COSC6397 Homework Assignment 1 (Larger-scale Fading)

Solution

Problem 1: Suppose a transmitter produces 30W of power.
a. Express the transmit power in units of dBm and dBW .
b. If the transmitter's power is applied to a unity gain antenna with a $900-\mathrm{MHz}$ carrier frequency, what is the received power in dBm at a free space distance of 100 m ?
c. Repeat (b) for a distance of 10 km .
d. Repeat (b) (c) under ground reflected model with the height of the transmitter and receiver being 30 m and 1 m respectively.

Solution:

(a) $30 \mathrm{~W}=14.77 \mathrm{~dB}=44.77 \mathrm{dBm}$
(b)(c) $f=900 \mathrm{MHz}, \lambda=c / f=3 e 8 / 9 e 8=0.33$. From the Friis free space equation $P_{r}(d)=\frac{P_{t} G_{t} G_{r} \lambda^{2}}{(4 \pi)^{2} d^{2} L}$, at distance $100 \mathrm{~m}, P_{r}=-26.76 \mathrm{dBm}$. At distance $10 \mathrm{~km}, P_{r}=-66.76 \mathrm{dBm}$. (in this problem, we assume the far-field distance $d_{0}<100 \mathrm{~m} . L=1$.)
(d)

- Answer 1: Since $d_{c}=\left(4 \pi h_{t} h_{r}\right) / \lambda=1142>100 \mathrm{~m}$, the free space model is used. $P_{r}=-26.76 \mathrm{dBm}$.
- Answer 2: Under ground reflected model, $P_{r}=P_{t} G_{t} G_{r} \frac{h_{t}^{2} h_{r}^{2}}{d^{4}}, P_{r}=30 * 30^{2} / 100^{4}=-35.69 d B W$ for distance 10 m .
For d $=10 \mathrm{~km}, P_{r}=-115.69 \mathrm{dBW}$.
Problem 2: Prove that in the two-ray ground reflected model, $\Delta=d^{\prime \prime}-d^{\prime} \approx 2 h_{t} h_{r} / d$. Show when this holds as a good approximation.

Solution:

$$
\begin{align*}
\Delta & =\sqrt{\left(h_{t}+h_{r}\right)^{2}+d^{2}}-\sqrt{\left(h_{t}-h_{r}\right)^{2}+d^{2}} \tag{1}\\
& =\sqrt{\left(h_{t}+h_{r}\right)^{2}+d^{2}}-\sqrt{\left(h_{t}+h_{r}\right)^{2}+d^{2}-4 h_{t} h_{r}} . \tag{2}
\end{align*}
$$

Let $x=\sqrt{\left(h_{t}+h_{r}\right)^{2}+d^{2}}$, then

$$
\begin{equation*}
\Delta=x\left(1-\sqrt{1-4 h_{t} h_{r} / x^{2}}\right)=x\left(1-1+2 h_{t} h_{r} / x^{2}-o\left(4 h_{t} h_{r} / x^{2}\right)\right) \approx 2 h_{t} h_{r} / x \tag{3}
\end{equation*}
$$

The second equality is due to Taylor series $(1+x)^{a}=1+a x+a(a-1) x^{2}+\ldots$ and $\mathrm{o}(\mathrm{x})$ represents a high order polynomial of x (with exponent larger than 1). The last approximation holds iff (if and only if) $4 h_{t} h_{r} / x^{2} \ll 1$.

Lastly, when $d \gg h_{t}+h_{r}, x \approx d$. Therefore, from Eq. (3), we have $\Delta \approx 2 h_{t} h_{x} / d^{2}$.
Problem 3: Consider seven-cell frequency reuse. Cell B1 is the desired cell and B2 is a co-channel cell as shown in Figure 1(a). For a mobile located in cell B1, find the minimum cell radius R to give a forward link C/I (carrier to interference) ratio of at least 18 dB at least 99% of the time. Assume the following:

Co-channel interference is due to base B2 only.
Carrier frequency, $f_{c}=890 \mathrm{MHz}$.
Reference distance, $d_{0}=1 \mathrm{~km}$ (assume free space propagation from the transmitter to d_{0}).
Assume omnidirectional antenna for both transmitter and receiver, where $G_{\text {base }}=6 \mathrm{dBi}$ and $G_{\text {mobile }}=3 \mathrm{dBi}$.
Transmitter power, $P_{t}=10 \mathrm{~W}$ (assume equal power for all base stations).
$P L(d B)$ between the mobile and base B 1 is given as,

$$
\begin{equation*}
\overline{P L}(d B)=\overline{P L}\left(d_{0}\right)+10(2.5) \log \left(\frac{d_{1}}{d_{0}}\right)-X_{\sigma}, \sigma=0 d B . \tag{4}
\end{equation*}
$$

Fig. 1. (a) Seven-cell reuse structure; (b) co-channel interference geometry between B1 and B2
$P L(d B)$ between the mobile and base B 2 is given as

$$
\begin{equation*}
\overline{P L}(d B)=\overline{P L}\left(d_{0}\right)+10(4.0) \log \left(\frac{d_{2}}{d_{0}}\right)-X_{\sigma}, \sigma=7 d B . \tag{5}
\end{equation*}
$$

Cell boundaries are shown in Figure 1(b).

Solution:

Consider when the mobile is at the boudary of cell B1 as indicated by Figure 1(a).
The received signal from B1 can be expressed as,

$$
\begin{align*}
P_{1}[d B m] & =P t[d B m]-P L(d)[d B] \\
& =P t[d B m]-\overline{P L}\left(d_{0}\right)-10 \log \left(\left(\frac{R}{d_{0}}\right)^{2.5}\right)-X_{\sigma_{1}} \tag{6}
\end{align*}
$$

Similarly, the interference level from B2 under the assumption of equal power is,

$$
\begin{align*}
P_{2}[d B m] & =P t[d B m]-P L(d)[d B] \\
& =P t[d B m]-\overline{P L}\left(d_{0}\right)-10 \log \left(\left(\frac{3.58 R}{d_{0}}\right)^{4}\right)-X_{\sigma_{2}} \tag{7}
\end{align*}
$$

Therefore, the C/I ratio can be expressed as,

$$
\begin{equation*}
C / I=P_{1}-P_{2}=-10 \log \left(\left(\frac{R}{d_{0}}\right)^{2.5}\right)-X_{\sigma_{1}}+10 \log \left(\left(\frac{3.58 R}{d_{0}}\right)^{4}\right)+X_{\sigma_{2}} \tag{8}
\end{equation*}
$$

C/I follows log-normal Gaussian distribution with mean $\mu=10 \log \left(\left(\frac{3.58 R}{d_{0}}\right)^{4}\right)-10 \log \left(\left(\frac{R}{d_{0}}\right)^{2.5}\right)=15 \log R-22.84 d B$, and $\sigma=\sqrt{\sigma_{1}^{2}+\sigma_{2}^{2}}=7 d B$ (since the sum of two independent Gaussian distribution $\left(\mu_{x}, \sigma_{x}^{2}\right)$ and (μ_{y}, σ_{y}^{2}) follows Gaussian distribution $\left(\mu_{x}+\mu_{y}, \sigma_{x}^{2}+\sigma_{y}^{2}\right)$).

To have C/I ratio of at least 18 dB at least 99% of the time, the follow condition holds,

$$
\begin{equation*}
\frac{18-\mu}{\sigma}=-\sqrt{2} \operatorname{erf} f^{-1}(0.49 * 2) \tag{9}
\end{equation*}
$$

where erf is the error function for Gaussian distribution $(0,1)$ defined as $\operatorname{erf}(x)=\frac{2}{\sqrt{\pi}} \int_{0}^{x} \exp \left(-x^{2}\right) d t$. By plugging the expression for μ and σ, we have $R=6.43 \mathrm{Km}$.

Problem 4: When A pair of nodes A and B are sending packets to node C using IEEE 802.11 DCF. All nodes are within transmission and carrier sensing range with one another. Both nodes A and B have many packets pending for node C. Show on a timing diagram the sequence of events that occurs until each of nodes A and B has received ACK for their first packet sent to C, assuming that they pick their successive back-off intervals as follows:
Node A: 3, 4, 8, 4, 2
Node B: 7, 6, 5, 15, 17
Assume that the propagation delay is negligible, and that the two nodes choose their initial back-off exactly at time t 0 , and that at time t 0 channel changes status from busy to idle. In your timing diagram, show one time-line each for hosts A, B and C (Fig. 2). In the time-line, show the various packets sent by the hosts, and back-off slots counted by the hosts and inter-frame spacing. Also, if a packet transmission results in a collision, indicate that as well. No RTS/CTS is used prior to Data and ACK, and that in the absence of a collision, all transmissions are received reliably.

Fig. 2. Time-line for host A, B, C

