## CAS765 Homework Assignment 1

Due date: September 23rd, 2013
Problem 1: Suppose a transmitter produces 30W of power.
a. Express the transmit power in units of dBm and dBW .
b. If the transmitter's power is applied to a unity gain antenna with a $900-\mathrm{MHz}$ carrier frequency, what is the received power in dBm at a free space distance of 100 m ?
c. Repeat (b) for a distance of 10 km .
d. Repeat (b) (c) under ground reflected model with the height of the transmitter and receiver being 30 m and 1 m respectively.
Problem 2: Prove that in the two-way ground reflected model, $\Delta=d^{\prime \prime}-d^{\prime} \approx 2 h_{t} h_{r} / d$. Show when this holds as a good approximation.

Problem 3: Consider seven-cell frequency reuse. Cell B1 is the desired cell and B2 is a co-channel cell as shown in Figure 1(a). For a mobile located in cell B1, find the minimum cell radius R to give a forward link C/I (carrier to interference) ratio of at least 18 dB at least $99 \%$ of the time. Assume the following:

Co-channel interference is due to base B 2 only.
Carrier frequency, $f_{c}=890 \mathrm{MHz}$.
Reference distance, $d_{0}=1 \mathrm{~km}$ (assume free space propagation from the transmitter to $d_{0}$ ).
Assume omnidirectional antenna for both transmitter and receiver, where $G_{\text {base }}=6 \mathrm{dBi}$ and $G_{\text {mobile }}=3 \mathrm{dBi}$.
Transmitter power, $P_{t}=10 \mathrm{~W}$ (assume equal power for all base stations).
$P L(d B)$ between the mobile and base B 1 is given as,

$$
\begin{equation*}
\overline{P L}(d B)=\overline{P L}\left(d_{0}\right)+10(2.5) \log \left(\frac{d_{1}}{d_{0}}\right)-X_{\sigma}, \sigma=0 d B . \tag{1}
\end{equation*}
$$


(a)

(b)

Fig. 1. (a) Seven-cell reuse structure; (b) co-channel interference geometry between B1 and B2
$P L(d B)$ between the mobile and base B 2 is given as

$$
\begin{equation*}
\overline{P L}(d B)=\overline{P L}\left(d_{0}\right)+10(4.0) \log \left(\frac{d_{2}}{d_{0}}\right)-X_{\sigma}, \sigma=7 d B . \tag{2}
\end{equation*}
$$

Cell boundaries are shown in Figure 1(b).
Problem 4: When A pair of nodes A and B are sending packets to node C using IEEE 802.11 DCF. All nodes are within transmission and carrier sensing range with one another. Both nodes $A$ and $B$ have many packets pending for node C. Show on a timing diagram the sequence of events that occurs until each of nodes A and B has received ACK for their first packet sent to C, assuming that they pick their successive back-off intervals as follows:
Node A: 3, 4, 8, 4, 2
Node B: 7, 6, 5, 15, 17
Assume that the propagation delay is negligible, and that the two nodes choose their initial back-off exactly at time t 0 , and that at time t 0 channel changes status from busy to idle. In your timing diagram, show one time-line each for hosts A, B and C (Fig. 2). In the time-line, show the various packets sent by the hosts, and back-off slots counted by the hosts and inter-frame spacing. Also, if a packet transmission results in a collision, indicate that as well. No RTS/CTS is used prior to Data and ACK, and that in the absence of a collision, all transmissions are received reliably.


Fig. 2. Time-line for host $\mathrm{A}, \mathrm{B}, \mathrm{C}$

