
Exercise 3: Particle Filter for Indoor Positioning

using IMU Measurements

Due date: 11:59pm, Nov 13th, 2015

1 Introduction

In this exercise, you will implement the particle filter (PF) framework that
incorporates IMU measurements in the motion model and a given map to
determine the locations of a moving person in indoor environments. Unlike
the general PF introduced in the class, there is no observation from other
sensing modalities. As such, state updates are the results of motions and
all particles that fall within the confinement of the corridors are assumed to
have (non-zero) equal probabilities.

Your implementation should be based on Matlab/Octave. For instruc-
tions on downloading and installing Octave, check out Download GNU Oc-
tave. Further documentation for Octave functions can be found at the Oc-
tave documentation pages. MATLAB documentation can be found at the
MATLAB documentation pages.

2 Dataset

In the dataset provided, there are two Mat files.

• IMU.mat contains 9-axis IMU readings, namely, accelerometer, gyro
and magnetometer readings, and marker event that corresponds to
the time instances when the person passes the markers on the ground.
All timestamps are in milliseconds.

• map.mat stores map info and the locations of the markers. A simpli-
fied floor map for the ITB 2nd floor is provided. The floor map is es-
sentially defined by an outer polygon that follows the “exterior” of the
hallways, and a collection of inner polygons that correspond to blocks

1

https://www.gnu.org/software/octave/download.html
https://www.gnu.org/software/octave/download.html
http://www.gnu.org/software/octave/doc/interpreter/
http://www.gnu.org/software/octave/doc/interpreter/
http://www.mathworks.com/help/matlab/?refresh=true


of areas that cannot be accessed. A polygon is defined by a collection
of vertices. For convenience, both the vertices of the polygons and the
marker locations have been converted using the Universal Transverse
Mercator (UTM) projection to the 2-D Cartesian coordinate system,
and the south-west corner is set to be the origin.

During the data collection, the device is always face-up with the y-axis
in the device frame aligned with the heading direction of the person. This
configuration simplifies heading estimations. It should be noted that in
practice, phones can have arbitrary attitudes. Accurate heading estimate is
in face a non-trivial problem.

In addition to the Mat files, a few supplementary functions have been
provided to ease your implementation. Try “help xxx.m” for more informa-
tion. All codes are self-explanatory.

• map visualization.m displays the floor map and marker locations
with x-axis pointing east and y-axis pointing north.

• OnMapTest.m returns a binary array indicating whether a collection
of points fall with the accessible parts of the map.

• HeadingFusion.m returns the heading direction expressed as counter
clock-wise angles of the y-axis in the device frame every 20ms. This
function implements a complementary filter that combines the heading
estimation from gyro and that from accelerometer and magnetometer.
This implementation assumes that the device y-axis aligns with the
heading direction.

• fuseTwoHeadings.m fuses two heading directions with a given weight.
This function handles the cases where the headings are more than π
apart.

• fuseTwoAngles.m fuses two heading angles (ccw with respective to
y) with a given weight. This function handles the cases where the
headings are more than π apart.

3 Particle Filter for Location Estimation

A particle filter uses Monte Carlo methods for prediction and updates in the
Bayesian filter framework. It is particularly suitable when the observation
or the motion models are non-linear.

2



For this assignment, you can assume the initial position is known and
is the same as the first marker location. Each particle represents a possible
state of the person, namely, her location. In the prediction step, particles’
positions are updated based on the IMU readings. For instance, if you choose
to make predictions for every footstep, a particle’s position is updated based
the stride length and the heading direction. Due to the uncertainty in the
measurements and estimations, it is advisable to treat the stride length and
the heading direction as random variables. For example, if the estimated
heading angle is θ, you can draw the actual heading angles uniformly in
[θ−∆θ, θ+ ∆θ]. Similarly, you can sample the stride length between [0.7−
∆s, 0.7+∆s] meter. Both ∆θ and ∆s can be tuned in your implementation.

The update step of a particle filter updates the weight of each particle
based on the observation model. In this project, in absence of an actual
observation model, you only need to consider the map constraints, namely,
if a particle is outside the accessible area in the map, its weight should be
zero. In this case, we can say the particle is dead. A re-sampling step ensues
if some particles die in the update step.

To assess the location accuracy of your algorithm, you can compute the
centroid of surviving particles and compare them against the ground truth
values contained in the marker event and the markers’ locations.

To help debugging your codes and visualizing each step of the algorithm,
it is always a good practice to plot the input data, intermediate results and
the final results.

Hint:

• One design choice is when to update the particles. You may choose
to update them every footstep or every fixed interval. The later
case, you would need to estimate the displacement and heading in
the interval.

• In some cases, you may find all particles die in an update step.
This may happen for a couple of reasons, i) the size of particles is
too small, and ii) the displacement estimation is highly inaccurate.
To mitigate this problem, you may increase the size of the particles
and increase ∆θ and ∆s. Furthermore, how to reinitialize particles
when all of them have died is another design choice to make.

• Roughly, the IMU dataset contains 203 steps. This dataset is
collected from a person with relatively light footsteps. You may

3



need to tune the parameters you used for step counting from the
previous assignment.

• Matlab/Octave function interp1 can be used to interpolate 1-D
data to specified points.

4 Submission

In the report, give a brief description of the algorithms you have imple-
mented, list the parameters used, and summarize the performance results
and key observations. Submit your report (in pdf) and codes (in .m) and
output files (in .mat) through SVN.

In the report, you should articulate your design choices when to update
the particles and how to re-initialize particles when all of them die. Inves-
tigate the impacts of parameters including size of particles, ∆θ and ∆s on
location accuracy.

Acknowledgement

Many thanks to Qiang Xu for data collection and preparing supplementary
codes for the project.

4


