

# Fine muscular activity recognition using Electromyography

Ala Shaabana

# Outline

- What is Electromyography?
- A little Biology.
- Surface EMG (sEMG) Signal
- Classifying sEMG.
- Myoelectric Control strategies.
- Our approach in fine muscular activity recognition.





# Electromyography

- Medicinal electro-diagnostic technique for measuring and evaluating the **electrical output (action potential)** of skeletal muscles.
- Signals can be analyzed to detect medical abnormalities, activation levels, recruitment order, or to analyze the the biomechanics of human or animal environment.
- Two types:
  - 1. Intramuscular EMG
  - 2. Surface EMG





# Intramuscular EMG

- Typically performed using monopolar needle electrode
  - A fine wire inserted into a muscle with a surface electrode for reference, or
  - Two fine wires inserted into the muscle referenced to each other.
- Need pre-injections and skin preparations.
- Less noise

#### Invasive, painful.





# Surface EMG (sEMG)

- Surface electrodes only provide a limited assessment of the muscle activity.
  - Array of electrodes typically used
- Signal is a <u>composite</u> of all the muscle fiber action potentials occurring in the muscles underlying the skin.
- Prone to noise, artifacts
- Non-invasive





#### Muscles

- Composed of bundles of specialized cells that are responsible for <u>contraction</u> and <u>relaxation</u>.
  - Generate forces, movements, & ability for expression.
- 4 main functions of muscles:
  - 1. Produce motion.
  - 2. Moving substance w/i body.
  - 3. Stabilization.
  - 4. Generate heat.







#### Muscles

- 3 types of muscle tissue:
  - 1. Skeletal muscle.
  - 2. Smooth muscle.
  - 3. Cardiac muscle.
- Skeletal muscles are a form of muscle tissue that is under the control of the <u>somatic nervous system</u>.
  - Voluntarily controlled.
- Attached to the bone by bundles of <u>collagen</u> fibers, known as **tendons**.
- When muscles contract and relax, they release a tiny bioelectric pulse called the <u>Action Potential</u>





# sEMG Electrodes

- Electrodes measuring the sEMG signal form an **emg channel**.
- 3 main types:
  - Bipolar configuration
  - Monopolar configuration
  - Laplacin configuration



Recent interest has also increased toward high-density sEMG (HD-sEMG).









# sEMG Signal

- Raw EMG signals typically come in a somewhat useless form.
- Before beginning pattern recognition, several steps are typically followed:

≻

Classification

- 1. Cleanup
- 2. Segmentation
- 3. Analysis & preprocessing

Feature

extraction





Wireless System Research Group

Data

segmentation

# sEMG Signal Cleanup

- Consists of several sub-steps:
  - 1. Filtration & De-noising.
    - LPF most typical
    - HPF or Bandpass also used.
    - Wavelet Transforms
  - 2. Rectification.
    - Half wave.
    - Full wave.



Wireless System Research Group

# sEMG Signal Segmentation

- Two windowing techniques:
  - 1. Overlapped windowing
  - 2. Adjacent windowing







#### Features

- Features selected can have <u>higher</u> effect on classification accuracy than classifier type.
- 3 qualities determine quality of feature space:
  - 1. Maximum class separability.
  - 2. Robustness
  - 3. Computational complexity

|                                                                | Mathematical definition                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |  |  |  |  |  |  |  |
|----------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|--|--|--|
| Time domain features                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |  |  |  |  |  |  |  |
| Energy and complexity information methods                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |  |  |  |  |  |  |  |
| Mean absolute value                                            | $MAV = \frac{1}{N} \sum_{i=1}^{N}  X_i $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |  |  |  |  |  |  |  |
| Integrated EMG                                                 | $IEMG = \sum_{i=1}^{N}  v_i $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |  |  |  |  |  |  |  |
| Variance                                                       | $VAR = \frac{1}{N-1} \sum_{i=1}^{N} \frac{\chi_i^2}{\chi_i^2}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |  |  |  |  |  |  |  |
| Root mean square                                               | $RMS = \sqrt{\frac{1}{N} \sum_{i=1}^{N} x_i^2}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |  |  |  |  |  |  |  |
| Waveform length                                                | $ \begin{split} & \operatorname{Herbids}_{i=1}^{N} \sum_{j=1}^{N}  \mathbf{x}_i  \\ & \operatorname{HAV} = \frac{1}{3} \sum_{i=1}^{N}  \mathbf{x}_i  \\ & \operatorname{HAW} = \frac{1}{N-1} \sum_{i=1}^{N} \frac{\mathbf{x}_i^2}{N^2} \\ & \operatorname{RMS} = \sqrt{\frac{1}{N}} \frac{1}{N} \sum_{i=1}^{N} \frac{\mathbf{x}_i^2}{N^2} \\ & \operatorname{RMS} = \sum_{i=1}^{N} \frac{1}{N} \sum_{i=1}^{N} \frac{\mathbf{x}_i^2}{N^2} \\ & \operatorname{HAS} = \frac{1}{N(N_{i=1}^N)} \frac{1}{N_{i=1}^N} \sum_{i=1}^{N(N_{i=1}^N)} \frac{1}{N(N_{i=1}^N)} \\ & \operatorname{LOGDET} = e^{1/N(N_{i=1}^N)} \log(\mathbf{x}_i)) \end{split} $ |  |  |  |  |  |  |  |
| Log detector                                                   | $LOGDET = e^{1/N \sum_{i=1}^{n} \log( \mathbf{x}_i )}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |  |  |  |  |  |  |  |
| Frequency information methods                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |  |  |  |  |  |  |  |
| Zero crossing                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |  |  |  |  |  |  |  |
| Wilson amplitude                                               | $WAMP = \sum_{n=1}^{N-1} [f( x_n - x_{n+1} )]$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |  |  |  |  |  |  |  |
| Change along all and a                                         | $SSC = \sum_{i=2}^{n} [J( (x_i - x_{i-1}) \times (x_i - x_{i+1})]]$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |  |  |  |  |  |  |  |
| Slope sign change                                              | $ \begin{aligned} & \text{WAMP} = \sum_{\substack{i=1\\i=1}}^{N-1} [f( x_i - x_{i+1} )] \\ & \text{SSC} = \sum_{\substack{i=1\\i=1}}^{N-1} [f( x_i - x_{i-1}) \times (x_i - x_{i+1}) )] \\ & \text{where } f(x) = \begin{cases} 1, & \text{if } x \ge \text{throshold} \\ 0, & \text{otherwise} \end{cases} \end{aligned} $                                                                                                                                                                                                                                                                                                                      |  |  |  |  |  |  |  |
| Prediction model methods                                       | (o, outernae                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |  |  |  |  |  |  |  |
| Autoregressive coefficients                                    | $x_n = \sum_{i=1}^p a_{i,n} x_{n-i}$ , P = model order, $a_{i,n}$ = ith AR coefficient at time instant n                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |  |  |  |  |  |  |  |
| Cepstral coefficients                                          | $c_n = -a_n - \sum_{k=1}^n \left(1 - \frac{k}{n}\right) a_k c_{n-k}, c_1 = -a_1, c_n = n$ th cepstrum coefficient, $a_i = AR$ coefficient                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |  |  |  |  |  |  |  |
| Time-dependence methods                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |  |  |  |  |  |  |  |
| Mean absolute value slope                                      | $MAVS_i = MAV_{i+1} - MAV_i$ ; $i = 1,, K - 1$ ; $K =$ number of segments covering the signal                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |  |  |  |  |  |  |  |
| Histogram of EMG                                               | HEMG divides elements in the EMG signal into equally spaced segments and returns number of signal                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |  |  |  |  |  |
|                                                                | elements for each segment.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |  |  |  |  |  |  |  |
| Frequency domain features                                      | MARE SM COUST D                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |  |  |  |  |  |  |  |
| Mean frequency                                                 | $mRr = \sum_{j=1}^{n} j_j r_j (\sum_{j=1}^{n} r_j)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |  |  |  |  |  |  |  |
| Median frequency                                               | $\begin{array}{l} MNF = \sum_{j=1}^{M} (f_{i}P_{j}   \Sigma_{j=1}^{M}P_{j} \\ \Sigma_{j=1}^{M0F} P = \sum_{j=MDF}^{F} P_{j} = \frac{1}{2} \sum_{j=1}^{M} P_{j} \\ MMNF = \sum_{j=1}^{M} f_{i}A_{j}   \Sigma_{j=1}^{M} f_{i}A_{j} \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                    |  |  |  |  |  |  |  |
| Modified mean frequency                                        | $MMNF = \sum_{j=1}^{m} J_j A_j   \sum_{j=1}^{m} J_j A_j$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |  |  |  |  |  |  |  |
| Time-frequency domain features<br>Short time Fourier transform | $STFT(k, m) = \sum_{r=1}^{N-1} x(r)g(r-k)e^{-j2\pi m i/N}$ ; g = window function; k = time sample; m = frequency bins                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |  |  |  |  |  |  |  |
| Continuous wavelet transform                                   | $WT_x(x, a) = \frac{1}{\sqrt{a}} \int x(t)\Psi\left(\frac{1-t}{a}\right) dt; t = \text{translation parameter; } a = \text{scale parameter; } \Psi = \text{mother wavelet}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |  |  |  |  |  |  |  |
| continuous wavelet transform                                   | $W_{X}(t, u) = \frac{1}{\sqrt{a}} \int X(t) \Psi \left(\frac{1}{a}\right) ut, t = translation parameter, u = scale parameter, \Psi = mother wavelet function$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |  |  |  |  |  |  |  |
| Discrete wavelet transform                                     | DWT splits the signal into an approximation and detail coefficients by passing it through complementary                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |  |  |  |  |  |  |  |
|                                                                | low- and high-pass filters. The approximation coefficients are further split into a second-level                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |  |  |  |  |  |  |  |
|                                                                | approximation and detail coefficients. By repeating the process, one signal is broken down into many                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |  |  |  |  |  |  |  |
|                                                                | lower resolution components.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |  |  |  |  |  |  |  |
| Stationary wavelet transform                                   | SWT does not decimate the signal at each stage, avoiding the problem of nonlinear distortion of the DWT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |  |  |  |  |  |  |  |
|                                                                | and WPT.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |  |  |  |  |  |  |  |
| Wavelet packet transform                                       | WPT is a generalized version of DWT that is applied to both low-pass results (approximations) and<br>high-pass results (details).                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |  |  |  |  |  |
| Spatial domain features                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |  |  |  |  |  |  |  |
| Experimental periodogram                                       | $\gamma(h) = \frac{1}{2n(h)} \sum_{i=1}^{n(h)} [x(z_i) - x(z_i + h)]^2; h = \text{distance vector}, x(z_i) = \text{measurement at location } z_i. n(h) = \text{number of}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |  |  |  |  |  |  |  |
|                                                                | pairs h units apart in the direction of the vector h                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |  |  |  |  |  |  |  |





### **EMG** Features

- Raw sEMG signals typically mapped into smaller-dimension feature vectors.
- Classifiers perform faster.
  - Improves real-time properties of the system.
- Can be grouped into 4 categories:
  - Time domain (TD) features
  - Frequency domain (FD) features
  - Time-frequency domain (TFD) features
  - Spatial domain (SD) features.







# **Optimal Features**

- Little consensus on studies trying to find the optimal features for classification of sEMG signals
- Comparative studies show TD features achieve higher accuracy for LDA classifier.
  - TFD features outperform them for SVM.
  - TD features classified with LDA have been suggested as optimal for sEMG classification.
- Conclusions not reliable.
  - Made in low-noise lab environment.





# Time domain (TD) features

- Most common feature group in sEMG signal classification.
- No mathematical transformations needed.
  - Fast calculations, suitable for real-time
  - Sensitive to noise and artifacts.
- Phinyomark et al. divided TD features into 4 main types
  - 1. Energy and complexity information methods.
  - 2. Frequency information methods.
  - 3. Prediction model methods.
  - 4. Time-dependence methods.





# Time domain (TD) Features

- Several attempts to determine the optimal TD feature vector for several classifiers.
- Most common combination: LDA classifier with Hudgin's feature vector
  - Mean absolute value (MAV)
  - Waveform length (WL)
  - Zero crossing (ZC)
  - Signal slope changes (SSC)
- Low computational complexity, high accuracy.





# Frequency domain (FD) features

- Calculated from power spectral density (PSD).
  - Can be determined by firing rate of recruited motor units or morphology of MUAPs traveling along respective muscle fibers.
    - Depends on muscle being measured.
- Phinyomark studied the properties of **37 TD and FD features** 
  - TD features superior to FD features.
  - FD features computationally more complex, less accurate classification.
  - What about TD + FD feature vector?
    - Better than single TD feature vector.





# Time-frequency Domain (TFD) Features

- Describe signal in both time and frequency domains <u>simultaneously</u>.
- Computationally more complex than TD features.
  - Implemented with fast algorithms.
  - Shown to be capable of meeting real-time requirements in sEMG classification using appropriate dimensional reduction and segmentation techniques.
- Yield high dimensional feature vector that requires dimensionality reduction to increase speed and accuracy of classification.





# Time-frequency Domain (TFD) Features

- TFD features typically used in sEMG classification include:
  - Short time Fourier transforms (STFT)
  - Discrete wavelet transform (DWT)
  - Continuous wavelet transform (CWT)
  - Wavelet packet transform (WPT)
- STFT cannot increase both time and frequency resolution simultaneously.
- CWT, DWT, WPT overcome this somewhat.
  - Good frequency resolution and poor time resolution in low frequency band.
  - Bad frequency resolution and good time resolution in high frequency band.
  - DWT most popular due to being computationally more efficient





# Spatial domain (SD) features

- Regions of muscle activated differentially.
  - Depends on the position of the joint and duration and strength of the contraction.
- HD-sEMG measurements have made it possible to extract spatial information from sEMG recordings.
- Improve differentiation between postures and force levels.
  - Provide information about MUAPs and load-sharing between muscles.
- Recently adopted, few studies investigated and designed SD features for this purpose.





# Myoelectric Control Strategies in sEMG

- 2 control strategies:
  - 1. Pattern recognition based.
  - 2. Non-pattern recognition based.
- Pattern recognition based control uses classifiers.
  - Map feature vectors to desired commands
  - Allows more versatile control scheme than non-pattern recognition based control.
- Non pattern recognition based control compares value of single feature to predetermined threshold.





# Pattern recognition-based control

- Relies on assumption:
  - Classifier is capable of recognizing input values introduced in training session and assign each input value to one of a given set of classes.
- Input: feature vectors calculated of the sEMG signal.
- Classes:
  - Different control commands sent to the device.
  - Different "poses" made by muscles.
- Comparative studies show most classifiers have similar classification accuracy.
  - Using appropriate feature sets and sufficient number of channels.
  - Best classifiers are fast to train, simple to implement, meet real-time contractions.
    - LDA, SVM, HMM
    - LDA most commonly used.





# Non-pattern recognition-based control

- Simple structure.
  - Limitation: only so many commands can be recognized.
- Shown to provide intuitive interface for navigation menus, wheelchairs, and assistive robotics.
  - All of which require fewer commands than other applications, like prosthesis.
- Methods included in non-pattern recognition-based control:
  - Proportional control
  - Onset analysis
  - Finite state machines (FSM)





#### Fine muscular activity recognition

- Now we know the "magic" behind muscular signals and EMG.
  - We can begin to talk about what we are able to explore with this knowledge.
- Fine activity recognition is not yet a "hot topic" like EMG controls and regular activity recognition.
  - Easy to tell if someone is standing or sitting.
  - We do many activities with our fingers.
    - Typing, writing, eating, etc.
    - Many neuromuscular diseases show symptoms at the finger level
      - Parkinson's, Muscular Dystrophy, MS, Carpel Tunnel





#### **Overall structure**

• We need to be able to:







#### Myo Data Recognition

- While typing in a "naturalistic setting", is it possible to extract what fingers users are utilizing?
  - Allows for finger movement analysis
  - Unobstructive, uninvasive.
- Using standard QWERTY keyboard
  - Standard finger positioning
- Using **two** MYO armbands
  - Collecting EMG data at 200Hz
  - Collecting IMU data at 50Hz







### Myo Data Recognition

#### • EMG Features

- TD Features:
  - Mean Absolute Value (MAV)
  - Waveform Length (WL)
  - Slope Sign Changes (SSC)
  - Zero Crossings (ZC)
- TFD Features:
  - EMG Short Time Fourier Transform
  - IMU Short Time Fourier Transform





#### Myo Data Recognition

#### IMU Features

- Average of acceleration for x, y, z axes.
- Standard deviation of each x, y, z axes.
- Average Absolute Difference.
- Average Resultant Acceleration.
- These features don't tell us much about acceleration changes when typing, since the movements are mostly along one axis, and are very small in the grand scheme.
  - Other features still under consideration.





# Conditions



Typing speed has to be slow, in order to get larger window sizes.
Approx. 20 words/minute or less

• User holds the key down when pressed for approx. **1** second.





## "Traditional" classification

#### Results:

• Why?

- 50%-60% accuracy in identifying which finger was used at normal typing speed (~60 wpm).
- ~76% 80% accuracy at slow typing speed (~20 wpm).





### **Hierarchical classification**



Wireless System Research Group

# Hierarchical classification

- First check if typing activity is happening.
- If yes, classify finger.

#### **Results:**

- <u>Typing or not typing:</u>
  - Majority vote.
    - Window chopped into subwindows.
    - Subwindows are classified.
  - ~100% accuracy using LDA, Perceptron, and SVM regardless of typing speed.
- Finger classification
  - 55%-60% accuracy in identifying which finger was used at **normal** typing speed (~60 wpm).
  - ~78% 82% accuracy at slow typing speed (~20 wpm).
- WHY?!?!?!







# Culprit



- Muscle Action Potential at supinators/pronators rate is ~500Hz
- Myo claims sampling rate is ~200Hz, actually closer to ~150Hz.
- Window sizes may still be too small. Classification accuracy suffers.





Thank you





# TD feature vectors used in sEMG interfaces

| Feature vector               | Classifier | Classification accuracy (%)                                              | Classes | <b>Bipolar electrodes</b> | Subjects |
|------------------------------|------------|--------------------------------------------------------------------------|---------|---------------------------|----------|
| MAV, WL, ZC, SSC             | SVM        | 96                                                                       | 6       | 4                         | 11H      |
| MAV, WL, ZC, SSC, AR6        | LDA        | 97                                                                       | 10      | 3                         | 12H      |
| MAV, WL, ZC, SSC, AR6, RMS   | GMM        | 97                                                                       | 6       | 4                         | 12H      |
| MAV, WAMP, VAR, WL           | ANN        | 98                                                                       | 12      | 32                        | 1H       |
| MAV, WAMP, AR, CC            | LDA        | <b>70</b> <sup>1</sup> , <b>78</b> <sup>2</sup> , <b>87</b> <sup>3</sup> | 4       | 2                         | 8H       |
| MAV, WL, AR, CC              | LDA        | <b>70</b> <sup>1</sup> , <b>78</b> <sup>2</sup> , <b>88</b> <sup>3</sup> | 4       | 2                         | 8H       |
| WL, LOGDET, AR, CC           | LDA        | <b>70</b> <sup>1</sup> , <b>78</b> <sup>2</sup> , <b>88</b> <sup>3</sup> | 4       | 2                         | 8H       |
| SE, CC, RMS, WL              | LDA        | 98                                                                       | 11      | 4                         | 4H       |
| IEMG, WL, VAR, ZC, SSC, WAMP | GRA        | 96                                                                       | 11      | 7                         | 12H      |
| AR6, MAV                     | LDA        | 98H, 79A                                                                 | 11      | 4                         | 5H, 5A   |
| AR6, ZC                      | LDA        | 97H, 75A                                                                 | 11      | 4                         | 5H, 5A   |
| AR6, SSC                     | LDA        | 97H, 74A                                                                 | 11      | 4                         | 5H, 5A   |
| AR6, WL                      | LDA        | 98H, 79A                                                                 | 11      | 4                         | 5H, 5A   |
| AR6, RMS                     | SVM        | 96                                                                       | 6       | 4                         | 11H      |
| AR, HIST                     | CKLM       | 93A, 97H                                                                 | 8       | 3                         | 2A, 1H   |



