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Why Bayesian Filters?

In discussion fill this point, we consider a stationary
system

In practice, it is of interest to estimate the states of a
time-varying system indirectly observed through
NOIsy measurements

Example: WiFi-based localization
o States - Locations
o Olbservations = WiFi RSSI vectors
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Example Cont'd
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1. We can view states in isolation and infer locations from RSS
readings

2. Alternatively, we can consider the joint distribution of all
possible states and observations and make inference
accordingly — Computationally prohibitive as the state space
grows over fimel

Bayesian filters are a computational efficient way to deal with
time-varying systems — incremental in nature
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Review of Bayes’ Theorem

« Also called Bayes' rule

P(A,B) = P(A|B)P(B) or

P(A|B) = Plgé’;)

e Chainrules

P(x{,%9, ..., Xp)
= P(xq|xy, o, X, )P (x| %3, o, X0) ooe P(X7—1|X1)



System Model

States, e.g.,
X, locations

Contro], e.g.,
@ angular and
translation motion

Observations, e.g.,
WiFi RSS,
Magnetic fields

If m is known, it is a “localization” problem
If m is unknown, it is a Simultaneous
Localization and Mapping (SLAM) probem
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System Model
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@ o @ — Observed

@ Note the dependency of X; on X, ; and u;

(not u,4!)




System Model

Given x;; and uy, x; does
not depend on the past
states, controls and
observations (Markovian)
p($t|$1:t—1, U1:t) — p(ﬂitlﬂit—l, ut)
- Called motion model
Given m and x; , z; does
depend on past states,
observations and conftrols
P(Zt|$1:t, U1:t, m) - p(2t|fl3t> m)
- Called observation model

Observation and motion
models are application-
dependent
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Bayes Filters

Prediction step:

?(xt‘zlzt—ly U1, m)/

-~

bel(x¢)

/p(xt‘wt—laut) 'p(xt—1|21:t—17Ul:tam)dxt—l

I~

/p(xt‘xt—la Ut) : ?(wt—l |let—17 Ur:t—1, m)/ dzi_q

bel(xri—1)

Update step:

?($t|21:tau1:tam) =1 ?(Zt!%t,mz ’?(xt|zl:t—1au1:t7mz

J

bel(x+) Observation model @(It)
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An Alternative Bayes Filter

Prediction step:

p(x1t|21:0—-1, 1.6, m) = p(Te|ri—1,us) - p(X1:0-1|21:0—1, U1:t, M)

N J/

@(xt)

= p(@e]zi1,ue) - plre-1|z1-1, ur—1,m)

\ . 7
-~

bel(rt—1)

Update step:

p(T1:t|21:0, U1, m) =1 p(ze|lxe, m) - p(@1e|21:0—1, Ure, M)

N J/ \ . J/

IV

bel(xt) Observation model @(l’t)
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Bayes Filter Updates

New
observation

Prediction

Action (transition to new states)

The question is how to do the updates in a computation-
efficient way
For linear models, Kalman filter is shown to optimal

For non-linear models

o EKF - linearize the non-linear model; approximation
o Ofther KF variants (not covered)
o Particle filters
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Kalman Filter

Motion model
Ty = Arxi—1 + Bruy + €

o A;is an-by-n matrix
o Bftis a n-by-m matrix
o €, models the randomness of state transitions ~ N(O, R;)

Observation model

o Ctis ak-by-n matrix
o &, models the observation noise ~ N (0, Q)

2t = Cyxy + 0y
Initial state p(xg) ~ N{ug, Zo)
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Under the Model

Prediction step:

?(xt‘zlzt—laul:tamz — /p(fﬁt\ft—laut)'p(l‘t—1|21:t—1,Ul:t,m)dfﬁt—l

-~

bel(x¢)

— /p(:vt\zvt_hut) ‘?(wt—1|zlzt—1aul:t—lam)det—l

bel(xi—1)
bel(xy) ~ NEBtut + At/it—y ﬁt + Atzt—lAtTZ

[z 3y
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Under the Model

Update step:

?(xt‘zlztaulztam):n' ?(Zt‘xtamz '?(xtlz’l:t—laulmmz

J/
~” " ~”

bel(xt) Observation model @(It)

t

bel(xy) ~ Ngﬁt + Ki(z — Ctﬁtzag — KtOt)itZ

ot 2

Where K. is called the Kalman gain given by,

K; =%, ClQ
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KF Algorithm

Algorithm Kalman filter(u; 1,21, us, 2¢):

pr = Ay pe—1 + By uy

Zt — At Zt—l Ag‘ —|— Rt

K, =% CHCy 2 CF + Q)1
pe = fix + Ky (2t — Cy fig)

Y= — Ky Cy) Xy

return fis, Dy

Then whate

Prediction

Update

 Maximum likelihood estimator (MLE) for the states 2

Xt = Uy
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Figure 3.2 Illustration of Kalman fi Iters: (a) initial belief, (b) a measurement (in bold)
with the associated uncertainty, (c) belief after integrating the measurement into the belief
using the Kalman filter algorithm, (d) belief after motion to the right (which introduces
uncertainty), (¢) a new measurement with associated uncertainty, and (f) the resulting belief.
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Extended Kalman Filter

e |f the motion and observation models are non-

inear,
Ty = g(us, Te—1) + €

Zt = h(ZUt) -+ Ot

Then, using Taylor expansion to linearize them at u;,
He—1, At, Zt QIVES
g(ut, ve—1) =~ gug, p—1) ‘|‘{Jl(ut, Mt—ll(xt—l — [ht—1)
=G,
= g(uw, pi—1) + Ge(xi—1 — pe—1)

and

h(xe) = h(f,) + 0 () (e — 71y)
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EKF Algorithm

Algorithm Extended_Kalman filter(u; 1, > 1, ut, 2¢):

e = g(ug, pe—1)
Yt =Gt X G,;T_—l‘ Ry
Ky, =% HI' (H, 3y HN + Q)1

pe = iy + Ki(ze — h(fie))
Et — (I— Kt Ht) Zt
return ,ut,Et

Performance EKF dependson 1) the degree of non-
inearity, and 2) the uncertainty

Other linearization-based solutions exist: unscented
KF and moment matching KF
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Particle Filter

* A non-parametric solution to Bayes filter — no
inearity is assumed

« Keyidea: use a particle mass to represent state
distribution

o Each particle corresponds to one possible state

o The density of the particles, or the weight on the particles reflect the
likelihood of the states

o Update the particles using the motion model
o Resample the particles from the observations

https://www.youtube.com/watch?v=aUkBalzMKv4
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A Little Digression

 How to generate samples accordingto @
probabillity distributione

o What exactly do we mean by thate

""'|‘|||II|||||HHH""""'
A

11 TN MO R ey meminny e o o o (1l |
. . .

2 4 6 8 10 12 2 4 6 8 10 12

Non-uniform sampling unity weights Uniform sampling with weights

 Forany area A,

m:l ® 20



More Digression

 We can also approximate the probability density
with Dirac functions

M —1 p
S| Y s o 1w
m=1 m=1

Therefore, for any expectation test
10) 1= [ é(a)f(x)do

We have
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Sampling Methods

Random numlber generator +
function transformation
(inverse of CDF) —good for
simple distributions: Gaussian,
exponential, etc. — how
Matlab does it

Importance sampling (IS):
sample from a simpler
distribution (called proposal
distribution) and then weight
the samples by the ratio
between the target
distribution and the proposal
distribution

f

(b) 0.3
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Sebastian Thrun, Wolfram Burgard, Dieter Fox, “Probabilistic Robotics”



More Formally...

Importance sampling method

Proposal distribution g(x)

Target distribution f(x)

M samples/particles from g(x), xIM, m =1, 2,..., M
The M particles are weighted by f(xIM)/g(xIM)

How to choose proposal distributions?

o Easyto sample from
o g(x) >0 whenever f(x) >0

M should be sufficiently large (typically >= 1000)

O O O O
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PF Algorithm

I: Algorithm Particle filter(X;_1, u;, 24): Predicati
3 T— X, — 0 redication

. i (sample from proposal
3: form =1 tO[% do m distribution)
4: sample z; - ~ p(xy | Ug, Ly 7
6: Xy = A + <x£m],wt[m]> Update
7 endfor (weighted by the ratio)
8: form =1to M do
0: draw ¢ with probability o w,EZ] ]‘ Resampling

: [4] e

10: add z;~ to A; (back to “density” based)
11: endfor
12: return X;

« Resampling needed when there are lots of samples with low

weights and only a few samples at higher weights
o Resample in each step, or
o Resample when the disparity of weights is too large — less computation overhead
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About the Exercise

» Forsimplicity, no observationis includedin this

exercise

o Only need to consider the motion model, and
o Wall constraints — people cannot go through the walls

° e 25



SLAM

 Now, we consider the problem
where maps are not known

« Bayes filter
o Motion model

p(xt‘xlzt—laulzt) — p(ﬂ%\ﬂ?t—l,ut)
o Observation model

p(zt’xlzta U1:t, m) — p(Ztlil?t, m)

« Goal: jointly estimate states and
map
o Online SLAM
p(xta m’Z1:t7 ul:t)
o Full SLAM

p(x1., m|21:2, Ut:t)

®26



What is “Map”?

In robofics context, map typically
refers 1o a collection of objects

o Obstacles, beacons ...

Two types:

o Feature based: m,
o Location based: my,

Occupancy grid map is an example of
location-based maps: binary variable for
each grid point for presence or absence

Landmark map is an example of feature-
based maps: a collection of locations for
the landmarks, e.g., WiFi APs

27




How i1s SLAM Even Possible?

* Suppose you are blind-folded

o YOU can count your steps, turns

o You hear sounds from unknown landmarks, which allow you to estimate
their “relative” locations to you

¥

m i Robot Landmark
’ Estimated |= D - *
Tru %i}
) Durrant-Whyte, et al. Simultaneous Localisation and Mapping (SLAM): ® 28

Part I The Essential Algorithms



How i1s SLAM Even Possible?

Correlations among landmarks occur

o When multiple landmarks can be observed at the same location
o When alandmark can be observed at multiple locations

I> Estimated robot

‘ Estimated landmark

@ Correlations

Spring network analogy. The landmarks are connected by springs describing correlations between landmarks. As the
vehicle moves back and forth through the environment, spring stiffness or correlations increase (red links become
thicker). As landmarks are observed and estimated locations are corrected, and these changes are propagated through
the spring network. Note, the robot itselfis correlated to the map.

(] Durrant-Whyte, et al. Simultaneous Localisation and Mapping (SLAM): ® 29
Part I The Essential Algorithms



Basic Online SLAM

* Predictionstep

p(xy, m|z1—1,u14) = /p(xt\wt—hut)'p(xt—l,mlzu—l,u1:t)d$t—1

A 7

~~

@(wt,m)

- /Q($t|$t—1, Utl ' g(xt—la m|z1:e-1, u1:t—12 dri—1

~" ~"

Motion model bel(xi—1,m)

« Updatestep

?(xt7m|zl:t7u1:t) =1 ?(zthjtamz 'p(ﬂft,m|21;t_1,’LL1;t)

7 \ - 7

bel(x¢,m) Observation model bel (z¢,m)
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Basic Full SLAM

* Predictionstep

P($1:t,m|21:t—1,u1:t) = p(iﬁtm—laut)'p(fﬂlzt—l,m\zlzt—laulzt)

\ 7
"

bel(xt,m)

= plawe—1,w) - plere—1, m|z1—1, u1z—1)

\ 7

~ ~

M otion model bel(x1.t—1,m)

« Updatestep

p(x1.4, m|214, UL) =1 - ?(Zt‘xlztamz 'p($1:t7m|zl:t—1au1:t2

A\ . 7 A\ .

bel(x1.¢,m) Observation model bel(z1:¢,m)
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Basic SLAM

* Typically non-linear observation models

« Can be solved approximately via

o EKF: in the update step, only need to update a subset of m that
can be observed

o Particle filter: the key idea is that each particle corresponds <one
possible state, its own map>

« Need furtherreduction in computation complexity

when the dimension of m is large
o Sparse EIF SLAM, fast SLAM
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Fast SLAM




Fast SLAM

Recall that the # of particles in PF needs to be large enough
to represent the state space

In SLAM, even with feature-based, the possible map
realization is still large; with occupancy map, 2t possible maps
where L is the # of grid points — curse of dimensionality!

Key insight: if the staftes x's are known, then mapping is a
simpler problem

P(T1:6,m|21:—1,u1:e) = P(@1t|210—1, U1t) - PN D1ty 21:0-1, Utee)
— p(wlzt’le:t—la ul:t) | p(m|$1:t7 Zl:t—l)
= This is the mapping
p(m|x1:t7 Zl:t) — Hp(ml|x1:t7 Zl:t) problem!
=1

o Treat each path as a particle using the full SLAM model

o Due to independence, we can update each landmark separately — EKF or one
parficle cloud per landmark - L instead of 28 complexity
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Comments

These equations/algorithms would not be very
meaningful until you try them out in your own
applications

Computation overhead is a big problem with FP
Many variants exist not covered in the lecture
SLAM codes available from www.openslam.org
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Further Readings

Sebastian Thrun, Wolfram Burgard, Dieter Fox,
“Probabilistic Robotics”, the MIT Process

Cyrill Stachniss’ slides & Youtube video on robotic
mapping
Durrant-Whyte, et al. Simultaneous Localisation and

Mapping (SLAM): Part | The Essential Algorithms &
Part Il State of the Art

A good visual for PF
https://www.youtube.com/watchev=aUkBa1zMKv4
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