#### Objectives:

Understanding different types of wireless networksReadings:

# WIRELESS SENSOR NETWORKS AND VEHICULAR NETWORKS

### Outline

A taxonomy of wireless networks

### Wireless sensor networks (WSN)

- Hardware
- Run time systems
- Routing
- Current standardization efforts
- Vehicular ad hoc networks (VANET)
  - **🛛** 802.11p
  - Delay tolerant network routing

# A Taxonomy of Wireless Networks

**Classification:** 

- Needs for central coordination
- Nodal mobility
- Continuous connectivity
- Relay needed?

Design:

- Medium access control
- Routing
- Transport
- □ Service discovery, synchronization ...

### Coordination

### Centralized controlled vs. peer-to-peer (ad hoc/ infrastructureless) networks

**WBANs** 

Cellular network

WiFi-direct

Satellite networks

**WLANs** 

Vehicular-to-road side networks

Vehicular-to-vehicular network

### Mobility

### Mobile vs stationary networks

WBANs

Cellular network

WiFi-direct

Satellite networks

WLANs

Vehicular-to-road side networks

Vehicular-to-vehicular network

### Connectivity

### Continuous connectivity vs. intermittently connected

WBANs

Cellular network

WiFi-direct

Satellite networks

WLANs

Vehicular-to-road side networks

Vehicular-to-vehicular network

### Network diameter

□ Single-hop vs multi-hop networks

**WBANs** 

Cellular network

WiFi-direct

Satellite networks

WLANs

Vehicular-to-road side networks

Vehicular-to-vehicular network

# Wireless sensor networks (WSN)

- "Stationary" + "continuous connectivity" + "multihop"
  + "infrastructureless" networks consisting of sensors
  and actuators embedded into the environment
  - Machine-to-machine communication
  - Data-centric
- Nodes are likely to be battery powered and have limited computation capability







### Sensor platform hardware





### Processor

### MSP430

- 16-bit RISC core, up to 4 MHz, versions with 2-10 kbytes RAM, several DACs, RT clock
- Deepest sleep mode 0.3 µW
- Arduino Due
  - 32-bit Atmega AT91SAM3X8E, CPU clock@84MHz, 96KB SRAM
- 🗆 Raspberry Pi
  - 32-bit ARM1176JZF-S processor, 700MHz, 512MB RAM

### Radio

### A variety of radios can be used

- Chipcon CC1000
  - Range 300 to 1000 MHz, programmable in 250 Hz steps
  - FSK modulation
  - Provides RSSI
- Chipcon CC 2400
  - Implements 802.15.4 (Zigbee)
  - 2.4 GHz, DSSS + QPSK modulation
  - 250 kbps
- 🗖 WiFi

•••

# Power supply

- Battery or wall powered
- Energy scavenging
  - Solar power
  - Vibration
  - Harvesting RF power



Intel WISP

# Run time environment





Generic

- Contiki OS
- Embedded Linux

# Routing & transport layer in WSN

- Primarily broadcast (one to many) and converge-cast (many to one) with some one-to-one communication
  - Source: Any entity that provides data/measurements
  - Sink: Nodes that collect the data/measurements
- Types of traffic
  - Event based
  - Periodic (low-duty cycle) measurement
  - Command & control (one to one)





Sink may be mobile

### Interfacing WSN with the Internet



### Sink tree routing

Suitable for periodic measurement gathering



# **Direct diffusion**

- Event driven query processing
  - Data subscriber expresses interests; data publishers response of interested data – publisher-subscriber
  - (interestingly, some folks are trying to extend this concept into Internet under "named data networking (NDN)")

### Data Naming

Expressing an interest
 Using attribute-value pairs
 E.g.,

Type = Wheeled vehicle // detect vehicle location Interval = 20 ms // send events every 20ms Duration = 10 s // Send for next 10 s Field = [x1, y1, x2, y2]// from sensors in this area

# Setting up gradient

- Inquirer (sink) broadcasts exploratory interest, i<sub>1</sub>
  - Intended to discover routes between source and sink
- Neighbors update interest-cache and forwards i<sub>1</sub>
- Gradient for *i*<sub>1</sub> set up to upstream neighbor
  - No source routes
  - Gradient a weighted reverse link
  - Low gradient → Few packets per unit time needed
- Bidirectional gradient if interests are flooded



### **Event-data propagation**

- $\Box$  Event  $e_1$  occurs, matches  $i_1$  in sensor cache
  - e<sub>1</sub> identified based on waveform pattern matching
- Interest reply diffused down gradient (unicast)
  - Diffusion initially exploratory (low packetrate)
- Cache filters suppress previously seen data
  Problem of bidirectional gradient avoided



### Reinforcement



□ From exploratory gradients, reinforce optimal path for high-rate data download → Unicast
 □ e.g. pick the neighbor who sent the last-seen data
 □ By requesting higher-rate-*i*<sub>1</sub> on the optimal path
 □ Exploratory gradients still exist – useful for faults

# Path Failure / Recovery

- Link failure detected by reduced rate, data loss
  Choose next best link (i.e., compare links based on infrequent exploratory downloads)
- Negatively reinforce lossy link
  - Either send i1 with base (exploratory) data rate
  - Or, allow neighbor's cache to expire over time



Link A-M lossy A reinforces B B reinforces C ... D need not A (-) reinforces M M (-) reinforces D

### **Loop Elimination**



- M gets same data from both D and P, but P always delivers late due to looping
  - M negatively-reinforces (NR) P, P nr Q, Q nr M
  - Loop  $\{M \rightarrow Q \rightarrow P\}$  eliminated
- Conservative negative reinforcement useful for fault resilience

### 6LoWPAN

Layer-2

Supporting IPv6 over low power wireless personal area networks

- Allow IPv6 packets to be sent & received over IEEE 802.15.4 based networks
- Better interoperability

http://solomon.ipv6.club.tw/Course/ProtocolEngineering/archrock-6lowpan-tutorial.pdf

### Adaptation layer



# Challenges

#### Header

- Standard IPv6 header is 40 bytes [RFC 2460]
- Entire 802.15.4 MTU is 127 bytes [IEEE ]
- Small data payload

#### Fragmentation

- Interoperability means that applications need not know the constraints of physical links that might carry their packets
- IP packets may be large, compared to 802.15.4 max frame size
- IPv6 requires all links support 1280 byte packets [RFC 2460]
- Allow link-layer mesh routing under IP topology
  - 802.15.4 subnets may utilize multiple radio hops per IP hop
  - Similar to LAN switching within IP routing domain in Ethernet
- □ Allow IP routing over a mesh of 802.15.4 nodes
  - Options and capabilities already well-defines
  - Various protocols to establish routing tables

### **IP** Header and payload



- Large IP Address & Header
- => 16 bit short address / 64 bit EUID

Minimum Transfer Unit

- => Fragmentation Short range & Embedded
  - => Multiple Hops

### 6LoWPAN – IP Header Optimization



Eliminate all fields in the IPv6 header that can be derived from the 802.15.4 header in the common case

- Source address : derived from link address
- Destination address : derived from link address
- Length : derived from link frame length

: zero

- Traffic Class & Flow Label
- Next header : UDP, TCP, or ICMP
- Additional IPv6 options follow as options

# **6LoWPAN Format Design**

- Orthogonal stackable header format
- Almost no overhead for the ability to interoperate and scale.
- Pay for only what you use



### **Multi-Hop Communication**



- Short-range radios & Obstructions => Multi-hop Communication is often required
  - i.e. Routing and Forwarding
  - That is what IP does!
- □ "Mesh-under": multi-hop communication at the link layer
  - Still needs routing to other links or other PANs
- □ "Route-over": IP routing within the PAN
- 6LoWPAN supports both

### Wireless Vehicular Networks

- Vehicular-to-vehicular (V2V): infrastructureless + multihop + mobile + "intermittent connectivity"
- Vehicular-to-roadside: infrastructure + single hop + mobile + "intermittent connectivity"





### Vehicular ad hoc networks (VANET)



# Applications

### □ V2V

- Single-hop notification: lane changing, automatic cruise control, collision warning
- Multi-vehicle: traffic monitoring and accident alert
- May be latency sensitive
- Vehicle-to-roadside
  - Accident alerting, congestion, high-speed tolling, mobile infotainment, location based services
  - (infrastructure not yet available)

### Challenges & characteristics

- Poor link quality (multipath, Doppler effects)
- Short-duration connectivity
  - Less so for traffic in the same direction
- Confined mobility (along the road way)
- Location dependent
  - Information pertain to a particular geographical area
- Availability of location information & "infinite" power supply

### **VANET** Protocols

### □ DSRC/802.11p

- Dedicated Short Range Communication (DSRC) was released in 2002 by the American Society for Testing and Materials (ASTM).
- In 2003, the standardization moved to IEEE Forum and changed the name from DSRC to WAVE (Wireless Ability in Vehicular Environments), which was also known as 802.11p.

# 802.11p PHY

The standard of 802.11p is based on IEEE 802.11a PHY layer and IEEE 802.11 MAC layer

- A variation of OFDM modulation to combat multipath
- Seven 10 MHz channels at 5.9GHz
- one control channel and six service channels
- Data rates are between 6 and 27 Mbps; up to 1000 meter range

| Vehicle to<br>vehicle         | Service<br>channel | Service<br>channel | Control<br>channel | Optionally combined<br>service channels | Intersection                |
|-------------------------------|--------------------|--------------------|--------------------|-----------------------------------------|-----------------------------|
| CH 172                        | CH 174             | CH 176             | CH 178             | CH 180 CH 182                           | CH 184                      |
| 5.855                         | 5.865              | 5.875              | 5.885              | 5.905                                   | 5.925<br>5.915              |
| Safe-critical Frequency (GHz) |                    |                    |                    |                                         | High-power<br>public safety |

### 802.11p MAC

- □ CSMA/CA with different contention windows for different types of traffic
  - BK background traffic; BE best effort; VI Video traffic; VO voice traffic
  - AIFSN: arbitration inter-frame space number



# Routing in multi-vehicle V2V

- Design consideration:
  - Lifetime of routes likely to be short
  - Route establishment needs to be fast
- Broadcasting based information dissemination (stateless)
  - Detour route
  - Accident alert
  - Construction warning
  - ••••

### Wireless broadcast "storm"



- Mitigation
  - Probabilistic forwarding
  - Location-based
  - Cluster-based



# Routing in delay-tolerant networks (DTNs)

- DTNs are networks with intermittent connectivity (due to mobility)
  - Sparse vehicular networks
  - UAV networks
  - Human, animal networks
  - Inter-planetary networks
- Store-and-forward becomes store-carry-and-forward ("Data mule", "pocket switch networks")





### **DTN characteristics**

- Opportunistic forwarding
- Long end-to-end latency
- Low end-to-end reliability
  - Some messages may never reach its destination
- "Topology" evolves over time as a function of mobility

### **DTN** routing

Single copy of messages

- Find the "routes"
- Deliver the message
- Multiple copies of the messages
  - Remember the famous six-degree of separation experiments?
  - Questions:
    - How many copies?
    - Who are the forwarders?
    - Termination of the messages once they are delivered

### Some multi-copy based solutions

- Epidemic Routing (flooding): handover a copy to everyone
  - minimum delay under no contention
- Randomized Flooding: handover a copy w/ probability p
- Utility-based Flooding: handover a copy to a node w/ utility at least U<sub>th</sub> higher than current
- Constrained Utility-based Flooding: like previous, but may only forward a bounded number of copies of the same message

### Spray and wait

### Performance goals

- significantly reduce transmissions by bounding the total # of copies/transmissions per message
- under low traffic: minimal penalty on delay (close to optimal)
- under high traffic: reduce the delay of existing floodingand utility-based schemes thanks to less contention

### 2 phases:

- Spray phase": spread L message copies to L distinct relays
- Wait phase": wait until one of the L relays finds the destination (i.e. use direct transmission)

### Spray and Wait Variations

#### Source Spray and Wait

- Source starts with L copies
- whenever it encounters a new node, it hands one of the L copies
- this is the slowest among all (opportunistic) spraying schemes

#### Optimal Spray and Wait

- source starts with L copies
- whenever a node with n > 1 copies finds a new node, it hands half of the copies that it carries
- spreads the L copies faster than any other spraying scheme

# Summary

- Discussed several variations of wireless networks
  - The characteristics of the networks (energy, connectivity, traffic pattern, infrastructure vs infrastructure-less, etc.) dictate the design of the network protocols
- The most prevalent networks remain to be single-hop, infrastructure-based networks
- We see some emerging applications for multihop and/ or infrastructureless networks for smart metering, building management, V2V safety applications
- Machine-to-machine communication is likely to be the driver of wireless networking down the road