Tilt Sensing Using a Three-Axis
Accelerometer



1 Introduction

Accelerometers are sensitive to both linear acceleration and
the local gravitational field.

The former allowing the development of 'gesture' user
interfaces

The latter allows a smart phone or tablet display to
automatically switch between portrait and landscape settings.



2 Accelerometer Output Under
Gravity and Acceleration

* Alinear acceleration aligned in the direction of x, y
and z axes will give a positive accelerometer output.

e Accelerometers are sensitive to the difference
between the linear acceleration of the sensor and
the local gravitational field.
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A gravitational field component aligned along the same axes directions will

result in a negative reading on the accelerometer. The upper proof mass is
suspended by the restoring springs.

Both a gravitational field directed to the left and a linear acceleration of the
package to the right will deflect the proof mass to the left.



* The deflection of the proof mass is measured from the
change in capacitance between the fingers of the proof
mass and the sensing plates.

e Circuitry internal to the accelerometer sensor converts
the tiny capacitance to a voltage signal, is then
digitized and output as a digital word over a serial bus.
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* Changes in orientation are described by
rotations in roll ¢, pitch 6 and yaw { about
the x, y and z axes respectively.



 The accelerometer output is negated to give value +1g in any
axis aligned with the earth’s downward gravitational field.

* With this assumption:

Q

px R is the rotation matrix describing the
G = G = R(g—a.) orientation of the smart phone relative
p py S r to the earth’s coordinate frame.
G
P=

For further discussion we assume:

e The accelerometer has no linear acceleration .

e The initial orientation of the Smartphone is lying flat with the earth's
gravitational field.

With these additional assumptions, the Smartphone accelerometer output is:

p 0
G,=| G, | =Re=R| ¢
G . 1



3 Pitch and Roll Estimation

 The orientation of the Smartphone can be defined by
its roll, pitch and yaw rotations from an initial position.

1 0 0
R.(9) =1 0 cos¢ sing

There are six possible orderings of these
0 —sing cos @

three rotation matrices.

cos 0 0 —sin 6 The rotation matrices do not commute,
R.(6) = 0 1 0 meaning that the composite rotation
. o matrix R depends on the order in which
sin@ 0 cos @ _ -
the roll, pitch and yaw rotations are
applied.

cosy siny 0
R.(¥) = | —siny cosy 0
0 0 1



Rl 0| =R(HR(OR(p)| o | = select either the rotation
1y | { sequence Rxyz or the
sequence Ryxz to
—sin Ocos ¢ eliminate the yaw
sin @ rotation Y and allow
cos Ocos (pj solution for the roll ¢
and\pitch Bangles.

cos Bsin ¢

cos Bcos ¢

R..| 0|=R(ORHR(y)| ¢ | =

(o)

/ { _ \ It is conventional to
0 0 —sin 6

0 0 —cos ysin @
R._| 0|=R(HR(YR (0) o | cos@sin¢ + cos @sin Ysin @
| ' 1 cos ¢cos O— sin Osin Psin Y It is not
possible to
0 0 cos Osin Psin Yy — cos sin@ |  golve for
R.\'-‘-\‘ 0|~ R}'( O)R._( ‘//)Rx( Ml 0 - cos Ysin ¢ three
1 1 cos Ocos ¢ + sinOsingsin ¥ ) ni que
0 0 cos Osin ¢sin Y— cos Ysin 6 values of
RZ-".“ 0|~ R l//)R.\,((D)R“_( O 0| = cos ycos Osin @ + sin Osin Y the roll ,
1 1 cos Ocos ¢ pitch 6 and
yaw
0 0 sin ¢sin Y — cos ¢cos Ysin 6 angles.
Rl 0| = RAWVR(OR () 0 cos Ysin ¢ + cos @sin Ysin 6
1 1

cos Bcos ¢

The unknown yaw angle ) represents the smartphone rotation from north but its
determination requires the addition of a magnetometer sensor to create an eCompass.



Solving Rxyz and Ryxz for the Pitch and Roll Angles

* Rxyz can be rewritten in the form of relating the roll ¢ and
pitch 8 angles to the normalized accelerometer reading Gp:

H H cos@sing | = = = =l Gy | T | cosBsing
cos Bcos @ «/ (Jp.\‘ + (Tp.\' + (Jp: G, cos Bcos ¢
G, -G, -G,
I‘67]7 (D (—Bl) fan 6\_‘.- — ( ) £
Xyz G Xy sn7¢+G _cos @ J 2 2
DZ Gp\ * Gp:

 For Ryxzitis the same:

G —sin @cos ¢ ) px —sin Bcos ¢
m - sin @ — J R : Gy | = sin ¢
P cos Bcos @ pr T (Jp_\' + ('p: Gn_ cos Bcos ¢
fan ¢‘ Xz > tan 6 (;&)
+ (_T yxz . (Jp_. .



Eliminating Duplicate Solutions by Limiting the Roll and Pitch Ranges

Evaluating Rxyz, the accelerometer measurement for pitch angle t - 8 and roll
angle ¢ + 1 is the same as that resulting from rotations 6 and ¢.

—sin(7T— 6) —sin @
cos(m— Q) sin(¢+m) | — | cosBsing
cos(m— O)cos (@ + 1) cos Bcos ¢

Similarly, evaluating Ryxz for pitch angle 6 + m and roll angle m - ¢ also shows
that the accelerometer measurement is identical to that resulting from
rotations 0 and ¢.

—sin( @+ m)cos(T— Q) —sin @cos @
sin(mr— @) - sin @
cos(0+ mcos(mT— Q) cos Bcos @

1) Solution: restrict roll or pitch angle between -90°and +90°.

2) Convention In the aerospace sequence, roll angle: [-180°,+180°] ,pitch :[-90°,
90°].

3) The convention used by Android™ smartphones and by Microsoft for its
Windows 8 sensor platform: roll angle [-90°,90°], pitch angle [-180°,180°].



Regions of Instability

: _ (G O :
Both Equation’@7%.,: = (Gp_) and wn6,.. = (7:-) have a region where

the calculation of the roll angle ¢ and pitch 8 angle respectively
become unstable.

For the first one:
This condition occurs when Gpy and Gpz both equals to zero, it will produces an

unstable and essentially random estimate of the roll angle. (smart phone is aligned
with its x-axis vertically)

For the second one:
This condition occurs when Gpx and Gpz are zero. (smart phone is aligned with its y-axis
vertically).

Solution:

Is to modify the one for the roll angle ¢ by mixing a fraction p into the denominator to
prevent the denominator ever being zero. The resulting equation is:

G. .
tan@... = Bl

rXyz 5 -
sign( (rp__) J (rp__ + U (rp»\.

sign(Gpz) has a value +1 if Gpz is non-negative and -1 if Gpz is negative.



 Theroll angle error Ad is given by:

_ G, /G, [ sing (cos Ocos ¢ — A cos” cos™ ¢ + usin” O
AQ = tan 1[ - £l 7]—ran 1(6&)2 an l( 4 ( - 4 A/ - 7¢ s - )]
G, +uG,, p= cos Osin” @ + cos ¢«/ cos” Bcos™ ¢ + usin~ 6

Figures below plot the absolute value of the resulting error |Ad| in degrees as a function
of roll ¢ and pitch angles 8 between -90° and 90° and with the contour mesh set to interval

of 3° and p equal to 0.01 and 0.1.

Theta

Figure 5. Roll Angle Error Surface |4¢| for # = 0.1

Figure 4. Roll Angle Error Surface |4¢| for = 0.01
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A similar strategy can be used for 79" O, ( p_)



Calculating the Angle Between Two
Accelerometer Readings

By using scalar product:

a_\_bx +a ‘.b‘. + a__b_,

(l\.
a.b = a. |-| b, . D= o 5 5
{ : } N A (into the a.b=abcos 2ealval blent+n?
a. b_. A . ' '
page) " axb=abnsin o

* By using vector g
a, b,
axb =1 4 |X| b
HiB
b

arb_ — a-b‘,
A | | cT T
= nsino = [ ][ J a.b_—a_b.
2 2 2 o) ) o) ZI7X Xz
A/ax~ +a,; +ta. A/bx~ - bv’ + b:"

a_\,bj_ — aJ.b.\.




Calculating the Tilt Angle

The techniques of the previous section can be used to calculate the
angle p between the gravitational vector measured by the

accelerometer and the initial orientation with the gravitational field
pointing downwards along the z-axis.

If the accelerometer reading is Gp, then in the
absence of linear acceleration:

X G
Gyl 0[=6G,~ ‘Gp‘ cosp = cosp = »-
1

2 2 2
/\/GP.\’ . Gp_r . Gp'




6 Selecting Portrait and Landscape

Modes

The first high volume use of accelerometers in consumer products
was to switch a display between landscape and portrait
orientations.

P
«Q

=
-

Problem: a direct mapping between the
display orientation and the accelerometer
reading is not ergonomically suitable

Solution: Simple state transition rules are listed
below.

e (|Gpz| <0.5g) AND (Gpx > 0.5g) AND (|Gpy| <
0.4g): Change orientation to Top

e (|Gpz| <0.5g) AND (Gpx <-0.5g) AND (|Gpy|[ <
0.4g): Change orientation to Bottom

* (|Gpz| <0.5g) AND (Gpy > 0.5g) AND (|Gpx| <
0.4g): Change orientation to Right

e (|Gpz| <0.5g) AND (Gpy < -0.5g) AND (|Gpx| <
0.4g): Change orientation to Left.

|Gpz| < 0.5g known as z-axis lockout ensures that the screen orientation
remains unchanged as the user lowers the tablet to a flat orientation.



A Comparison of Pedestrian Dead-

Reckoning Algorithms using a Low-
Cost MEMS IMU



introduction

Local Positioning Systemes:
* Sensor network technology
Ultrasound, radio or vision technology

(s Pedestrian Dead-Reckoning solutions: )
Do not depend on a pre-installed infrastructure

Use Inertial Measuring Units (IMU)

Integrate step lengths and orientation estimations at each
detected step, so as to compute the absolute position and
\_ orientation of a person Y

Some PDR approaches assume a smooth walk on horizontal surfaces, and others are
valid for uneven terrain with complicated gait patterns. PDR has been proposed for a large
range of applications, such as defense, emergency rescue workers, smart offices, etc.



In this paper...

* They use low-performance Micro-Electro-Mechanical (MEMS)
inertial sensors attached to the foot of a person.

* This sensor has triaxial orthogonal accelerometers,
gyroscopes and magnetometers.

 They describe, implement and compare several of the most
relevant algorithms for step detection, stride length, heading
and position estimation.

Challenge: MEMS sensors have a significant bias and therefore suffer
large drifts after integration.



IMU

 The IMU has three orthogonally-oriented accelerometers,
three gyroscopes and three magnetometers.

accelerometers | gyroscopes magnetometers
Axes 3 3 3
Full Scale (FS) +50 m/s? +300 deg/s £750 mGauss
Linearity 0.2% of FS 0.1% of FS 0.2% of FS
Bias stability 0.02 m /s> | deg/s 0.1 mGauss
Bandwidth 30 Hz 40 Hz 10 Hz
Max update rate | 512 Hz 512 Hz 512 Hz

TABLE 1

PERFORMANCE OF INDIVIDUAL SENSORS IN XSENS IMU

Fig. 1. MTi Xsens IMU with annotated sensor cartesian coordinates.
The MTi sensor has a built-in Static accuracy (roll/pitch) | <0.5 deg
. : Static accuracy (heading)® I d
algorithm that provides the Do accuracy (heading)™ | <1 deg
. _ ynamic accuracy 2 deg RMS
absolute heading and attitude of Angular resolution 0.05 deg

1 in homogeneous magnetic environment

TABLE II
PERFORMANCE OF ATTITUDE AND HEADING AS PROVIDED BY XSENS
FUSION ALGORITHM IN MATRIX Rggs.

the unit(rotation matrix RGS).

RGS can transform the readings

from the sensor (S) to the global

(G) cartesian coordinates frames.  Performance is quite good whenever the earth
magnetic field is not disturbed



IMU placement

Waist or trunk
less intrusive

the most reliable position for

heading estimation using
gyroscopes or
magnetometers.

Foot

It is applicable the zero
velocity update (ZUPT)
strategy to diminish drifts

after integrating accelerations.

the step detection is

K robustified.

~

/

Fig. 2. Xsens IMU attached to the right foot using the shoe’s laces.



STEP DETECTION

Preliminary walking tests:
1) A one-way straight walk (120 meters long)

2) A go and return walk (60 m long with a 1800 turn)

3) A rectangular path (30 x 5 m; 70 meters in total)

Each of them were done at three different walking speed
(slow, normal, and fast), and repeated three times to
check the repetitivity of results.



e Captured Signals

a) b)

Acceleration (m/sz) Angular rate (rad/s)
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Step Detection using accelerations

Compute the
magnitude of
acceleration

Compute the
acceleration
variance

N\ )

Thresholding

Step
detection




1) Compute the magnitude of the acceleration, a;, for every
sample :

a; = \/ az +az; +az. (1)

* So that the placement of the sensor won’t affect the result

2) Compute the local acceleration variance, to highlight the
foot activity and to remove gravity:

1 1+w -

where @; 1s a local mean acceleration value, computed
: : c A — 1 1w : o1y
by this expression: a@; = 50T 2aq—i—w %g> and w de-

fines the size of the averaging window (w=135 samples).

* The fixed size of averaging window is not good!



3) Thresholding. A first threshold is applied to detect the
swing phase with high accelerations (T1=2 m/s?).

Bli —

Tl o4, > TI
0 otherwise

(3)

A second threshold (T2=1 m/ s2) is used to detect the
stance phase (By; = T2, if 0,, < T2).

Step detection with Acceleration readings
50 T T T

T
ai

—_—

45H

—_D )
—D
40H ® Step N i

35F

30F

50 100 150 200 250 300 350 400
samples

Fig. 4. Steps detection using accelerations. The detected steps are marked
with red circles. Additional line plots represent intermediate processing values
as explained in equations | to 3.

Disadvantage:

The fixed threshold is not good too.
The speed of walking have a strong
influence on the accuracy of the
result.



* Astep is detected in sample i when a swing
phase ends and stance phase starts.

e These two conditions must be satisfied:
* Atransition from high to low acceleration

e There must be at least one low acceleration detection in a
window of size w ahead of current sample i, i.e.: max(B2i:i+w)

- T2 Step detection with Acceleration readings
L 50 T T T T

45H

By i
B
aH_® Step w _

‘NM\/ WA

1 1 1 1 1 1 1 1
50 100 150 200 250 300 350 400
samples

30F
~, 25F
€
20F

15F

10

Fig. 4. Steps detection using accelerations. The detected steps are marked
with red circles. Additional line plots represent intermediate processing values
as explained in equations 1 to 3.



Step detection using gyroscopes and
magnetometers

Gyroscopes:

Computes the total angular rate magnitude using the three
individual gyroscopic sensors,

Performs a threshold at 1 rad/s
Applies a median filter to remove outliers
Detects transitions to a motionless state.

Magnetometer:

Starts with a high pass filter for removing the DC components
of the magnetic field

The remaining is the same as last algorithm.



Results

Sensor & Algo- | Real number | Number of | Percentage of
rithm type of steps steps failed eITors
Acceleration 955 l 0.1%
Gyroscopes 9535 2 0.2%
Magnetometric 955 9 0.94%

TABLE 111

PERFORMANCE OF THREE STEP DETECTION ALGORITHMS

 The step detection is very reliable at continuous walk,
but it is more difficult to detect steps robustly at the
beginning/end of motion, and at very low speeds (e.g.
museum-like style of walking).



STRIDE LENGTH ESTIMATION

* There are three main procedures to estimate a
SL:

* 1) Foot-to-foot range measuring devices (Not
implementable just with IMUs).

A 2) Modelling human gait with inertial N
measurements.

e 3) Foot inertial integration (INS) with zero

L velocity updates (ZUPT) at stance detections/




* The Weiberg SL Algorithm:

e |t assumes that SL is proportional to the bounce, or
vertical movement, of the human hip. This hip bounce is

estimated from the largest acceleration differences at
each step.

Compute the .
p. | Low-Pass N Weiberg
magnitude of . :
. filter expression
acceleration




1) Compute the magnitude of the acceleration, a;, for every
sample :

a; = \/agi +az +az.. (1)

2) Low-Pass filter this signal (a; = LP(a;)). We use a
filter of order 4 and cut-off frequency at 3 Hz.

* Toremove the noise in the signal



3) Estimate the SL using the Weiberg expression:

. — K. & 1/4
SLWe1bergk_ = K - {max’ _[zmil] —min,” T

(4)

2 L (k) TWw

The maximum and minimum operations are applied over the
filtered accelerations "aj in a window of size 2w+1 around the
sample i(k) corresponding to the k stance detection.

K is a constant that has to be selected experimentally or calibrated.



 The ZUPT SL Algorithm (can be used during
walk, run, side walk, cris-cross, climb):

e This inertial mechanization method performs zero velocity
updates every time a step is detected.

* At foot stance the velocity is known to be zero, so the idea is
to correct the linear velocities obtained after integrating the
accelerometer.

Transform the Integrate Obtain the
Correct the .
captured > these > .. . > position
. . linear velocity .
accelerations accelerations increment
Compute 2D

SL




1) Transform the captured accelerations, a; refered to the

sensor frame (S), into the global north-east frame (G),

using the rotation matrix: azG — Ras - a;

2) Integrate these accelerations, a.zG, to obtain the linear
oG .. .G _ G G
velocities v;. Thats is: v = vy | + a5/ fs, where f

0

1s the sampling frequency (100 Hz).



3) Correct the linear velocity v& from drift by using the
ZUPT update at every stance event:

a) Compute the mean velocity value, y, around the stance event, k

_ S(k)yTW G (9,
[ = Zj:i(k)—wl'j (2w + 1)
1) i(k) represents the sample index of the k stance
occurrence.

2) pk represents the velocity error accumulated at step k (it

should be zero).. _
b) Correct all the velocity samples in the whole step.

0 = vf = [pe(i — ik—1)) + pe—10iw) — )]/ m.

2 2

1) mk is the number of samples in step k.



4) Obtain the position increment at step k
AP, = (AP (north), AP, (east), AP (up))

L(k)

AP, = Y  9/fs.

I=%(k—1)

5) The 2D SL is computed by taking the horizontal carte-
sian distance of the position increment:

SLzupT, = V APy (north)? + APy (east)2.  (6)




Stride Length (m)

Results

SL Walking speed | Error of the to- | Error in percent-
algorithm tal distance cal- | age of the total
culated by sum- | travelled distance
1.3-_ ming all SL (360 m) ]
| Slow -1.10 m 0.30%
o,  Welberg Normal -2.64 m 0.73%
Fast 2.81 m 0.78%

STow 223 m 0.62% M
/ ZUPT Normal 4.15 m 1.15% |
M Fast -3.47 m 0.97% T
i TABLE 1V N
PERFORMANCE OF TWO STRIDE LENGTH (SL) ESTIMATION ALGORITHMS
*[___ (WEINBERG AND ZUPT) FOR THREE DIFFERENT WALKING SPEEDS. 1}, ]

50 100 150 200 250 50 100 150 200 250
Steps Steps

Weinberg methodology, using a fixed K value, is valid for accurately estimating SL even at
different walking speeds. The ZUPT method gives also good results with a larger variation
between consecutive SL; this is because ZUPT method does not filter any signal



2D POSITION ESTIMATION

Compute
Compute the Compute foot . P
) . > . ) >l horizontal
IMU’s X axis orientation ..
position

1) Compute the IMU’s X axis in global coordinates, for every
detected step k at stance occurrence i(k).

2) Assuming that IMU X axis is aligned with the foot heading,
then the foot orientation at stance is:

\IMU (west)

O — arctan () — . @
(k)

It will cause errors when the X axis is not perfectly aligned with the foot heading




3) The horizontal position P, = (Fj(north), Pg(east)) of
the foot at step & 1s computed as

Py (east) = P_y(east) + SLy, - sin(fgtance, )
(8)

We get SL from previous algorithms

The third INS-ZUPT-based algorithm for foot position
estimation just accumulates the positioning increments,
APk,

t(k)

C ation:
APy = ) f/fs

I=1(k—1)

Py (north) = Pp._q(north) + A Py (north)
Py (east) = Pp_1(east) + APy (east).



1 1
= = = Real traj.
so0d —&— SLWeiberg+e

ZUPT+estance

—tt [NS

stance

—e—SL

ZUPT

ZUPT+estance

e NS

ZUPT

L L 1 1 1 L L
0 10 20 30 40 50 60
East (m)

Fig. 7. A trajectory along the main building of TAI-CSIC and three position
estimations using different PDR algorithms.

East (m)

Fig. 6. An outdoors 160 meter-long closed-CCW trajectory and three position
estimations using different PDR algorithms.

1) Orientation error in the SL and foot orientation based methods can come from the
misalignment between the foot and the sensor X axis.

2) The INS-ZUPT method uses all orientation samples in a step, however the SL + 8 methods
use the orientation at one step sample (the sample at stance detection). The orientation
during swing phase are not as reliable as orientation at stance



Conclusion

* The algorithms (error below 5%) over come
the low performance of MEMS-based IMU
Sensors.

* The INS-ZUPT positioning method is suitable
for many situations, however other methods,
based on SL plus foot orientations at stance
give better performance in smooth surfaces.



Automatic Step Detection in the
Accelerometer Signal

* Pan-Tompkins method:

e This algorithm includes a series of filters and
methods that perform low-pass, derivative,
squaring, integration for preprocess and
adaptive thresholds for peak searching.

Bandpass Jd ni i J Squaring _|Moving-Window Peak Search
Filter HTENERRIOr Operation Integrator g Procedure

Fig. 3 Block diagram |of the Pan-Tompkins algorithm



Onginal Signal

)

 Bandpass-filter:

 The bandpass filter re
the signal. The followi

Amplitude (V)

frequency of 20 Hz wai) =
(=)= (1—_-_1): q 2
16 (1-z7)? g -

<

* Drivative operator:

* The derivative operatq

Output of Denvative Operator

v(n) = é[.?x(n) + x(n—1) — x(

Amplitude (V)
h o w»

0 1 3 3 4 S
* |t suppresses the low-frequency components and enlarge
the high frequency components from the high slopes.



QOutput of Squaring Operator

Squaring: (d)

S : ; :
. B BB biviisn il oo B G

The squaringof 2 1 | N

= b, i I\ .h - ¢ -
and enhances i =< % 5 & 3 =

Time (Sec)

values.
|ntegrati0n . - Output of Integration Filter

/\[\ /kj\,_/\[\

The output result

Amplitude (V)
o

[}
——

2 3 4

movmg -window L.
(n)— [\(n—(V D)) +...|

.\(n —(N=2)+---+x(n)]

:
Q=
{
(

~~
(8]
N’

where N is chosen to be 20 empirically.




Sign of the Slope

g | . : :
Fiducialmark: = ||| jj [ 1111
The peak detection using = il | : 1] J—
solution. . " . . A& & = 6

. Detected Peaks

- = T by T

2 0.5} [ | l :
The property of the succ = 0? i %ﬂ(\l‘/‘% “'\{\}‘?‘

. . o S -UDF

transformed signal is util £ ! ! !

0
Tume (Sec)

One step cycle signal is converted into a pair of consecutive 1
and -1 value, i.e., [1-11-1]

The second [1 -1] interval, corresponding to the onset and
offset of the second peak in Fig 4 (e) is defined as peak-
searching interval.

The local maximum within the peak-searching interval on the
filtered signal is detected as step.



* Template-matching method:

 The main concept of the template-matching
method is to generate a template, which
represents a typical step cycle.

Generate
Temporary
Template
Peak
Detection
Y
Template Compute the
Update? Template
N
Next Data |
Block

Fig. 5 Flowchart of the template matching method



* the whole recording is broken into several non-overlapping

data blocks of 10 seconds each.
Qriginal Signal

o

Amplitude (V)

 Then the signal is filtered by a low-pass filter with cutoff
frequency of 20 Hz.

Lowpass Filtered Signal
4 5 O

10

(b)

* Next, the algorithm will check whether there is any template
present in memory. If not present, the first step cycle is
extracted as a temporary template.



* This template is slid across the whole data block and the
normalized cross-correlation, is calculated between the
template and signal.

 The normalized cross-correlation indicates the similarity
between two vectors X and Y, which is given

<X, Y > B Rn(k) (4)

Rylk]= =
vlK] Y ’)H VR (0)- Ry (0)

v
where< X' -Y > 1s the inner product of X and Y, ||\ || 1s the

norm of the Vector X, Ry (k) is cross-correlation of X and
Y for arbitrary k, and R (0) 1s autocorrelation of X[n] at
point of zero.
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 The peaks in the normalized cross-correlation indicate great
similarity between the step template and signal segment,
thus the occurrence of the event.

 The interval, in which the cross-correlation exceeds the
threshold 0.4, is defined as peak-searching interval.



* The local maxima falling within the peak-searching interval in
the filtered signal are marked as fiducial points of the steps

Lchass Filtered Sighal

4 5
Time (Sec)

* Before the next data block is processed, a determination need
to be made as to whether the template will be updated.

* The step signal may change dynamically with time.

* If the major peaks in the normalized cross-correlation are
lower than 0.55, the new template is generated using the
steps cycles in the current data block.



Peak-detection method based on combined

dual-axial signals:

Idea: Observe from the acceleration signal of each step that
the negative wave in the x-axial signhal occurs coincident with
the negative wave in the z-axial signal.

Bandpass o/ Sum Negative Moving-Window | Squan'_ng Peak Search
Filter Elements | Integrator Operation Procedure

y

Fig. 8 Block diagram of the peak detection algorithm on the combined
dual-axial signal

Original X-axial Acceleration Original Z-axial Acceleration

Amplitude (V)

Amplitude (V)




e At first, both signals are passed through a lowpass filter with
cutoff frequency 20 Hz.

Filtered X-axial Acceleralion Filtered Z-axial Acceleration

0 : 7 3 4

 Then the positive elements in both arrays are set to zero,
whereas the negative elements remain. Both arrays are
summed up entry-by-entry.

(c)

Amplitude (V)
Amplitude (V)

* Next, the intermediate results are smoothed using the
moving-window integration filter.

1 v
y(n) = }[,\-(n— (N=1)+... 3)

x(n—=(N=2))+---+ x(n)]



 Then the squaring operator boosts the large value, which is
associated with the deceleration before the feet striking on
the ground, and suppresses the other waves of small
amplitudes.

Preprocssed Signal Preprocssed Signal
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 The peaks in the preproceésed signal are detected using a
threshold, one fourth of the maximum in array.

 The location of these peaks is defined as the onset of the
peak-searching interval in the filtered signal and twice half-
width of the sloping waves is defined as the width of the
interval.
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Pan-Tompkins method:
Easy to implement

The fluctuation in the signal, yielding the positive and
negative slopes as the useful feature, can result in false peak-

searching interval.
Template-matching method:

Capable of detecting the steps self-adaptively and generating
the representative template according to the current step

signal.

The first template is estimated since the parameters are
unknown; hence it may not approximate the real step signal.
Peak detection based on combined dual-axial
signals

The fastest and easiest among the three algorithms.



