CAS 765 Fall'15 <u>Mobile Computing</u> and <u>Wireless</u> Networking

Rong Zheng

Machine Learning 101

• • •

Disclaimer

- This is a fast-food version of a semester long course packed into 3-hr
- Learning objectives
 - Machine learning pipeline
 - Basic concepts in machine learning: supervised vs. unsupervised; discrimitive vs generative
 - The proper way of training, testing and handling model complexity (underfitting, overfitting) in regression
 - Commonly used classifiers: SVM (discrimitive) and naïve Bayesian (generative)
 - Commonly used (unsupervised) clustering methods: K-mean
- If you want to know more, check out machine learning courses on Coursera

What is Machine Learning

• Definition:

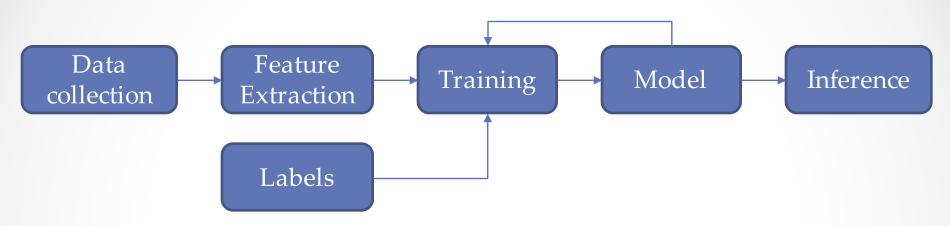
- "Field of study that gives computers the ability to learn without being explicitly programmed" – Arthur Samuel
- "A computer program is said to learn from experience E with respect to some class of tasks T and performance measure P, if its performance at tasks in T, as measured by P, improves with experience E" – Tom M Mitchell

Two types of machine learning problems

- Examples \rightarrow generalization \rightarrow prediction
- Identifying patterns in data sets
- Applications of machine learning?

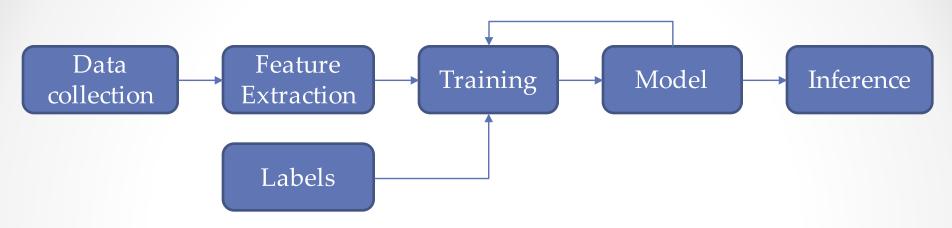
Supervised learning Unsupervised learning

Supervised Learning Pipeline



- Feature extraction: builds derived values from measured data
 - In some cases, feature selection is further conducted
- Training takes features and labels to derive models for prediction
 - Labels are typically obtained manually one recent development is via crowdsourcing
 - It is a common practice to divide the training data into training set, crossvalidation set and testing set

Supervised Learning Pipeline



Model: in general parameterized*

- The purpose of training is thus to derive the parameters
- One important issue is model complexity: how many parameters?

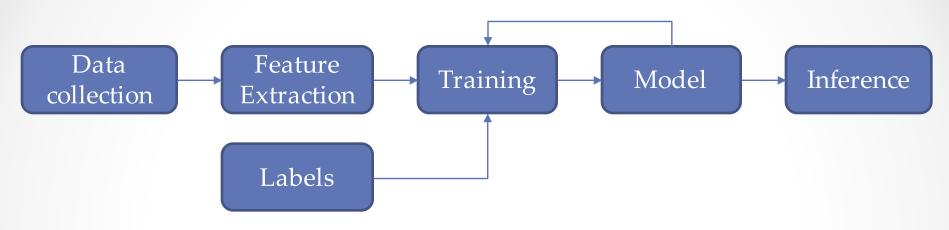
Model Overfitting and Underfitting



	Underfitting	Just right	Overfitting
Training	Large error	Small error	Small error
Testing	Large error	Small error	Large error

More later

Supervised Learning Pipeline



Model: in general parameterized by θ

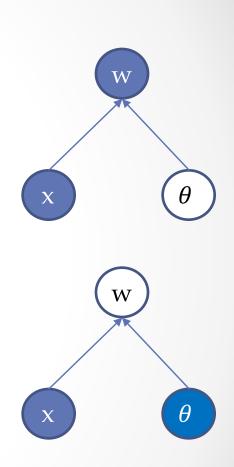
- What kind of model?
 - Discrimitive: model the contingency of the world state on the data $P(w | x, \theta)$ an easy way to think about it is to view the word state as a function of the observation, e.g, $w = f(x, \theta) + n$, where n is a noise term
 - Generative: model the contingency of the data on the world state $P(x | w, \theta)$

Discrimitive Model

- Learning: given the training data <w_i, x_i>'s, learning θ in P(w | x, θ)
 - Maximum likelihood

 $\theta = \operatorname{argmax} P(w|x,\theta)$

- Maximum a posterior $\theta = \operatorname{argmax} P(\theta | x, w) \sim \operatorname{argmax} P(w | x, \theta) P(\theta)$
- E.g., given the house square footage (x) and price (w), to determine a quadratic relation between the two
- Inferencing
 - Given the model (θ) and x, $w = \operatorname{argmax} P(w|x, \theta)$
 - E.g., with the above model, a new house of size x comes to market, what should the listing price be?

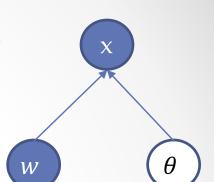


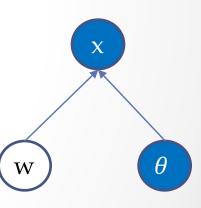
Generative Model

- Learning: given the training data <w_i, x_i>'s, learning θ in P(x | w, θ)
 - Maximum likelihood $\theta = \operatorname{argmax} P(x|w, \theta)$
 - X-ray lung data (x) collected from smoker and nonsmoker (w) groups

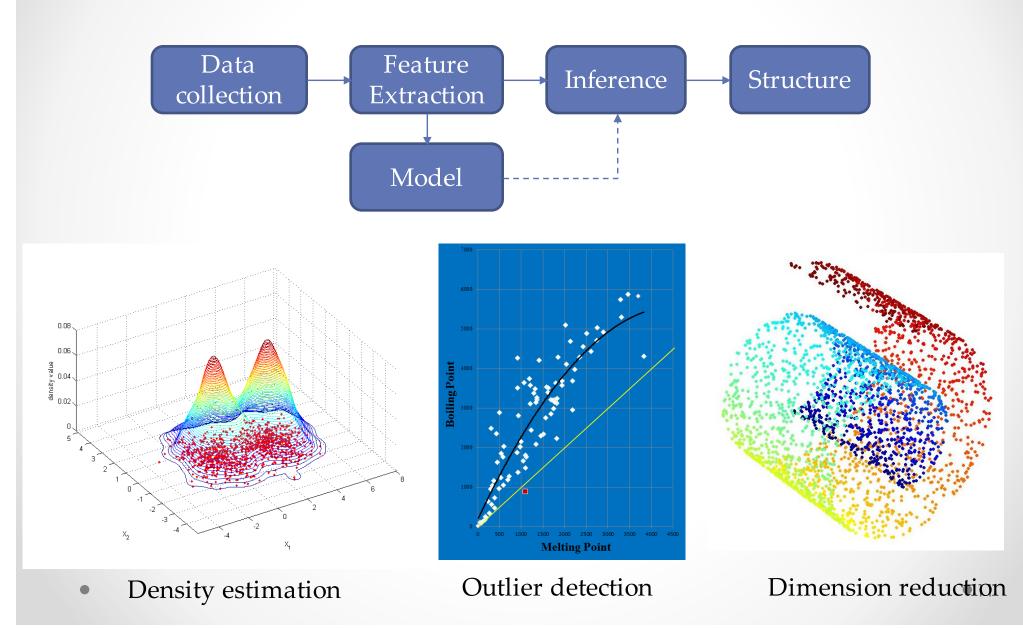
Inferencing

- Given the model θ and x, $w = \arg \max P(x|w,\theta) \sim \operatorname{argmax} P(w|x,\theta) P(w)$
- As we can see, one key difference between generative and discrimitive models is the incorporation of priori information in the inference
- E.g., Given some x-ray lung data, is the person a smoker or a non-smoker



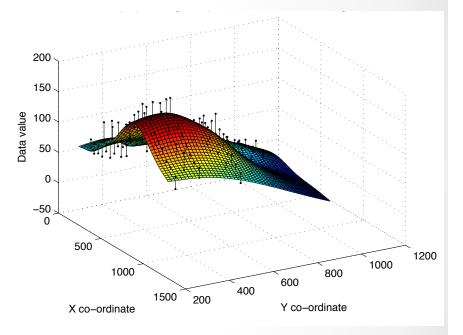


Unsupervised Learning Pipeline



Regression

- One class of supervised learning problems
 - Estimate relationships among variables $E(Y | \mathbf{X}) = f(\mathbf{X}, \theta)$, where $\mathbf{X} = (x_1, x_2, ..., x_n)$
 - Typically, Y is a continuous variable used for prediction and forecasting
 - If Y is a discrete variable, it is called logistic regression – in fact, a form of classification problem
- We have in fact dealt with regression problems to some extent
 - Fitting of log-normal distance model
 - Fingerprinting based localization



Linear Regression

. . .

 Housing price
 Size in feet² (x)
 Price (\$) in 1000's (y)

 2104
 460

 1416
 232

 1534
 315

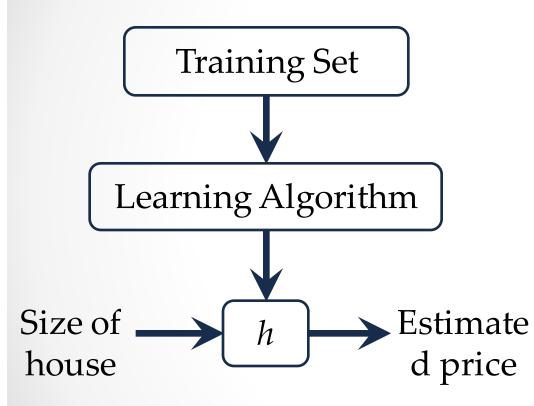
 852
 178

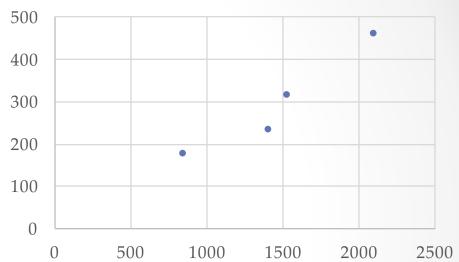
Notation:

m = Number of training examples
x's = "input" variable / features
y's = "output" variable / "target" variable

. . .

Linear Regression (Cont'd)





- What is the order of h?
 - $\circ \quad h(x) = \theta_0 + \theta_1 x$
 - $\circ \quad h(x) = \theta_0 + \theta_1 x + \theta_2 x^2$
 - $\circ \quad h(x) = \theta_0 + \theta_1 x + \theta_2 x^2 + \theta_3 x^3$
- Given the known order, how to estimate the parameters?

Parameter Estimation (1)

- Assume 1st-order model, s.t., $y = h(x) + n = \theta_0 + \theta_1 x + n$ (noise)
- Goal: to estimate θ_0 and θ_1 such that the fitting is "as close as possible"
 - Given θ_0 and θ_1 , we can compute $\hat{y} = \theta_0 + \theta_1 x$
 - Make dist(y₁, \hat{y}_1), dist(y₂, \hat{y}_2), ..., dist(y_m, \hat{y}_m) small
- Need to quantify the "closeness" or alternatively, the distance metric

Parameter Estimation (2)

• Recall our model $y = h(x) + n = \theta_0 + \theta_1 x + n$

Assume the noise is zero mean Gaussian r.v. with unknown variance σ^2

•
$$y \sim P(y | x, \theta) = \frac{1}{\sqrt{2\pi\sigma}} \exp\left(-\frac{(y - (\theta_0 + \theta_1 x))^2}{2\sigma^2}\right)$$
 and x's are independent

• A maximum likelihood estimator $\theta = \operatorname{argmax} P(y|x,\theta)$ gives

$$\theta = \operatorname{argmax} \prod_{i=1}^{m} P(y_i | x_i, \theta) \text{ or equivalently}$$
$$\theta = \operatorname{argmax} \sum_{i=1}^{m} \log P(y_i | x_i, \theta)$$
$$= \operatorname{argmax} \sum_{i=1}^{m} \log P(y_i | x_i, \theta)$$
$$= \operatorname{argmin} \sum_{i=1}^{m} (y_i - (\theta_0 + \theta_1 x_i))^2$$

The last equation corresponds to a least square error (LSE) estimator

Cost Function:
$$J(\theta_0, \theta_1) = \frac{1}{2m} \sum_{i=1}^{m} (h_\theta(x^{(i)}) - y^{(i)})^2$$

• m is the size of the training set

Solving LSE

Can be solved in closed-form

$$X = \begin{bmatrix} -(x^{(1)})^T - \\ -(x^{(2)})^T - \\ \vdots \\ -(x^{(m)})^T - \end{bmatrix} \qquad \vec{y} = \begin{bmatrix} y^{(1)} \\ y^{(2)} \\ \vdots \\ y^{(m)} \end{bmatrix}$$

repeat until convergence {

$$\theta_0 := \theta_0 - \alpha \frac{1}{m} \sum_{i=1}^m \left(h_\theta(x^{(i)}) - y^{(i)} \right)$$

$$\theta_1 := \theta_1 - \alpha \frac{1}{m} \sum_{i=1}^m \left(h_\theta(x^{(i)}) - y^{(i)} \right) \cdot x^{(i)}$$

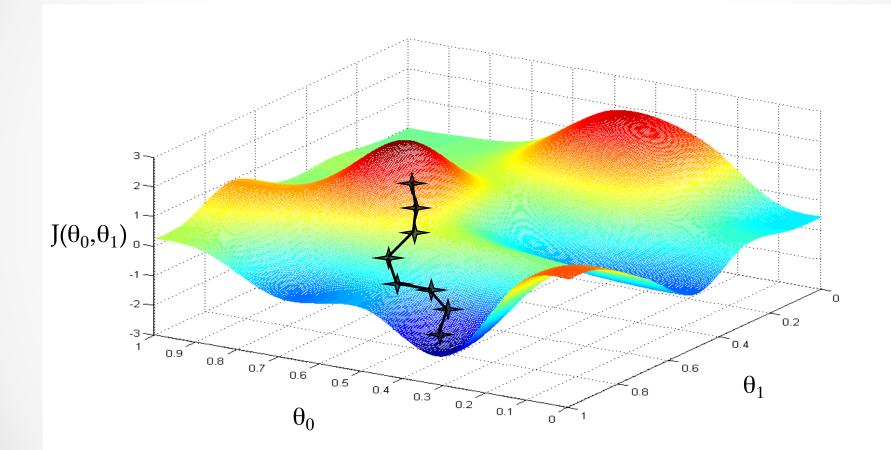
Both parameters are updated simultaneously

 $\theta = (X^T X)^{-1} X^T \vec{y}.$

Implementation note:

- Gradient descent is advantageous in computation and storage complexity
- In general, GD converges to local minimum but in the case of convex optimization, local minimum = global minimum
- Big α leads to fluctuation, small α gives slow convergence

Illustration: Gradient Descent



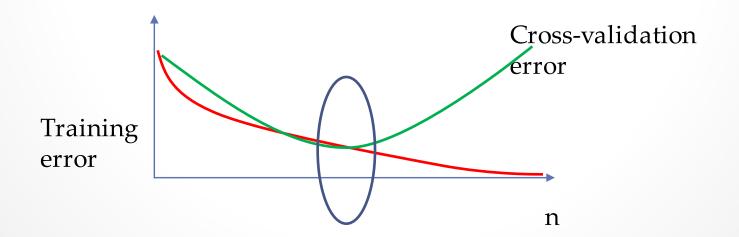
Polynomial Regression

- The discussion so far also applies tomulti-variable $y = h(x) + n = \theta^T x + n$ or more generally, $y = \theta^T \Phi(x) + n$
- If we set $x_1 = x, x_2 = x^2, ..., x_n = x^n$, we have nth order polynomial regression
- In fact, we can even make x₁, x₂,..., x_n other functions of x
- How to pick the right order n?

Picking the Right Order

	Underfitting	Just right	Overfitting
Training	Large error	Small error	Small error
Testing	Large error	Small error	Large error

- Solution 1: divide the data into training, crossvalidation and testing sets
 - Pick different n's such that the errors are both small for training & crossvalidation set



Picking the Right Order

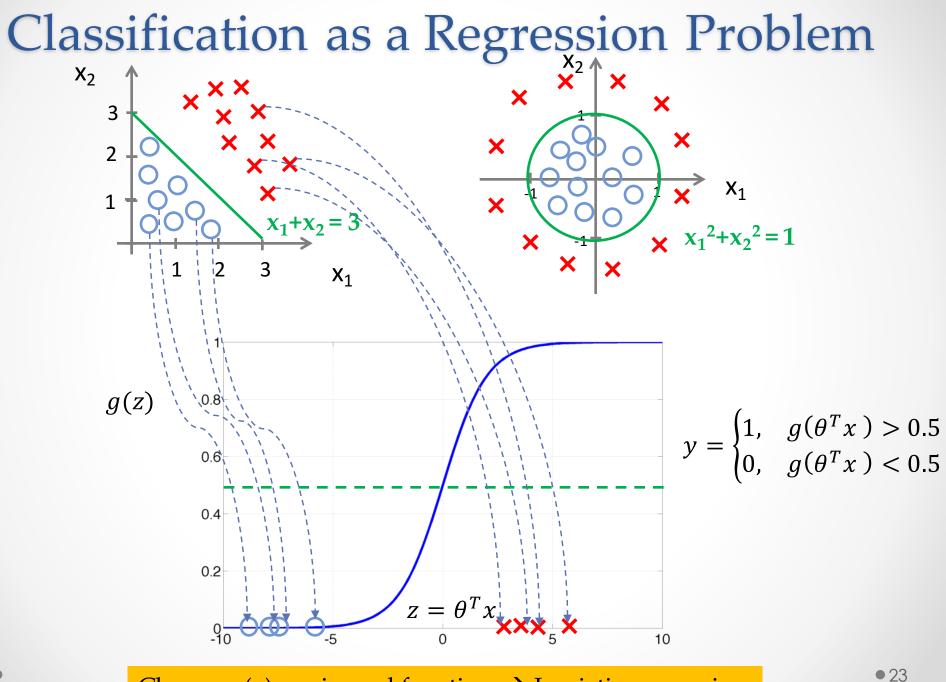
- Solution 2: regularization a common used technique to deal with an ill-posed problem and to prevent overfitting
- Introducing a "penalty" term
 - Intuition: If $\lambda > 0$ is picked appropriately, large $\theta' s$ will be "discouraged" as they would increase the cost
 - Can be solved via gradient descent or directly
 - Impact of large λ ? Impact of small λ ?
 - How to choose λ ?

$$J(\theta) = \frac{1}{2m} \left[\sum_{i=1}^{m} (h_{\theta}(x^{(i)}) - y^{(i)})^2 + \lambda \sum_{j=1}^{n} \theta_j^2 \right]$$

Classification

- $E(Y | \mathbf{X}) = f(\mathbf{X}, \boldsymbol{\theta}), Y \text{ is a binary variable regression}$
 - Here Y can be thought as class labels 0, 1
- Example:
 - Email: Spam / Not Spam?
 - Online Transactions: Fraudulent (Yes / No)?
 - Tumor: Malignant / Benign ?

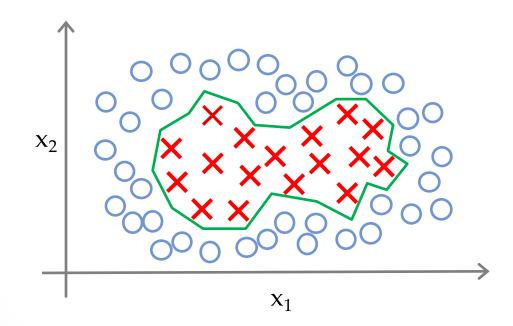
$$y \in \{0, 1\}$$
 0: "Negative Class" (e.g., benign tumor)
1: "Positive Class" (e.g., malignant tumor)



Choose g(z) as sigmod function \rightarrow Logistic regression

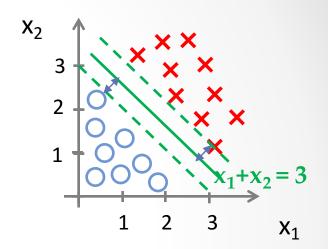
Support Vector Machine (SVM)

- Logistic regression is limiting in two aspects:
 - Hard to model irregular decision boundary
 - May be sensitive to noise



Intuition: Linearly Separable

- Given m training samples (x_i, y_i) , where $x_i \in R^n, y_i \in \{0,1\}$, to find a separating hyperplane in $R^n, w \cdot x + b = 0$
- $\min_{w} \frac{1}{2} ||w||^2$ ($w \cdot x_i + b \ge 1$, $if y_i = 1$
- s.t., $\begin{cases} w \cdot x_i + b \ge 1, & if y_i = 1 \\ w \cdot x_i + b \le -1, & if y_i = 0 \end{cases}, \forall i$
- Why $\min_{w} \frac{1}{2} ||w||^2$
- Why 1, -1?
- Testing phase: $w \cdot x + b < 0$



Solution Approach

Constrained convex optimization

$$\min_{w} \frac{1}{2} ||w||^2$$

s.t.,
$$\begin{cases} w \cdot x_i + b \ge 1, & if y_i = 1 \\ w \cdot x_i + b \le -1, & if y_i = -1 \end{cases} \forall i \qquad \Longrightarrow \qquad y_i(w \cdot x_i) = 0$$

$$y_i(w \cdot x_i + b) - 1 \ge 0$$

• Dual problem

$$\max_{w} \frac{1}{2} \|w\|^{2} - \sum_{i=1}^{l} \alpha_{i} y_{i} (w \cdot x_{i} + b) + \sum_{i$$

s.t., $\alpha_i \ge 0$

- α_i 's are called Lagrangian multiplier
- No duality gap for convex problems

$$f(w,b) = \frac{1}{2} \|w\|^2 - \sum_{i=1}^l \alpha_i y_i (w \cdot x_i + b) + \sum_{i=1}^l \alpha_i$$

Karush-Kuhn-Tucker (KKT) conditions hold

1.
$$\frac{d}{dw_{v}}f(w,b)=0, \frac{d}{db}f(w,b)=0$$

 $\circ w = \sum_{i=1}^{l} \alpha_{i} y_{i} x_{i}$
2.
$$y_{i}(w \cdot x_{i} + b)-1 \ge 0$$

3.
$$\alpha_{i} \ge 0$$

4.
$$\alpha_{i}(y_{i}(w \cdot x_{i} + b)-1)=0 \Rightarrow \text{support vectors } y_{i}(w \cdot x_{i} + b)-1=0, \alpha_{i} \ge 0$$

Linear Non-separable Case

Introduce slacks in case of violation

$$\min_{w} \frac{1}{2} \|w\|^{2} + C \sum_{i=1}^{3} \varepsilon_{i} \qquad 3$$
s.t.,
$$\begin{cases} w \cdot x_{i} + b \ge 1 - \varepsilon_{i}, & if y_{i} = 1 \\ w \cdot x_{i} + b \le -1 + \varepsilon_{i}, & if y_{i} = -1, \forall i \end{cases}$$

$$\varepsilon_{i} \ge 0$$

 Can also be solved via dual decomposition and KKT conditions

 $x_2 = 3$

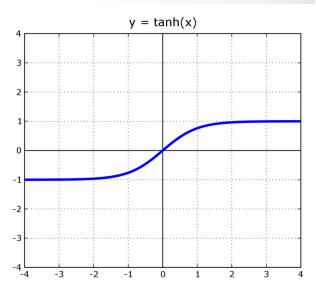
X₁

2

1

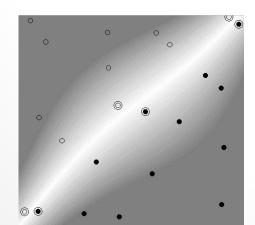
Non-linear Cases

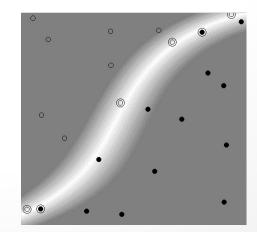
- Non-linear classifier can be viewed as a linear classifier in a projected space H via $\phi: \mathbb{R}^d \mapsto H$
- Note that in previous derivation only needed the dot products $w \cdot x_i, x_j \cdot x_i$
 - Sufficient to introduce a kernel function (for similarity measure) without explicit form of ϕ $K(x_i, x_i) \equiv \phi(x_i) \cdot \phi(x_i)$
- Example kernel functions
 - $\circ \quad K(x_j, x_i) = (x_j \cdot x_i + 1)^p$
 - Gaussian radial basis $K(x_j, x_i) = e^{-\|x_i x_j\|^2/2\sigma^2}$
 - Two-layer sigmoid neural network $K(x_j, x_i) = \tanh(\kappa x_j \cdot x_i \delta)$
- However, only a subset of kernel functions are valid



Using SVM

- Perform well with good generalization thanks to "maximum margin", complexity is controlled
- Unique solution exists or a set of equally good classifiers exist (when non-unique)
- Choice of kernel function requires knowledge of the dataset for non-linear classification – what is a good measure of similarity?
 - o GRB may be a good start
- 1 vs N-1 training for each class





Naïve Bayesian Classifier

Assume that all features are independent given the class label Y:

$$P(X_1, \dots, X_n | Y) = \prod_{i=1}^n P(X_i | Y)$$

- Suppose m values for each feature
 - w/o independence \rightarrow mⁿ parameters for each value of Y
 - With independence \rightarrow mn parameters for each value of Y
- Bag of word model in natural language processing

Naïve Bayes Training

Training in Naïve Bayes is easy:
 o Estimate P(Y=v) as the fraction of records with Y=v

$$P(Y = v) = \frac{Count(Y = v)}{\# \ records}$$

 \circ Estimate P(X_i=u | Y=v) as the fraction of records with Y=v for which X_i=u

$$P(X_i = u | Y = v) = \frac{Count(X_i = u \land Y = v)}{Count(Y = v)}$$

(This corresponds to Maximum Likelihood estimation of model parameters)

Naïve Bayes Training

- In practice, some of these counts can be zero
- Fix this by adding "virtual" counts:

$$P(X_i = u | Y = v) = \frac{Count(X_i = u \land Y = v) + 1}{Count(Y = v) + 2}$$

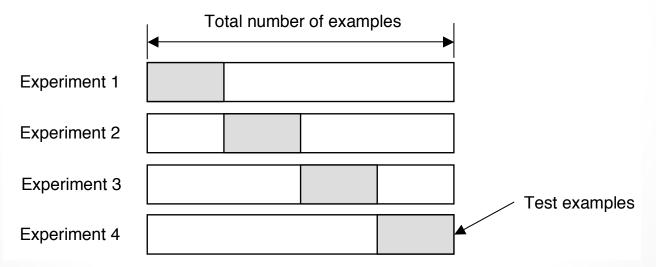
(This is like putting a prior on parameters and doing MAP estimation instead of MLE)
This is called Smoothing

Naïve Bayes Classification

- $\operatorname{argmax} P(X_1 X_2 \dots X_n | Y) = \operatorname{argmax} \prod_{i=1}^n P(X_i | Y)$
- Find the class label maximizing the posterior

How to Evaluate?

- Training samples need to be sufficiently random
- n-fold cross-validation: For each of n experiments, use n-1 folds for training and the remaining one for testing
 - Compute the mean error



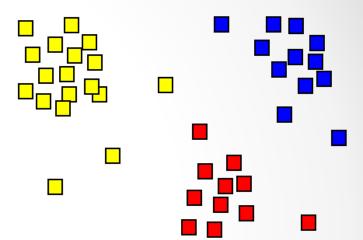
Performance Metrics

- For binary (positive/negative) classification
 - True positive (TP) aka "hit", false positive (FP), false negative (FN)
 - \circ Precision = TP/(TP + FP)
 - \circ Recall = TP/(TP+FN)
 - Accuracy = (TP + TN)/Total Test Size
 - F1 = 2TP/(2TP+FP+FN) = 2 · Precision·Recall/(Precision + Recall)
- For multi-class classification
 - Confusion matrix

	Positive (Predicted)	Negative (Predicted)
Positive (Actual)	100	50
Negative (Actual)	150	9700

Unsupervised Learning

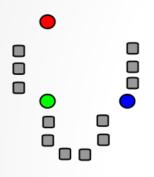
• K-mean: Given a set of observations $(\mathbf{x}_1, \mathbf{x}_2, ..., \mathbf{x}_n)$, where each observation is a *d*dimensional real vector, *k*means clustering aims to partition the *n* observations into $k (\leq n)$ sets $\mathbf{S} = \{S_1, S_2, ..., S_k\}$ so as to minimize the within-cluster sum of squares (WCSS)

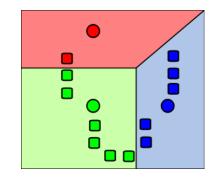


$$rgmin_{\mathbf{s}} \sum_{i=1}^{k} \sum_{\mathbf{x} \in S_i} \|\mathbf{x} - \boldsymbol{\mu}_i\|^2$$

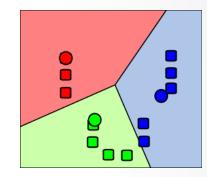
K-mean (cont'd)

• Lloyd algorithm: iterative refinement





1. *k* initial "means" (in this case *k*=3) are randomly generated within the data domain (shown in color). 2. *k* clusters are created by associating every observation with the nearest mean. The partitions here represent the <u>Voronoi diagram</u> <u>generated by the</u> means.



3. The <u>centroid of</u> <u>each of the *k*</u> <u>clusters</u> <u>becomes the</u> <u>new mean.</u>

4. Steps 2 and 3 are repeated until convergence has been reached.

Additional Reading Materials

• CHRISTOPHER J.C. BURGES, "A Tutorial on Support Vector Machines for Pattern Recognition"