
CAS 765 Fall’15
Mobile Computing and

Wireless Networking

Rong Zheng

Bayesian Filtering and
SLAM

2

Why Bayesian Filters?
• In discussion till this point, we consider a stationary

system
• In practice, it is of interest to estimate the states of a

time-varying system indirectly observed through
noisy measurements

• Example: WiFi-based localization
o States à Locations
o Observations à WiFi RSSI vectors

3

L1 L2 Ln

RSS1 RSS2 RSSn

Example Cont’d

1. We can view states in isolation and infer locations from RSS
readings

2. Alternatively, we can consider the joint distribution of all
possible states and observations and make inference
accordingly – Computationally prohibitive as the state space
grows over time!

Bayesian filters are a computational efficient way to deal with
time-varying systems – incremental in nature

4

L1 L2 Ln

RSS1 RSS2 RSSn

Review of Bayes’ Theorem
• Also called Bayes’ rule

𝑃 𝐴,𝐵 = 𝑃 𝐴 𝐵 𝑃(𝐵) or

𝑃 𝐴 𝐵 =
𝑃	 𝐴, 𝐵
𝑃(𝐵)

• Chain rules
𝑃 𝑥*, 𝑥+,… , 𝑥-
= 𝑃 𝑥*|𝑥+,… , 𝑥- 𝑃 𝑥+|𝑥/,… , 𝑥- …𝑃(𝑥-0*|𝑥-)

5

System Model

6
Some contents are adapted from Cyrill Stachniss’ slides on robotic mapping 18

Graphical Model

unknown

unknown

observed

States, e.g.,
locations

If m is known, it is a “localization” problem
If m is unknown, it is a Simultaneous
Localization and Mapping (SLAM) probem

Control, e.g.,
angular and
translation motion

Observations, e.g.,
WiFi RSS,
Magnetic fields

Map

System Model

718

Graphical Model

unknown

unknown

observed

Unknown

Observed

Note the dependency of Xt on Xt-1 and ut
(not ut-1!)

System Model
• Given xt-1 and ut, xt does

not depend on the past
states, controls and
observations (Markovian)

- Called motion model

• Given m and xt , zt does
depend on past states,
observations and controls

- Called observation model

• Observation and motion
models are application-
dependent 8

18

Graphical Model

unknown

unknown

observed

Bayes Filters and SLAM

September 23, 2015

p(xt|x1:t�1, u1:t) = p(xt|xt�1, ut) (1)

1

Bayes Filters and SLAM

September 23, 2015

p(xt|x1:t�1, u1:t) = p(xt|xt�1, ut) (1)

p(zt|x1:t, u1:t,m) = p(zt|xt,m) (2)

1

Bayes Filters
Prediction step:

Update step:

9

Bayes Filters and SLAM

September 23, 2015

p(xt|x1:t�1, u1:t) = p(xt|xt�1, ut) (1)

p(zt|x1:t, u1:t,m) = p(zt|xt,m) (2)

The filtering problem:

• Update step:

p(xt|z1:t, u1:t,m)| {z }
bel(xt)

= ⌘ · p(zt|xt,m)| {z }
Observation model

· p(xt|z1:t�1, u1:t,m)| {z }
bel(xt)

(3)

• Prediction step:

p(xt|z1:t�1, u1:t,m)| {z }
bel(xt)

=

Z
p(xt|xt�1, ut) · p(xt�1|z1:t�1, u1:t,m)dxt�1

=

Z
p(xt|xt�1, ut) · p(xt�1|z1:t�1, u1:t�1,m)| {z }

bel(xt�1)

dxt�1

1

Bayes Filters and SLAM

September 23, 2015

p(xt|x1:t�1, u1:t) = p(xt|xt�1, ut) (1)

p(zt|x1:t, u1:t,m) = p(zt|xt,m) (2)

The filtering problem:

• Update step:

p(xt|z1:t, u1:t,m)| {z }
bel(xt)

= ⌘ · p(zt|xt,m)| {z }
Observation model

· p(xt|z1:t�1, u1:t,m)| {z }
bel(xt)

(3)

• Prediction step:

p(xt|z1:t�1, u1:t,m)| {z }
bel(xt)

=

Z
p(xt|xt�1, ut) · p(xt�1|z1:t�1, u1:t,m)dxt�1

=

Z
p(xt|xt�1, ut) · p(xt�1|z1:t�1, u1:t�1,m)| {z }

bel(xt�1)

dxt�1

1

?

An Alternative Bayes Filter
Prediction step:

Update step:

10

Bayes Filters and SLAM

September 23, 2015

p(xt|x1:t�1, u1:t) = p(xt|xt�1, ut) (1)

p(zt|x1:t, u1:t,m) = p(zt|xt,m) (2)

The filtering problem:

• Update step:

p(xt|z1:t, u1:t,m)| {z }
bel(xt)

= ⌘ · p(zt|xt,m)| {z }
Observation model

· p(xt|z1:t�1, u1:t,m)| {z }
bel(xt)

(3)

• Prediction step:

p(xt|z1:t�1, u1:t,m)| {z }
bel(xt)

=

Z
p(xt|xt�1, ut) · p(xt�1|z1:t�1, u1:t,m)dxt�1

=

Z
p(xt|xt�1, ut) · p(xt�1|z1:t�1, u1:t�1,m)| {z }

bel(xt�1)

dxt�1

Alternatively,

• Update step:

p(x1:t|z1:t, u1:t,m)| {z }
bel(xt)

= ⌘ · p(zt|xt,m)| {z }
Observation model

· p(x1:t|z1:t�1, u1:t,m)| {z }
bel(xt)

(4)

1

• Prediction step:

p(x1:t|z1:t�1, u1:t,m)| {z }
bel(xt)

= p(xt|xt�1, ut) · p(x1:t�1|z1:t�1, u1:t,m)

= p(xt|xt�1, ut) · p(xt�1|z1:t�1, u1:t�1,m)| {z }
bel(xt�1)

2

Bayes Filter Updates

• The question is how to do the updates in a computation-
efficient way

• For linear models, Kalman filter is shown to optimal
• For non-linear models

o EKF – linearize the non-linear model; approximation
o Other KF variants (not covered)
o Particle filters

11

Prediction Update

New
observation

Action (transition to new states)

Kalman Filter
• Motion model

o At is a n-by-n matrix
o Bt is a n-by-m matrix
o 𝜖2 models the randomness of state transitions ~ N(0, Rt)

• Observation model
o Ct is a k-by-n matrix
o 𝛿2 models the observation noise ~ N(0, Qt)

• Initial state p(x0) ~ N(𝜇5, Σ5)

12

• Prediction step:

p(x1:t|z1:t�1, u1:t,m)| {z }
bel(xt)

= p(xt|xt�1, ut) · p(x1:t�1|z1:t�1, u1:t,m)

= p(xt|xt�1, ut) · p(xt�1|z1:t�1, u1:t�1,m)| {z }
bel(xt�1)

Kalman Filter

• Motion model
xt = Atxt�1 +Btut + ✏t (5)

• Observation model
zt = Ctxt + �t (6)

2

• Prediction step:

p(x1:t|z1:t�1, u1:t,m)| {z }
bel(xt)

= p(xt|xt�1, ut) · p(x1:t�1|z1:t�1, u1:t,m)

= p(xt|xt�1, ut) · p(xt�1|z1:t�1, u1:t�1,m)| {z }
bel(xt�1)

Kalman Filter

• Motion model
xt = Atxt�1 +Btut + ✏t (5)

• Observation model
zt = Ctxt + �t (6)

2

Under the Model
Prediction step:

13

Bayes Filters and SLAM

September 23, 2015

p(xt|x1:t�1, u1:t) = p(xt|xt�1, ut) (1)

p(zt|x1:t, u1:t,m) = p(zt|xt,m) (2)

The filtering problem:

• Update step:

p(xt|z1:t, u1:t,m)| {z }
bel(xt)

= ⌘ · p(zt|xt,m)| {z }
Observation model

· p(xt|z1:t�1, u1:t,m)| {z }
bel(xt)

(3)

• Prediction step:

p(xt|z1:t�1, u1:t,m)| {z }
bel(xt)

=

Z
p(xt|xt�1, ut) · p(xt�1|z1:t�1, u1:t,m)dxt�1

=

Z
p(xt|xt�1, ut) · p(xt�1|z1:t�1, u1:t�1,m)| {z }

bel(xt�1)

dxt�1

1

• Prediction step:

p(x1:t|z1:t�1, u1:t,m)| {z }
bel(xt)

= p(xt|xt�1, ut) · p(x1:t�1|z1:t�1, u1:t,m)

= p(xt|xt�1, ut) · p(xt�1|z1:t�1, u1:t�1,m)| {z }
bel(xt�1)

Kalman Filter

• Motion model
xt = Atxt�1 +Btut + ✏t (5)

• Observation model
zt = Ctxt + �t (6)

bel(xt) ⇠ N (Btut +Atµt�1| {z }
µt

, Rt +At⌃t�1A
T
t)| {z }

⌃t

(7)

bel(xt) ⇠ N (µt +Kt(zt � Ctµ)| {z }
µt

, (I �KtCt)⌃t)| {z }
⌃t

(8)

2

Under the Model
Update step:

Where Kt is called the Kalman gain given by,

14

Bayes Filters and SLAM

September 23, 2015

p(xt|x1:t�1, u1:t) = p(xt|xt�1, ut) (1)

p(zt|x1:t, u1:t,m) = p(zt|xt,m) (2)

The filtering problem:

• Update step:

p(xt|z1:t, u1:t,m)| {z }
bel(xt)

= ⌘ · p(zt|xt,m)| {z }
Observation model

· p(xt|z1:t�1, u1:t,m)| {z }
bel(xt)

(3)

• Prediction step:

p(xt|z1:t�1, u1:t,m)| {z }
bel(xt)

=

Z
p(xt|xt�1, ut) · p(xt�1|z1:t�1, u1:t,m)dxt�1

=

Z
p(xt|xt�1, ut) · p(xt�1|z1:t�1, u1:t�1,m)| {z }

bel(xt�1)

dxt�1

1

• Prediction step:

p(x1:t|z1:t�1, u1:t,m)| {z }
bel(xt)

= p(xt|xt�1, ut) · p(x1:t�1|z1:t�1, u1:t,m)

= p(xt|xt�1, ut) · p(xt�1|z1:t�1, u1:t�1,m)| {z }
bel(xt�1)

Kalman Filter

• Motion model
xt = Atxt�1 +Btut + ✏t (5)

• Observation model
zt = Ctxt + �t (6)

bel(xt) ⇠ N (Btut +Atµt�1| {z }
µt

, Rt +At⌃t�1A
T
t)| {z }

⌃t

(7)

bel(xt) ⇠ N (µt +Kt(zt � Ctµ)| {z }
µt

, (I �KtCt)⌃t)| {z }
⌃t

, (8)

where Kt, the Kalman gain, is given by

Kt = ⌃tC
T
t Q

�1
t (9)

2

• Prediction step:

p(x1:t|z1:t�1, u1:t,m)| {z }
bel(xt)

= p(xt|xt�1, ut) · p(x1:t�1|z1:t�1, u1:t,m)

= p(xt|xt�1, ut) · p(xt�1|z1:t�1, u1:t�1,m)| {z }
bel(xt�1)

Kalman Filter

• Motion model
xt = Atxt�1 +Btut + ✏t (5)

• Observation model
zt = Ctxt + �t (6)

bel(xt) ⇠ N (Btut +Atµt�1| {z }
µt

, Rt +At⌃t�1A
T
t)| {z }

⌃t

(7)

bel(xt) ⇠ N (µt +Kt(zt � Ctµt)| {z }
µt

, (I �KtCt)⌃t)| {z }
⌃t

, (8)

where Kt, the Kalman gain, is given by

Kt = ⌃tC
T
t Q

�1
t (9)

2

KF Algorithm

Then what?
• Maximum likelihood estimator (MLE) for the states à

xt = 𝜇t

15

36 Chapter 3

1: Algorithm Kalman filter(µt−1,Σt−1, ut, zt):
2: µ̄t = At µt−1 + Bt ut

3: Σ̄t = At Σt−1 AT
t + Rt

4: Kt = Σ̄t CT
t (Ct Σ̄t CT

t + Qt)−1

5: µt = µ̄t + Kt(zt − Ct µ̄t)
6: Σt = (I −Kt Ct) Σ̄t

7: return µt,Σt

Table 3.1 The Kalman fi lter algorithm for linear Gaussian state transitions and measure-
ments.

3. Finally, the initial belief bel(x0) must be normal distributed. We will denote the
mean of this belief by µ0 and the covariance by Σ0:

bel(x0) = p(x0) = det (2πΣ0)
− 1

2 exp
{
− 1

2 (x0 − µ0)T Σ−1
0 (x0 − µ0)

}

These three assumptions are sufficient to ensure that the posterior bel(xt) is always
a Gaussian, for any point in time t. The proof of this non-trivial result can be found
below, in the mathematical derivation of the Kalman filter (Section 3.2.4).

3.2.2 The Kalman Filter Algorithm

The Kalman filter algorithm is depicted in Table 3.1. Kalman filters represent the
belief bel(xt) at time t by the mean µt and the covarianceΣt. The input of the Kalman
filter is the belief at time t − 1, represented by µt−1 and Σt−1. To update these
parameters, Kalman filters require the control ut and the measurement zt. The output
is the belief at time t, represented by µt and Σt.

In Lines 2 and 3, the predicted belief µ̄ and Σ̄ is calculated representing the belief
bel(xt) one time step later, but before incorporating the measurement zt. This belief is
obtained by incorporating the control ut. The mean is updated using the deterministic
version of the state transition function (3.2), with the mean µt−1 substituted for the
state xt−1. The update of the covariance considers the fact that states depend on
previous states through the linear matrix At. This matrix is multiplied twice into the
covariance, since the covariance is a quadratic matrix.

Prediction

Update

16

38 Chapter 3

0

0.05

0.1

0.15

0.2

0.25

0 5 10 15 20 25 30 (a) 0

0.05

0.1

0.15

0.2

0.25

0 5 10 15 20 25 30 (b)

0

0.05

0.1

0.15

0.2

0.25

0 5 10 15 20 25 30 (c) 0

0.05

0.1

0.15

0.2

0.25

0 5 10 15 20 25 30 (d)

0

0.05

0.1

0.15

0.2

0.25

0 5 10 15 20 25 30 (e) 0

0.05

0.1

0.15

0.2

0.25

0 5 10 15 20 25 30 (f)

Figure 3.2 Illustration of Kalman fi lters: (a) initial belief, (b) a measurement (in bold)
with the associated uncertainty, (c) belief after integrating the measurement into the belief
using the Kalman fi lter algorithm, (d) belief after motion to the right (which introduces
uncertainty), (e) a newmeasurement with associated uncertainty, and (f) the resulting belief.

Sebastian Thrun, Wolfram Burgard, Dieter Fox, “Probabilistic Robotics”

Extended Kalman Filter
• If the motion and observation models are non-

linear,

Then, using Taylor expansion to linearize them at ut,
𝜇20*, �̅�2, zt gives

and

17

• Prediction step:

p(x1:t|z1:t�1, u1:t,m)| {z }
bel(xt)

= p(xt|xt�1, ut) · p(x1:t�1|z1:t�1, u1:t,m)

= p(xt|xt�1, ut) · p(xt�1|z1:t�1, u1:t�1,m)| {z }
bel(xt�1)

1 Kalman Filter

• Motion model
xt = Atxt�1 +Btut + ✏t (5)

• Observation model
zt = Ctxt + �t (6)

bel(xt) ⇠ N (Btut +Atµt�1| {z }
µt

, Rt +At⌃t�1A
T
t)| {z }

⌃t

(7)

bel(xt) ⇠ N (µt +Kt(zt � Ctµt)| {z }
µt

, (I �KtCt)⌃t)| {z }
⌃t

, (8)

where Kt, the Kalman gain, is given by

Kt = ⌃tC
T
t Q

�1
t (9)

2 Extended Kalman filter

If the motion and observation models are non-linear,

xt = g(ut, xt1) + ✏t (10)

and
zt = h(xt) + �t (11)

2

• Prediction step:

p(x1:t|z1:t�1, u1:t,m)| {z }
bel(xt)

= p(xt|xt�1, ut) · p(x1:t�1|z1:t�1, u1:t,m)

= p(xt|xt�1, ut) · p(xt�1|z1:t�1, u1:t�1,m)| {z }
bel(xt�1)

1 Kalman Filter

• Motion model
xt = Atxt�1 +Btut + ✏t (5)

• Observation model
zt = Ctxt + �t (6)

bel(xt) ⇠ N (Btut +Atµt�1| {z }
µt

, Rt +At⌃t�1A
T
t)| {z }

⌃t

(7)

bel(xt) ⇠ N (µt +Kt(zt � Ctµt)| {z }
µt

, (I �KtCt)⌃t)| {z }
⌃t

, (8)

where Kt, the Kalman gain, is given by

Kt = ⌃tC
T
t Q

�1
t (9)

2 Extended Kalman filter

If the motion and observation models are non-linear,

xt = g(ut, xt�1) + ✏t (10)

and
zt = h(xt) + �t (11)

2
Use Taylor expansion to linearize the two at zt, µt1 , ut. We have,

g(ut, xt�1) ⇡ g(ut, µt�1) + g

0(ut, µt�1)| {z }
:=Gt

(xt�1 � µt�1)

= g(ut, µt�1) +Gt(xt�1 � µt�1)

3

Use Taylor expansion to linearize the two at zt, µt1 , ut. We have,

g(ut, xt�1) ⇡ g(ut, µt�1) + g

0(ut, µt�1)| {z }
:=Gt

(xt�1 � µt�1)

= g(ut, µt�1) +Gt(xt�1 � µt�1),

and
h(xt) ⇡ h(µt) + h

0(µt)(xt � µt) (12)

3

EKF Algorithm

• Performance EKF depends on 1) the degree of non-
linearity, and 2) the uncertainty

• Other linearization-based solutions exist: unscented
KF and moment matching KF

18

Gaussian Filters 51

1: Algorithm Extended Kalman filter(µt−1,Σt−1, ut, zt):
2: µ̄t = g(ut, µt−1)
3: Σ̄t = Gt Σt−1 GT

t + Rt

4: Kt = Σ̄t HT
t (Ht Σ̄t HT

t + Qt)−1

5: µt = µ̄t + Kt(zt − h(µ̄t))
6: Σt = (I −Kt Ht) Σ̄t

7: return µt,Σt

Table 3.3 The extended Kalman fi lter (EKF) algorithm.

Kalman filter EKF
state prediction (Line 2) At µt−1 + Bt ut g(ut, µt−1)
measurement prediction (Line 5) Ct µ̄t h(µ̄t)

That is, the linear predictions in Kalman filters are replaced by their nonlinear gener-
alizations in EKFs. Moreover, EKFs use Jacobians Gt and Ht instead of the corre-
sponding linear system matrices At, Bt, and Ct in Kalman filters. The Jacobian Gt

corresponds to the matrices At and Bt, and the Jacobian Ht corresponds to Ct. A
detailed example for extended Kalman filters will be given in Chapter ??.

3.3.3 Mathematical Derivation of the EKF

The mathematical derivation of the EKF parallels that of the Kalman filter in Sec-
tion 3.2.4, and hence shall only be sketched here. The prediction is calculated as
follows (cf. (3.7)):

bel(xt) =
∫

p(xt | xt−1, ut)︸ ︷︷ ︸
∼N (xt;g(ut,µt−1)+Gt(xt−1−µt−1),Rt)

bel(xt−1)︸ ︷︷ ︸
∼N (xt−1;µt−1,Σt−1)

dxt−1

(3.54)

This distribution is the EKF analog of the prediction distribution in the Kalman filter,
stated in (3.7). The Gaussian p(xt | xt−1, ut) can be found in Equation (3.51). The

Particle Filter
• A non-parametric solution to Bayes filter – no

linearity is assumed
• Key idea: use a particle mass to represent state

distribution
o Each particle corresponds to one possible state
o The density of the particles, or the weight on the particles reflect the

likelihood of the states
o Update the particles using the motion model
o Resample the particles from the observations

19

https://www.youtube.com/watch?v=aUkBa1zMKv4

A Little Digression
• How to generate samples according to a

probability distribution?
o What exactly do we mean by that?

• For any area A,

20

Nonparametric Filters 81

2 4 6 8 10 12

0

0.1

0.2

0.3

f

2 4 6 8 10 12

0

0.1

0.2

0.3

f g

2 4 6 8 10 12

0

0.1

0.2

0.3

f g

(a)

(b)

(c)

Figure 4.2 Illustration of importance factors in particle fi lters: (a) We seek to approximate
the target density f . (b) Instead of sampling from f directly, we can only generate samples
from a different density, g. Samples drawn from g are shown at the bottom of this diagram.
(c) A sample of f is obtained by attaching the weight f(x)/g(x) to each sample x. In
particle fi lters, f corresponds to the belief bel(xt) and g to the belief bel(xt).

Nonparametric Filters 81

2 4 6 8 10 12

0

0.1

0.2

0.3

f

2 4 6 8 10 12

0

0.1

0.2

0.3

f g

2 4 6 8 10 12

0

0.1

0.2

0.3

f g

(a)

(b)

(c)

Figure 4.2 Illustration of importance factors in particle fi lters: (a) We seek to approximate
the target density f . (b) Instead of sampling from f directly, we can only generate samples
from a different density, g. Samples drawn from g are shown at the bottom of this diagram.
(c) A sample of f is obtained by attaching the weight f(x)/g(x) to each sample x. In
particle fi lters, f corresponds to the belief bel(xt) and g to the belief bel(xt).

Uniform sampling with weightsNon-uniform sampling unity weights

Use Taylor expansion to linearize the two at zt, µt1 , ut. We have,

g(ut, xt�1) ⇡ g(ut, µt�1) + g

0(ut, µt�1)| {z }
:=Gt

(xt�1 � µt�1)

= g(ut, µt�1) +Gt(xt�1 � µt�1),

and
h(xt) ⇡ h(µt) + h

0(µt)(xt � µt) (12)

"
MX

m=1

w

[m]

#�1 MX

m=1

I(x[m] 2 A)w[m] !
Z

A
f(x)dx (13)

3

More Digression
• We can also approximate the probability density

with Dirac functions

Therefore, for any expectation test

We have

21

Use Taylor expansion to linearize the two at zt, µt1 , ut. We have,

g(ut, xt�1) ⇡ g(ut, µt�1) + g

0(ut, µt�1)| {z }
:=Gt

(xt�1 � µt�1)

= g(ut, µt�1) +Gt(xt�1 � µt�1),

and
h(xt) ⇡ h(µt) + h

0(µt)(xt � µt) (12)

"
MX

m=1

w

[m]

#�1 MX

m=1

I(x[m] 2 A)w[m] !
Z

A
f(x)dx (13)

"
MX

m=1

w

[m]

#�1 MX

m=1

�x[m](x)w[m] ! f(x) (14)

Then, for any expectation test,

I(�) :=

Z
�(x)f(x)dx (15)

it can be approximated by,

"
MX

m=1

w

[m]

#�1 MX

m=1

�(x[m])w[m] ! f(x) (16)

3

Use Taylor expansion to linearize the two at zt, µt1 , ut. We have,

g(ut, xt�1) ⇡ g(ut, µt�1) + g

0(ut, µt�1)| {z }
:=Gt

(xt�1 � µt�1)

= g(ut, µt�1) +Gt(xt�1 � µt�1),

and
h(xt) ⇡ h(µt) + h

0(µt)(xt � µt) (12)

"
MX

m=1

w

[m]

#�1 MX

m=1

I(x[m] 2 A)w[m] !
Z

A
f(x)dx (13)

"
MX

m=1

w

[m]

#�1 MX

m=1

�x[m](x)w[m] ! f(x) (14)

Then, for any expectation test,

I(�) :=

Z
�(x)f(x)dx (15)

it can be approximated by,

"
MX

m=1

w

[m]

#�1 MX

m=1

�(x[m])w[m] ! f(x) (16)

3

Use Taylor expansion to linearize the two at zt, µt1 , ut. We have,

g(ut, xt�1) ⇡ g(ut, µt�1) + g

0(ut, µt�1)| {z }
:=Gt

(xt�1 � µt�1)

= g(ut, µt�1) +Gt(xt�1 � µt�1),

and
h(xt) ⇡ h(µt) + h

0(µt)(xt � µt) (12)

"
MX

m=1

w

[m]

#�1 MX

m=1

I(x[m] 2 A)w[m] !
Z

A
f(x)dx (13)

"
MX

m=1

w

[m]

#�1 MX

m=1

�x[m](x)w[m] ! f(x) (14)

Then, for any expectation test,

I(�) :=

Z
�(x)f(x)dx (15)

it can be approximated by,

"
MX

m=1

w

[m]

#�1 MX

m=1

�(x[m])w[m] ! I(�) (16)

3

Sampling Methods
• Random number generator +

function transformation
(inverse of CDF) – good for
simple distributions: Gaussian,
exponential, etc. – how
Matlab does it

• Importance sampling (IS):
sample from a simpler
distribution (called proposal
distribution) and then weight
the samples by the ratio
between the target
distribution and the proposal
distribution

22

Nonparametric Filters 81

2 4 6 8 10 12

0

0.1

0.2

0.3

f

2 4 6 8 10 12

0

0.1

0.2

0.3

f g

2 4 6 8 10 12

0

0.1

0.2

0.3

f g

(a)

(b)

(c)

Figure 4.2 Illustration of importance factors in particle fi lters: (a) We seek to approximate
the target density f . (b) Instead of sampling from f directly, we can only generate samples
from a different density, g. Samples drawn from g are shown at the bottom of this diagram.
(c) A sample of f is obtained by attaching the weight f(x)/g(x) to each sample x. In
particle fi lters, f corresponds to the belief bel(xt) and g to the belief bel(xt).

Sebastian Thrun, Wolfram Burgard, Dieter Fox, “Probabilistic Robotics”

More Formally…
• Importance sampling method

o Proposal distribution g(x)
o Target distribution f(x)
o M samples/particles from g(x), x[m], m = 1, 2,..., M
o The M particles are weighted by f(x[m])/g(x[m])

• How to choose proposal distributions?
o Easy to sample from
o g(x) > 0 whenever f(x) > 0

• M should be sufficiently large (typically >= 1000)

23

PF Algorithm

• Resampling needed when there are lots of samples with low
weights and only a few samples at higher weights
o Resample in each step, or
o Resample when the disparity of weights is too large – less computation overhead

24

78 Chapter 4

1: Algorithm Particle filter(Xt−1, ut, zt):
2: X̄t = Xt = ∅
3: form = 1 toM do
4: sample x[m]

t ∼ p(xt | ut, x
[m]
t−1)

5: w[m]
t = p(zt | x[m]

t)
6: X̄t = X̄t + ⟨x[m]

t , w[m]
t ⟩

7: endfor
8: form = 1 toM do
9: draw i with probability ∝ w[i]

t

10: add x[i]
t to Xt

11: endfor
12: return Xt

Table 4.3 The particle fi lter algorithm, a variant of the Bayes fi lter based on importance
sampling.

the number of particles in the particle set Xt. In practice, the number of particles M
is often a large number, e.g., M = 1, 000. In some implementations M is a function
of t or of other quantities related to the belief bel(xt).

The intuition behind particle filters is to approximate the belief bel(xt) by the set of
particles Xt. Ideally, the likelihood for a state hypothesis xt to be included in the
particle set Xt shall be proportional to its Bayes filter posterior bel(xt):

x[m]
t ∼ p(xt | z1:t, u1:t) (4.23)

As a consequence of (4.23), the denser a subregion of the state space is populated by
samples, the more likely it is that the true state falls into this region. As we will discuss
below, the property (4.23) holds only asymptotically for M ↑ ∞ for the standard
particle filter algorithm. For finite M , particles are drawn from a slightly different
distribution. In practice, this difference is negligible as long as the number of particles
is not too small (e.g.,M ≥ 100).

Just like all other Bayes filter algorithms discussed thus far, the particle filter algo-
rithm constructs the belief bel(xt) recursively from the belief bel(xt−1) one time step
earlier. Since beliefs are represented by sets of particles, this means that particle filters

Predication
(sample from proposal

distribution)

Update
(weighted by the ratio)

Resampling
(back to “density” based)

About the Exercise
• For simplicity, no observation is included in this

exercise
o Only need to consider the motion model, and
o Wall constraints – people cannot go through the walls

25

SLAM
• Now, we consider the problem

where maps are not known
• Bayes filter

o Motion model

o Observation model

• Goal: jointly estimate states and
map
o Online SLAM

o Full SLAM

26

18

Graphical Model

unknown

unknown

observed

Bayes Filters and SLAM

September 23, 2015

p(xt|x1:t�1, u1:t) = p(xt|xt�1, ut) (1)

1

Bayes Filters and SLAM

September 23, 2015

p(xt|x1:t�1, u1:t) = p(xt|xt�1, ut) (1)

p(zt|x1:t, u1:t,m) = p(zt|xt,m) (2)

1

Use Taylor expansion to linearize the two at zt, µt1 , ut. We have,

g(ut, xt�1) ⇡ g(ut, µt�1) + g

0(ut, µt�1)| {z }
:=Gt

(xt�1 � µt�1)

= g(ut, µt�1) +Gt(xt�1 � µt�1),

and
h(xt) ⇡ h(µt) + h

0(µt)(xt � µt) (12)

"
MX

m=1

w

[m]

#�1 MX

m=1

I(x[m] 2 A)w[m] !
Z

A
f(x)dx (13)

"
MX

m=1

w

[m]

#�1 MX

m=1

�x[m](x)w[m] ! f(x) (14)

Then, for any expectation test,

I(�) :=

Z
�(x)f(x)dx (15)

it can be approximated by,

"
MX

m=1

w

[m]

#�1 MX

m=1

�(x[m])w[m] ! I(�) (16)

3 SLAM

p(xt,m|z1:t, u1:t) (17)

3

Use Taylor expansion to linearize the two at zt, µt1 , ut. We have,

g(ut, xt�1) ⇡ g(ut, µt�1) + g

0(ut, µt�1)| {z }
:=Gt

(xt�1 � µt�1)

= g(ut, µt�1) +Gt(xt�1 � µt�1),

and
h(xt) ⇡ h(µt) + h

0(µt)(xt � µt) (14)

"
MX

m=1

w

[m]

#�1 MX

m=1

I(x[m] 2 A)w[m] !
Z

A
f(x)dx (15)

"
MX

m=1

w

[m]

#�1 MX

m=1

�x[m](x)w[m] ! f(x) (16)

Then, for any expectation test,

I(�) :=

Z
�(x)f(x)dx (17)

it can be approximated by,

"
MX

m=1

w

[m]

#�1 MX

m=1

�(x[m])w[m] ! I(�) (18)

3 SLAM

p(xt,m|z1:t, u1:t) (19)

p(x1:t,m|z1:t, u1:t) (20)

3

What is “Map”?
• In robotics context, map typically

refers to a collection of objects
o Obstacles, beacons …

• Two types:
o Feature based: mn

o Location based: mx,y

• Occupancy grid map is an example of
location-based maps: binary variable for
each grid point for presence or absence

• Landmark map is an example of feature-
based maps: a collection of locations for
the landmarks, e.g., WiFi APs

27

122 Chapter 6

Figure 6.1 Typical ultrasound scan of a robot in its environment.

measuring smooth surfaces (such as walls) at an angle, the echo tends to travel into a
direction other than the sonar sensor, as illustrated in Figure ??. This effect is called
specular reflection and often leads to overly large range measurements. The likelihood
of specular reflection depends on a number of properties, such as the surface material
and angle, the range of the surface, and the sensitivity of the sonar sensor. Other errors,
such as short readings, may be caused by cross-talk between different sensors (sound
is slow!) or by unmodeled objects in the proximity of the robot, such as people.

As a rule of thumb, the more accurate a sensor model, the better the results—though
there are some important caveats that were already discussed in Chapter 2.4.4. In prac-
tice, however, it is often impossible to model a sensor accurately, primarily for two rea-
sons: First, developing an accurate sensor model can be extremely time-consuming,
and second, an accurate model may require state variables that we might not know
(such as the surface material). Probabilistic robotics accommodates the inaccuracies
of sensor models in the stochastic aspects: By modeling the measurement process
as a conditional probability density, p(zt | xt), instead of a deterministic function
zt = f(xt), the uncertainty in the sensor model can be accommodated in the non-
deterministic aspects of the model. Herein lies a key advantage of probabilistic tech-
niques over classical robotics: in practice, we can get away with extremely crude mod-
els. However, when devising a probabilistic model, care has to be taken to capture the
different types of uncertainties that may affect a sensor measurement.

Many sensors generate more than one numerical measurement value when queried.
For example, cameras generate entire arrays of values (brightness, saturation, color);
similarly, range finders usually generate entire scans of ranges. We will denote the

How is SLAM Even Possible?
• Suppose you are blind-folded

o You can count your steps, turns
o You hear sounds from unknown landmarks, which allow you to estimate

their “relative” locations to you

28

2

require a joint state composed of the vehicle pose and every
landmark position, to be updated following each landmark
observation. In turn, this would require the estimator to
employ a huge state vector (of order the number of land-
marks maintained in the map) with computation scaling as
the square of the number of landmarks.

Crucially, this work did not look at the convergence prop-
erties of the map or its steady-state behavior. Indeed, it
was widely assumed at the time that the estimated map
errors would not converge and would instead exhibit a ran-
dom walk behavior with unbounded error growth. Thus,
given the computational complexity of the mapping prob-
lem and without knowledge of the convergence behavior of
the map, researchers instead focused on a series of approxi-
mations to the consistent mapping problem solution which
assumed or even forced the correlations between landmarks
to be minimized or eliminated so reducing the full filter to
a series of decoupled landmark to vehicle filters ([28], [38]
for example). Also for these reasons, theoretical work on
the combined localisation and mapping problem came to a
temporary halt, with work often focused on either mapping
or localisation as separate problems.

The conceptual break-through came with the realisation
that the combined mapping and localisation problem, once
formulated as a single estimation problem, was actually
convergent. Most importantly, it was recognised that the
correlations between landmarks, that most researchers had
tried to minimize, were actually the critical part of the
problem and that, on the contrary, the more these corre-
lations grew, the better the solution. The structure of the
SLAM problem, the convergence result and the coining of
the acronym ‘SLAM’ was first presented in a mobile robot-
ics survey paper presented at the 1995 International Sym-
posium on Robotics Research [16]. The essential theory on
convergence and many of the initial results were developed
by Csorba [11], [10]. Several groups already working on
mapping and localisation, notably at MIT [29], Zaragoza
[5], [4], the ACFR at Sydney [20], [45] and others [7], [13],
began working in earnest on SLAM1 applications in indoor,
outdoor and sub-sea environments.

At this time, work focused on improving computational
e±ciency and addressing issues in data association or ‘loop
closure’. The 1999 International Symposium on Robot-
ics Research (ISRR’99) [23] was an important meeting
point where the first SLAM session was held and where
a degree of convergence between the Kalman-filter based
SLAM methods and the probabilistic localisation and map-
ping methods introduced by Thrun [42] was achieved. The
2000 IEEE ICRA Workshop on SLAM attracted fifteen re-
searchers and focused on issues such as algorithmic com-
plexity, data association and implementation challenges.
The following SLAM workshop at the 2002 ICRA attracted
150 researchers with a broad range of interests and appli-
cations. The 2002 SLAM summer school hosted by Hen-
rik Christiansen at KTH in Stockholm attracted all the

1Also called Concurrent Mapping and Localisation (CML) at this
time.

key researchers together with some 50 PhD students from
around the world and was a tremendous success in build-
ing the field. Interest in SLAM has grown exponentially
in recent years, and workshops continue to be held at both
ICRA and IROS. The SLAM summer school ran in 2004
in Tolouse and will run at Oxford in 2006.

III. Formulation and Structure of
the SLAM problem

SLAM is a process by which a mobile robot can build
a map of an environment and at the same time use this
map to deduce it’s location. In SLAM both the trajectory
of the platform and the location of all landmarks are esti-
mated on-line without the need for any a priori knowledge
of location.

A. Preliminaries

x k

x k+2
m j

x k x k-1

x k+1

m i

z k-1,i

z k,j

u k

u k+1

u k+2

Robot Landmark

Estimated

True

Fig. 1. The essential SLAM problem. A simultaneous estimate of
both robot and landmark locations is required. The true locations are
never known or measured directly. Observations are made between
true robot and landmark locations. See text for details.

Consider a mobile robot moving through an environment
taking relative observations of a number of unknown land-
marks using a sensor located on the robot as shown in
Figure 1. At a time instant k, the following quantities are
defined:
• x

k

: The state vector describing the location and orien-
tation of the vehicle.
• u

k

: The control vector, applied at time k°1 to drive the
vehicle to a state x

k

at time k.
• m

i

: A vector describing the location of the ith landmark
whose true location is assumed time invariant.
• z

ik

: An observation taken from the vehicle of the location
of the ith landmark at time k. When there are multiple
landmark observations at any one time or when the specific
landmark is not relevant to the discussion, the observation
will be written simply as z

k

.

Durrant-Whyte, et al. Simultaneous Localisation and Mapping (SLAM):
Part I The Essential Algorithms

How is SLAM Even Possible?
• Correlations among landmarks occur

o When multiple landmarks can be observed at the same location
o When a landmark can be observed at multiple locations

29

4

monotonically as more and more observations are made2.
Practically, this means that knowledge of the relative loca-
tion of landmarks always improves and never diverges, re-
gardless of robot motion. In probabilistic terms, this means
that the joint probability density on all landmarks P (m)
becomes monotonically more peaked as more observations
are made.

This convergence occurs because the observations made
by the robot can be considered as ‘nearly independent’
measurements of the relative location between landmarks.
Referring again to Figure 1, consider the robot at location
x

k

observing the two landmarks m
i

and m
j

. The relative
location of observed landmarks is clearly independent of
the coordinate frame of the vehicle and successive obser-
vations from this fixed location would yield further inde-
pendent measurements of the relative relationship between
landmarks. Now, as the robot moves to location x

k+1,
it again observes landmark m

j

this allows the estimated
location of the robot and landmark to be updated rela-
tive to the previous location x

k

. In turn this propagates
back to update landmark m

i

even though this landmark

is not seen from the new location. This occurs because
the two landmarks are highly correlated (their relative lo-
cation is well known) from previous measurements. Fur-
ther, the fact that the same measurement data is used to
update these two landmarks makes them more correlated.
The term ‘nearly independent’ measurement is appropriate
because the observation errors will be correlated through
successive vehicle motions. Also note that in Figure 1 at
location x

k+1 the robot observes two new landmarks rel-

ative to m
j

. These new land-marks are thus immediately
linked or correlated to the rest of the map. Later update to
these landmarks will also update landmark m

j

and through
this landmark m

i

and so on. That is, all landmarks end
up forming a network linked by relative location or cor-
relations whose precision or value increases whenever an
observation is made.

This process can be visualized (Figure 2) as a network of
springs connecting all landmarks together, or as a rubber
sheet in which all landmarks are embedded. An observa-
tion in a neighbourhood acts like a displacement to spring
system or rubber sheet such that it’s eÆect is great in the
neighbourhood and, dependent on local stiÆness (correla-
tion) properties, diminishes with distance to other land-
marks. As the robot moves through this environment and
takes observations of the landmarks, the the springs be-
come increasingly (and monotonically) stiÆer. In the limit,
a rigid map of landmarks or an accurate relative map of
the environment is obtained. As the map is built, the lo-
cation accuracy of the robot measured relative to the map
is bounded only by the quality of the map and relative
measurement sensor. In the theoretical limit, robot rel-
ative location accuracy becomes equal to the localisation
accuracy achievable with a given map.

2These results have only been proved for the linear Gaussian case
[14]. Formal proof for the more general probabilistic case remains an
open problem.

Fig. 2. Spring network analogy. The landmarks are connected by
springs describing correlations between landmarks. As the vehicle
moves back and forth through the environment, spring stiÆness or
correlations increase (red links become thicker). As landmarks are
observed and estimated locations are corrected, and these changes
are propagated through the spring network. Note, the robot itself is
correlated to the map.

IV. Solutions to the SLAM Problem

Solutions to the probabilistic SLAM problem involve
finding an appropriate representation for the observation
model Equation 2 and motion model Equation 3 which al-
lows e±cient and consistent computation of the prior and
posterior distributions in Equations 4 and 5. By far the
most common representation is in the form of a state-space
model with additive Gaussian noise, leading to the use
of the extended Kalman filter (EKF) to solve the SLAM
problem as described in Section IV-A. One important al-
ternative representation is to describe the vehicle motion
model in Equation 3 as a set of samples of a more gen-
eral non-Gaussian probability distribution. This leads to
the use of the Rao-Blackwellised particle filter, or Fast-
SLAM algorithm, to solve the SLAM problem as described
in Section IV-B. While EKF-SLAM and FastSLAM are the
two most important solution methods, newer alternatives,
which oÆer much potential, have been proposed including
the use of the information-state form [43]. These are dis-
cussed further in Part II of this tutorial.

A. EKF-SLAM

The basis for the EKF-SLAM method is to describe the
vehicle motion in the form

P (x
k

| x
k°1,uk

)() x
k

= f(x
k°1,uk

) + w
k

, (6)

where f(·) models vehicle kinematics and where w
k

are
additive, zero mean uncorrelated Gaussian motion distur-
bances with covariance Q

k

. The observation model is de-
scribed in the form

P (z
k

| x
k

,m)() z(k) = h(x
k

,m) + v
k

, (7)

where h(·) describes the geometry of the observation and
where v

k

are additive, zero mean uncorrelated Gaussian
observation errors with covariance R

k

.

Spring network analogy. The landmarks are connected by springs describing correlations between landmarks. As the
vehicle moves back and forth through the environment, spring stiffness or correlations increase (red links become
thicker). As landmarks are observed and estimated locations are corrected, and these changes are propagated through
the spring network. Note, the robot itself is correlated to the map.

Durrant-Whyte, et al. Simultaneous Localisation and Mapping (SLAM):
Part I The Essential Algorithms

Basic Online SLAM
• Prediction step

• Update step

30

• Prediction step:

p(xt,m|z1:t�1, u1:t)| {z }
bel(xt,m)

=

Z
p(xt|xt�1, ut) · p(xt�1,m|z1:t�1, u1:t)dxt�1

=

Z
p(xt|xt�1, ut)| {z }
Motion model

· p(xt�1,m|z1:t�1, u1:t�1)| {z }
bel(xt�1,m)

dxt�1

• Update step:

p(xt,m|z1:t, u1:t)| {z }
bel(xt,m)

= ⌘ · p(zt|xt,m)| {z }
Observation model

· p(xt,m|z1:t�1, u1:t)| {z }
bel(xt,m)

(21)

4

• Prediction step:

p(xt,m|z1:t�1, u1:t)| {z }
bel(xt,m)

=

Z
p(xt|xt�1, ut) · p(xt�1,m|z1:t�1, u1:t)dxt�1

=

Z
p(xt|xt�1, ut)| {z }
Motion model

· p(xt�1,m|z1:t�1, u1:t�1)| {z }
bel(xt�1,m)

dxt�1

• Update step:

p(xt,m|z1:t, u1:t)| {z }
bel(xt,m)

= ⌘ · p(zt|xt,m)| {z }
Observation model

· p(xt,m|z1:t�1, u1:t)| {z }
bel(xt,m)

(21)

4

Basic Full SLAM
• Prediction step

• Update step

31

• Prediction step:

p(xt,m|z1:t�1, u1:t)| {z }
bel(xt,m)

=

Z
p(xt|xt�1, ut) · p(xt�1,m|z1:t�1, u1:t)dxt�1

=

Z
p(xt|xt�1, ut)| {z }
Motion model

· p(xt�1,m|z1:t�1, u1:t�1)| {z }
bel(xt�1,m)

dxt�1

• Update step:

p(xt,m|z1:t, u1:t)| {z }
bel(xt,m)

= ⌘ · p(zt|xt,m)| {z }
Observation model

· p(xt,m|z1:t�1, u1:t)| {z }
bel(xt,m)

(21)

Or, alteratively for the full SLAM

• Prediction step:

p(x1:t,m|z1:t�1, u1:t)| {z }
bel(xt,m)

= p(xt|xt�1, ut) · p(x1:t�1,m|z1:t�1, u1:t)dxt�1

= p(x1:t|xt�1, ut)| {z }
Motion model

· p(x1:t�1,m|z1:t�1, u1:t�1)| {z }
bel(x1:t�1,m)

dxt�1

• Update step:

p(x1:t,m|z1:t, u1:t)| {z }
bel(x1:t,m)

= ⌘ · p(zt|x1:t,m)| {z }
Observation model

· p(x1:t,m|z1:t�1, u1:t)| {z }
bel(x1:t,m)

(22)

4

• Prediction step:

p(xt,m|z1:t�1, u1:t)| {z }
bel(xt,m)

=

Z
p(xt|xt�1, ut) · p(xt�1,m|z1:t�1, u1:t)dxt�1

=

Z
p(xt|xt�1, ut)| {z }
Motion model

· p(xt�1,m|z1:t�1, u1:t�1)| {z }
bel(xt�1,m)

dxt�1

• Update step:

p(xt,m|z1:t, u1:t)| {z }
bel(xt,m)

= ⌘ · p(zt|xt,m)| {z }
Observation model

· p(xt,m|z1:t�1, u1:t)| {z }
bel(xt,m)

(21)

Or, alteratively for the full SLAM

• Prediction step:

p(x1:t,m|z1:t�1, u1:t)| {z }
bel(xt,m)

= p(xt|xt�1, ut) · p(x1:t�1,m|z1:t�1, u1:t)

= p(xt|xt�1, ut)| {z }
Motion model

· p(x1:t�1,m|z1:t�1, u1:t�1)| {z }
bel(x1:t�1,m)

• Update step:

p(x1:t,m|z1:t, u1:t)| {z }
bel(x1:t,m)

= ⌘ · p(zt|x1:t,m)| {z }
Observation model

· p(x1:t,m|z1:t�1, u1:t)| {z }
bel(x1:t,m)

(22)

p(m|x1:t, z1:t) =
LY

l=1

p(ml|x1:t, z1:t) (23)

p(x1:t,m|z1:t�1, u1:t) = p(x1:t|z1:t�1, u1:t) · p(m|x1:t, z1:t�1, u1:t)

= p(x1:t|z1:t�1, u1:t) · p(m|x1:t, z1:t�1)

4

Basic SLAM
• Typically non-linear observation models
• Can be solved approximately via

o EKF: in the update step, only need to update a subset of m that
can be observed

o Particle filter: the key idea is that each particle corresponds <one
possible state, its own map>

• Need further reduction in computation complexity
when the dimension of m is large
o Sparse EIF SLAM, fast SLAM

32

Fast SLAM

33
15

Landmarks are Conditionally
Independent Given the Poses

Landmark variables are all disconnected
(i.e. independent) given the robot’s path

Fast SLAM
• Recall that the # of particles in PF needs to be large enough

to represent the state space
• In SLAM, even with feature-based, the possible map

realization is still large; with occupancy map, 2L possible maps
where L is the # of grid points – curse of dimensionality!

• Key insight: if the states x’s are known, then mapping is a
simpler problem

o Treat each path as a particle using the full SLAM model
o Due to independence, we can update each landmark separately – EKF or one

particle cloud per landmark à L instead of 2L complexity

34

• Prediction step:

p(xt,m|z1:t�1, u1:t)| {z }
bel(xt,m)

=

Z
p(xt|xt�1, ut) · p(xt�1,m|z1:t�1, u1:t)dxt�1

=

Z
p(xt|xt�1, ut)| {z }
Motion model

· p(xt�1,m|z1:t�1, u1:t�1)| {z }
bel(xt�1,m)

dxt�1

• Update step:

p(xt,m|z1:t, u1:t)| {z }
bel(xt,m)

= ⌘ · p(zt|xt,m)| {z }
Observation model

· p(xt,m|z1:t�1, u1:t)| {z }
bel(xt,m)

(21)

Or, alteratively for the full SLAM

• Prediction step:

p(x1:t,m|z1:t�1, u1:t)| {z }
bel(xt,m)

= p(xt|xt�1, ut) · p(x1:t�1,m|z1:t�1, u1:t)

= p(x1:t|xt�1, ut)| {z }
Motion model

· p(x1:t�1,m|z1:t�1, u1:t�1)| {z }
bel(x1:t�1,m)

• Update step:

p(x1:t,m|z1:t, u1:t)| {z }
bel(x1:t,m)

= ⌘ · p(zt|x1:t,m)| {z }
Observation model

· p(x1:t,m|z1:t�1, u1:t)| {z }
bel(x1:t,m)

(22)

p(m|x1:t, z1:t) =
LY

l=1

p(ml|x1:t, z1:t) (23)

4

• Prediction step:

p(xt,m|z1:t�1, u1:t)| {z }
bel(xt,m)

=

Z
p(xt|xt�1, ut) · p(xt�1,m|z1:t�1, u1:t)dxt�1

=

Z
p(xt|xt�1, ut)| {z }
Motion model

· p(xt�1,m|z1:t�1, u1:t�1)| {z }
bel(xt�1,m)

dxt�1

• Update step:

p(xt,m|z1:t, u1:t)| {z }
bel(xt,m)

= ⌘ · p(zt|xt,m)| {z }
Observation model

· p(xt,m|z1:t�1, u1:t)| {z }
bel(xt,m)

(21)

Or, alteratively for the full SLAM

• Prediction step:

p(x1:t,m|z1:t�1, u1:t)| {z }
bel(xt,m)

= p(xt|xt�1, ut) · p(x1:t�1,m|z1:t�1, u1:t)

= p(x1:t|xt�1, ut)| {z }
Motion model

· p(x1:t�1,m|z1:t�1, u1:t�1)| {z }
bel(x1:t�1,m)

• Update step:

p(x1:t,m|z1:t, u1:t)| {z }
bel(x1:t,m)

= ⌘ · p(zt|x1:t,m)| {z }
Observation model

· p(x1:t,m|z1:t�1, u1:t)| {z }
bel(x1:t,m)

(22)

p(m|x1:t, z1:t) =
LY

l=1

p(ml|x1:t, z1:t) (23)

p(x1:t,m|z1:t�1, u1:t) = p(x1:t|z1:t�1, u1:t) · p(m|x1:t, z1:t�1, u1:t)

= p(x1:t|z1:t�1, u1:t) · p(m|x1:t, z1:t�1)

4

This is the mapping
problem!

Comments
• These equations/algorithms would not be very

meaningful until you try them out in your own
applications

• Computation overhead is a big problem with FP
• Many variants exist not covered in the lecture
• SLAM codes available from www.openslam.org

35

Further Readings
• Sebastian Thrun, Wolfram Burgard, Dieter Fox,

“Probabilistic Robotics”, the MIT Process
• Cyrill Stachniss’ slides & Youtube video on robotic

mapping
• Durrant-Whyte, et al. Simultaneous Localisation and

Mapping (SLAM): Part I The Essential Algorithms &
Part II State of the Art

• A good visual for PF
https://www.youtube.com/watch?v=aUkBa1zMKv4

36

