
FUNDAMENTALS OF 
WIRELESS 
COMMUNICATIONS 

Objectives:  
1)  basic channel models 

2)  factors that determines throughput/bit error rate in wireless communication 

Readings: 

1.  Rappaport, Wireless Communications: Principles and Practice, Pearson (chap 4,5) 



It’s a Wireless World! 
 
¨  Wireless, Mobile everywhere 

¤  WiFi @ 1+ Gbps standards being defined 

¤  LTE/4G @ 100Mbps over wide-area  
¤  Billion+ devices with wireless access 
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Diverse Range and Power consumption 

Power 
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Data rate 
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802.15.3c 





Spectrum Allocation 

802.11bgn 



Spectrum Usage 

Cellphone 
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Wireless Link Characteristics 

Differences from wired link …. 
 

¤ decreased signal strength: radio signal attenuates as 
it propagates through matter (path loss) 

¤  interference from other sources: standardized 
wireless network frequencies (e.g., 2.4 GHz) shared 
by other devices (e.g., phone); devices (motors) 
interfere as well 

¤ multipath propagation: radio signal reflects off 
objects ground, arriving ad destination at slightly 
different times 

 
… make communication across (even a point to point) wireless 

link much more “difficult”  



R: reflection 

D: diffraction -- a modification which light undergoes especially in 
passing by the edges of opaque bodies or through narrow openings 

S: scattering -- obstacle << wave length 

  λ = C / f
Ex: 3e8/2.4e9 = 12.5cm 



Radio Propagation Models 

How to characterize the signal at the receiver? 
- Transmitter, receiver, environment, time 
-  Large scale, small scale 



Large scale Propagation  

¨  Large scale models predict behavior averaged over 
distances >> λ 
¤ Function of distance & significant environmental 

features, roughly frequency independent 
¤ Breaks down as distance decreases 
¤ Useful for modeling the range of a radio system and 

rough capacity planning 



Small Scale Propagation Model 

¨  Small scale (fading) models describe signal 
variability on a scale of λ 
¤ Multipath effects (phase cancellation) dominate, path 

attenuation considered constant 
¤ Frequency and bandwidth dependent  
¤ Focus is on modeling “Fading”: rapid change in signal 

over a short distance or length of time. 



Large-scale Models 

¨  Path loss models 
¤ Free space 
¤ Log-distance 
¤ Log-normal shadowing 

¨  Outdoor models 
¤ “2-Ray” Ground Reflection model 
¤ Diffraction model for hilly terrain 

¨  Indoor models 



  

Pr (d) =
PtGtGrλ
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Free-space Path Loss Model 

¨  Friis free space equation: 
¤              are the antenna gains at the transmitter and receiver 

¤  λ is the wavelength 
¤  d is the distance 

¤  L is a loss factor not related to propagation 
¤  Transmission power Pt 

¤  Received power 
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Free-space Path Loss Model 

¨  Friis free space equation: 
¤              are the antenna gains at the transmitter and receiver 

¤  λ is the wavelength 
¤  d is the distance 

¤  L is a loss factor not related to propagation 
¤  Transmission power Pt 

¤  Received power 

Er ( f , t) =
α cos2π f (t − d / c)

d
Pr (d)∝ Er

2 ( f , t)



Free Space Model 

¨  Path loss 

¨  Only valid beyond far-field distance 

    , where D is the transmit antenna aperture 
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Pr (d) = Pr (d0 )(

d0

d
)2 ,d ≥ d0 ≥ d f

dB = 10 log(P2/P1), use to represent power ratio; P1 is called the power 
reference. 

dBm indicates dB refers to P1 = 1mW 

dBW indicated dB refers to P1 = 1W 

Example:  0dBW = 1W = 30dBmW = 1000mW 

d f =
2D2

λ
d f >> D,d f >> λ



Example 

¨  Far field distance for an antenna with maximum 
dimension of 1m and operating freq of 900MHz 

¨  Consider a transmitter producing 50w of power and 
with a unity gain antenna at 900MHz. What is the 
received power in dBm at a free space distance of 
100? What about 10Km? 



Example 

¨  Far field distance for an antenna with maximum dimension of 
1m and operating freq of 900MHz 

¨  Consider a transmitter producing 50w of power and with a 
unity gain antenna at 900MHz. What is the received power in 
dBm at a free space distance of 100? What about 10Km? 
(assume L =1) 

d f =
2D2

λ
= 2
3×108 / 900 ×106

= 6m

Pt =10 log(50 ×10
3) = 47dBm

Pr (100) =
PtGtGrλ

2

(4π )2d 2L
= 3.5×10−3mW = −24.5dBm

Pr (10km) = −24.5− 20 log(100) = −64.5dBm



Log-distance Path Loss Model 
¨  Log-distance generalizes path loss to account for other environmental 

factors 

n  Choose a d0 in the far field. 

n  Measure PL(d0) 

n  Take measurements and derive β empirically 

PL(d)[dB] = PL(d0 )+10β log(d / d0 )



Log-normal Shadowing 

¨  Shadowing occurs when objects block light of sight (LOS) 
between transmitter and receiver 

  
PL(d)[dB] = PL(d) + Xσ = PL(d0 ) +10β log( d

d0

) + Xσ

Xσ
is  a zero-mean Gaussian distributed random variable (in 
dB) with standard deviation σ (also in dB) 



Ground Reflection (Two-Ray) Model 
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Example 

¨  A mobile is located at 10Km away from a base-
station transmitting 50W. Both antennas are unit 
gain at height 50m and 1.5m respectively. By the 
ground reflection model, what is the received signal 
power at the mobile? 



Example 

¨  A mobile is located at 10Km away from a base-
station transmitting 50W. Both antennas are unit 
gain at height 50m and 1.5m respectively. By the 
ground reflection model, what is the received signal 
power at the mobile? 

Pr = PtGtGr

h
t

2h
r

2

d 4 = 50× (1.5×50)
2

100004
= 2.8×10−11W = −100.55dBW = −74.55dBm



Small-scale Fading 

¨  Factors that contribute to small-scale fading 
¤ Multi-path propagation -- phase cancellation etc. 
¤ Speed of the mobile -- Dopler effect 
¤ Speed of surrounding objects 
¤ The transmission bandwidth of the signal wrt bw of the 

channel 



Multipath Causes Phase Difference 

Green signal travels 1/2λ farther than 
Yellow to reach receiver, who sees Red.  
For 2.4 GHz, λ (wavelength) =12.5cm. 

Direct path 



Reflecting wall, fixed antenna 

Er ( f , t) =
α cos2π f (t − r / c)

r
− α cos2π f (t − (2d − r) / c)

2d − r

Phase  difference: Δθ = 4π f
c

(d − r)+π
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d 
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Doppler Shift 

f ' = 1
2π

Δφ
Δt

= f + v
λ
cosθ , f d = v

λ
cosθ

Er ( f , t) =
α cos2π f (t + vcosθ

c
t + t0 )

r



Example: Police Radar 

                                                     

freflected − ftransmitted = Δf =
2vt arget
λ

f = 900MHz,λ = 0.333m,v = 60Km / hr
Δf =100Hz



Reflecting wall, moving antenna 

Er ( f , t) =
α cos2π f (t − r / c − vt / c)

r + vt
− α cos2π f (t − (2d − r − vt) / c)

2d − r − vt

              ≈ 2α sin2π f [vt / c + (r − d) / c]sin2π f [t − d / c]
r + vt

Dopler spread: Ds = 2 fv / c

Transmit antenna 

wall 
d 

r 

v 



Statistical Fading Models 

¨  Fading models model the probability of a fade 
occurring at a particular location 
¤  Used to generate an impulse response 

¤  In fixed receivers, channel is slowly time-varying; the fading model is 
reevaluated at a rate related to motion 



Common Distributions 

¨  Rayleigh fading distribution 
¤ Models a flat fading signal 
¤ Used for individual multipath components 

¨  Ricean fading distribution 
¤ Used when there is a dominant signal component, e.g. 

LOS + weaker multipaths 
¤ parameter K (dB) defines strength of dominant 

component; for K=-∞, equivalent to Rayleigh 



Rayleigh fading 

¨  Models a flat fading channel or an individual multipath 
component 

  
p(r) = r

σ 2 exp(− r 2

2σ 2 )



Principle of digital communication 
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Receiver 
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Shannon capacity 

C is the capacity in bits per second,  B is the 
bandwidth in Hertz, Ps is the signal power and 
N0 is the noise spectral density. 



Example 

¨  B = 1MHz 
¨  Pr= -94.26dBm, N0= -160dBm, SNR = 5.74dB 

¨  B = 1MHz 
¨  Pr= -64.5dBm, N0= -160dBm, SNR = 35.5dB 



Example 

¨  B = 1MHz 
¨  Pr= -94.26dBm, N0= -160dBm, SNR = 5.74dB 
¨  C = 2.24Mbps 

¨  B = 1MHz 
¨  Pr= -64.5dBm, N0= -160dBm, SNR = 35.5dB 
¨  C =11.8Mbps 



Link Bit Error Rate 

¨  SNR: signal-to-noise ratio 
¤  larger SNR – easier to extract 

signal from noise (a “good 
thing”) 

¨  SNR versus BER tradeoffs 
¤  given physical layer: increase 

power -> increase SNR-
>decrease BER 

¤  given SNR: choose physical layer 
that meets BER requirement, 
giving highest throughput 
n  SNR may change with mobility: 

dynamically adapt physical layer 
(modulation technique, rate)  
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Packing More Bits per Symbol 



Spatial Diversity in MIMO 
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The Magic of 802.11ac 

http://www.merunetworks.com/products/technology/80211ac/index.html 



Summary 

¨  Efficiency of wireless communication (effective 
throughput) is determined by many factors including, 
the channel conditions, bandwidth, transmission 
power, modulation, number of antennas, etc. 

¨   Though can be treated mostly as a black box from 
upper layers, it is important to understand the 
factors that contribute to the capacity of the 
wireless link 


