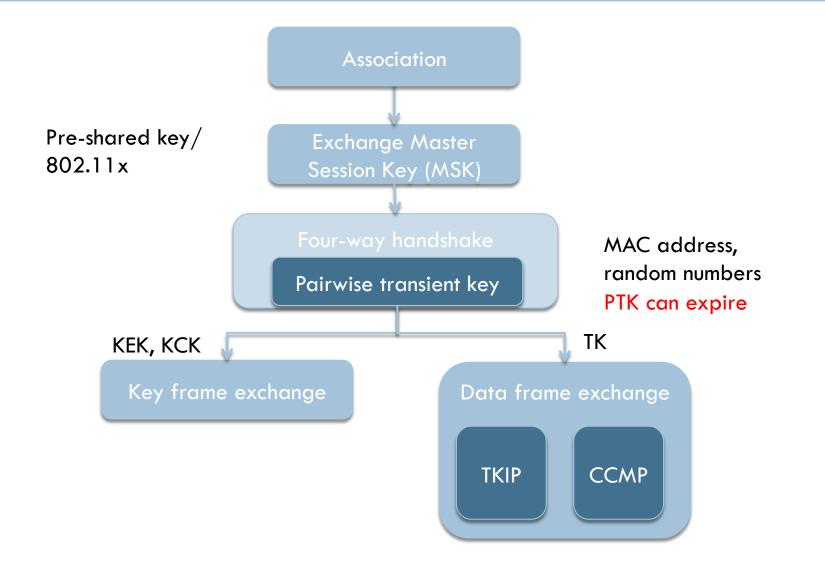
The need for a different IV for each frame!

Collision attacks

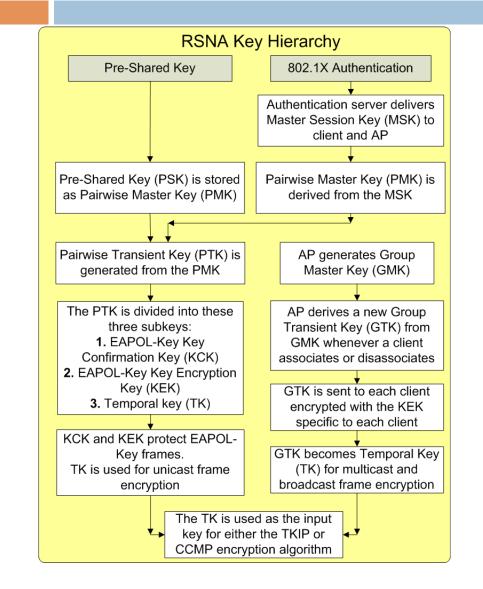


•RC4 key must be changed at least every 2²⁴ packets or data is exposed through IV collisions!

Some implemented IV selection strategies:

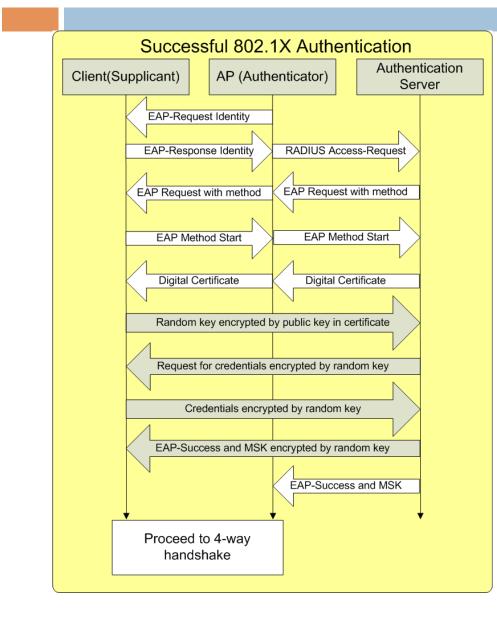

Random: Collision probability P_n two packets will share same IV after n packets is P₂ = 1/2²⁴ for n = 2 and P_n = P_{n-1}+(n-1)(1-P_{n-1})/2²⁴ for n > 2.
50% chance of a collision exists already after only 4823 packets!!!
Increment from 0: Collision probability = 100% after two devices transmit

Replay attacks

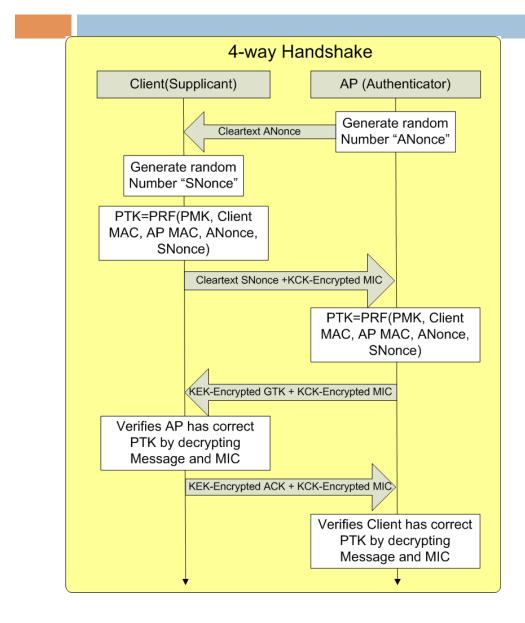


Bad guy (STA or AP)

Overview of 802.11i



Key generation in 802.11i


- One weakness of using PSK is that it is common to all users and cannot be easily revoked
- Pairwise transient key (PTK) is generated via the 4-way handshake
- GTK is common to all clients for broadcast/ multicast

Generation of MSK in 802.1X

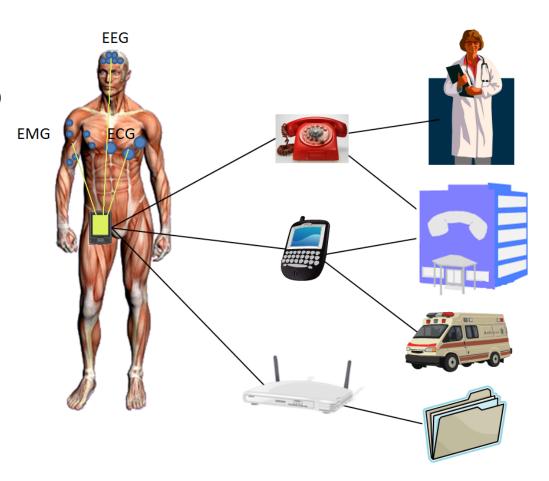
- Done after association, before 4way handshake
- The resulting PMK is unique to each client
- Different extended authentication protocols (EAP) can be used
 - EAP-TLS
 - EAP-TTLS
 - EAP-TTLS/MSCHAPv2
 - PEAPv0/EAP-MSCHAPv2
 - PEAPv1/EAP-GTC
 - EAP-SIM
 - EAP-AKA

4-way handshake authentication

PTK is unique to the client/AP pair
 Traffic cannot be decrypted by other clients

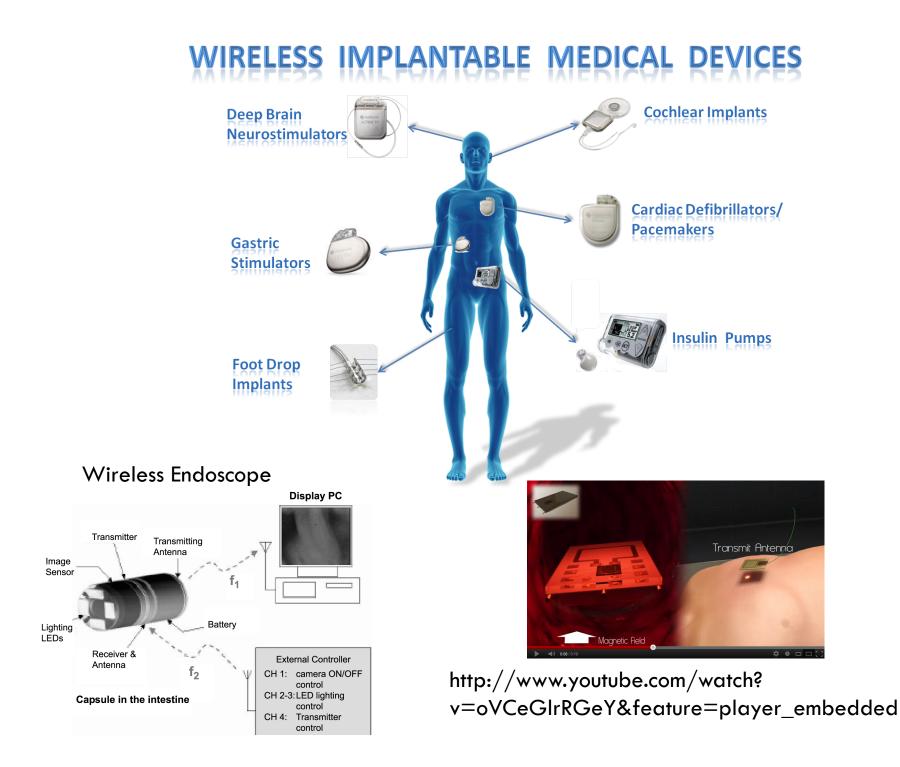
Summary

- Discussed 802.11 MAC frame formats
- Frame exchanged for authentication, association, data security/integrity
- □ Wireshark is your friend!


Body Area Networks (BAN)

Bio-Medical

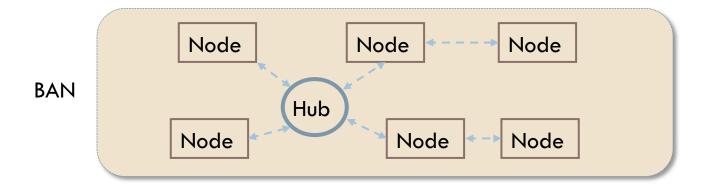
- EEG Electroencephalography
- ECG Electrocardiogram
- EMG Electromyography (muscular)
- Blood pressure
- Blood SpO2
- Blood pH
- Glucose sensor
- Respiration
- Temperature
- Fall detection


Sports performance

- Distance
- Speed
- Posture (Body Position)
- Sports training aid

Wearable vs Implant

- Wearable BAN
 - Tele-metering or sensing vita signs available
 - On-body
 - Frequency less constrained
 - Short ranged
- Implant mBAN
 - Tele-control of (implanted) medical equipment and devices
 - Typically in the MCIS band (~400MHz)
 - Short ranged

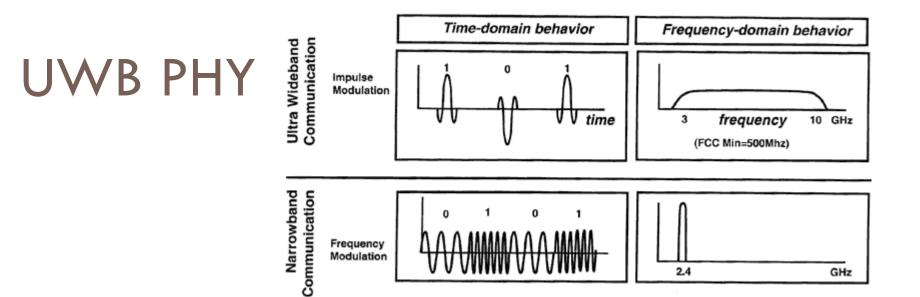


Wireless Body Area Network Standard

- □ A Body Area Network (BAN) is defined as:
 - "A communications technology that is optimized for low power consumption and operates in, on or around the human body to enable a variety of applications including medical, consumer electronics and personal entertainment"
- IEEE 802.15.6 defines the Physical (PHY) and Medium access control (MAC) layers
 - Short-range, low-power, Quality of Service (QoS) support in the vicinity of, or insides, a human body (but not limited to humans)

Architecture

Media Access Control (MAC) and Security					
Narrowband PHY	Ultra-wideband (UWB) PHY	Human Body Communications (HBC) PHY			


NarrowBand PHY

Band (MHz)	Number of Channels	Modulation	Symbol Rate (ksps)	Code Rate (k/n)	Spreading Factor (S)	Pulse Shape	Information Data Rate (kbps)	Support
		$\pi/2$ -DBPSK	187.5	51/63	2	SRRC	75.9	Mandatory
402 405	10				1		151.8	
402 – 405		π/4-DQPSK					303.6	
		π/8-D8PSK					455.4	Optional
	14 60 16	π/2-DBPSK	250	51/63	2	SRRC	101.2	Mandatory
863 - 870		WZ-DDF5K			1 SRRC		202.4	
902 - 928 950 - 956		π/4-DQPSK					404.8	
		π/8-D8PSK				607.1	Optional	
	39 79	39 π/2-DBPSK	600	51/63	4	- SRRC	121.4	Mandatory
2360 - 2400					2		242.9	
2400 - 2483.5					1		485.7	
		π/4-DQPSK					971.4	

I low peak-power consumption ($\leq 3 \text{ mA}$)

Scalable data rates: 100 –1000 kbps

Support for 10+ simultaneously operating networks

- Impulse radio (IR-UWB) and wideband FM (FM-UWB)
- □ Low interference
- Bit rate up to 12Mbps

Band group	Channel number	Central frequency (MHz)	Bandwidth (MHz)	Channel attribute
	1	3494.4	499.2	Optional
Low band	2	3993.6	499.2	Mandatory
	3	4492.8	499.2	Optional
	4	6489.6	499.2	Optional
	5	6988.8	499.2	Optional
	6	7488.0	499.2	Optional
TT:-1, 1,, 1	7	7987.2	499.2	Mandatory
High band	8	8486.4	499.2	Optional
	9	8985.6	499.2	Optional
	10	9484.8	499.2	Optional
	11	9984.0	499.2	Optional

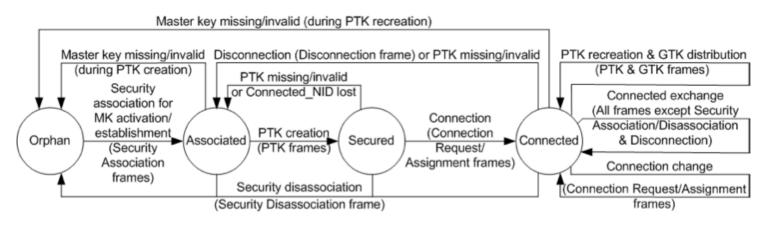
Human Body Communication (HBC)

- Designed for exchanging data between devices by touching
 - The electrode in contact with the body is used for transmitting or receiving an electrical signal through the body to a device (e.g. smartphone)

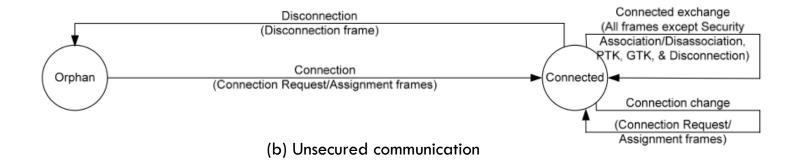
e-Payment via touch screen

Exchange e-business cards via handshake

HBC uses 21MHz band


Data Rate (21MHz)	
164 kbps	
328 kbps	
656 kbps	
1.3125 Mbps	

MAC Layer

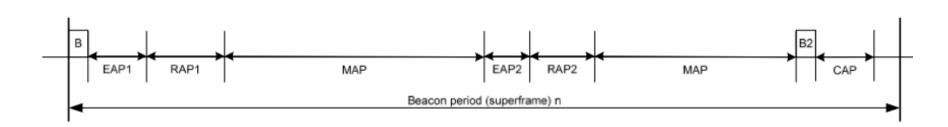

- Supports Quality of Service (QoS)
- Supports MICS band communication support
- Supports Emergency Communications
- Supports hub to node as well as node to node
- Strong Security
- Macroscopic and microscopic power management
- Coexistence and interference mitigation

Secured Communication

 Can choose from 1) unsecured communication 2) authentication but not encryption and 3) authentication and encryption

(a) Secured communication

MAC support of Priority


BAN Priority field encoding

Field value in decimal	BAN services			
0	Non-medical services			
1	Mixed medical and non-medical services			
2	General health services			
3	Highest priority medical services			

User priority mapping

Priorit y	User Priority	Traffic designation	Frame type	Contention windows in CSMA/CA
Lowest	0	Background (BK)	Data	[16. 64]
	1	Best effort (BE)	Data	[16, 32]
	2	Excellent effort (EE)	Data	[8, 32]
	3	Video (VI)	Data	[8, 16]
1 1	4	Voice (VO)	Data	[4, 16]
	5	Medical data or network control	Data or management	[4, 8]
	6	High priority medical data or network control	Data or management	[2, 8]
Highest	7	Emergency or medical event report	Data	[1, 4]

Medium access

Beacon mode with beacon periods (superframe)

- B -- beacon
- Exclusive access phase 1 (EAP1), exclusive access phase 2 (EAP2)
 - for highest priority data
- Random access phase 1 (RAP1), random access phase 2 (RAP2)
 - (can be combined by EAPs)
- Managed access phase (MAP), and
 - Scheduled up/down link transmissions
- Contention access phase (CAP)

Other features

Power management

- Node can perform macroscopic power management by sleeping more than one beacon period, or
- Microscopic power management within a beacon period
- Coexistence and interference mitigation among multiple BANs
 - Beacon shifting
 - Channel hopping (after dwelling in the current channel for a fixed number of beacon periods)
 - Active superframe interleaving
- Two-hop star topology extension