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Machine Learning 101



Disclaimer

This Is a fast-food version of a semesterlong course
packed into 3-hr

Learning objectives

o Machine learning pipeline

o Basic concepts in machine learning: supervised vs. unsupervised;
discrimitive vs generative

o The proper way of training, testing and handling model complexity
(underfitting, overfitting) in regression

o Commonly used classifiers: SVM (discrimitive) and naive Bayesian
(generative)

o Commonly used (unsupervised) clustering methods: K-mean

If you want to know more, check out machine
learning courses on Coursera

3



What is Machine Learning

Definition:
o “Field of study that gives computers the ability to learn without being
explicitly programmed” — Arthur Samuel

o "A computer program is said to learn from experience E with respect to
some class of tasks T and performance measure P, if its performance at
tasksin T, as measured by P, improves with experience E” — Tom M Mitchell

Two types of machine learning problems

o Examples =2 generalization - prediction
o ldentifying patterns in data sets

Applications of machine learninge
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Supervised Learning Pipeline

Data Feature
collection Extraction

 Feature extraction:builds derived values from

measured data
o Insome cases, feature selection is further conducted

» Training takes features and labels to derive models

for prediction

o Labels are typically obtained manually — one recent development is via
crowdsourcing

o Itis a common practice to divide the training datainto training set, cross-
validation set and testing set

Training Inference
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Supervised Learning Pipeline

Data Feature

: . Traini Inf
collection Extraction famning erence

Model: in general parameterized*

* The purpose of training is thus to derive the
parameters

 One importantissue is model complexity: how many
parameterse

° * you might’ve heard of non-parametric model but in factthey are just a more sophisticated kind ® ¢
of parameterized model (e.g., classes of models or hierarchical graphical models)



Model Overfitting and Underfitting

Underfitting Just right! overfitting

Training Large error Small error Small error
Testing Large error Small error Large error
More later



Supervised Learning Pipeline

Data Feature
collection Extraction

Model: in general parameterized by 6
« What kind of model?

o Discrimitive: model the contingency of the world state on the data P(w | x,
8) — an easy way to think about it is to view the word state as a function of
the observation, e.g, w = f(x, 8) + n, where n is a noise term

o Generative: model the contingency of the data on the world state P(x | w,
6)

Training Inference




Discrimitive Model

« Learning: given the fraining data <w,,
x>'s, learning 6 in P(w | X, 8)
o Maximum likelihood
6 = argmax P(w|x, 0)

o Maximum a posterior
0 = argmax P(0|x,w) ~ argmax P(w|x, 8)P(6)

o E.g., given the house square footage (x) and price
(w), to determine a quadratic relation between the
two

* Inferencing

o Given the model () and x, w = argmax P(w|x, 8)

o E.g., with the above model, a new house of size x
comes to market, what should the listing price be?

° e9



Generative Model

« Learning: given the fraining data <w,,
x>'s, learning 6 in P(x|w, 0)
o Maximum likelihood 8 = argmax P(x|w, 0)

o X-ray lung data (x) collected from smoker and non-
smoker (w) groups

* Inferencing

o Given the model 6 and x, w =
argmax P (x|w,0) ~ argmax P(w|x,8)P(w)

o Aswe can see, one key difference between
generative and discrimitive models is the
incorporation of priori information in the inference

o E.g., Given some x-ray lung datq, is the person a
smoker or a non-smoker
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density value

Unsupervised Learning Pipeline

Data Feature
collection Extraction

Inference Structure

* Density estimation Outlier detection Dimension reduction



Regression

* One class of supervised
learning problems

o Estimate relationships among variables
E(Y|X) =f(X, 8), where X = (X;, Xp,..., X,)

o Typically, Y is a continuous variable —
used for prediction and forecasting

o If Yis adiscrete variable, it is called
logistic regression — in fact, a form of
classification problem N

« We have in fact dealt with S
regression problems to some

extent
o Fitting of log-normal distance model
o Fingerprinting based localization

200
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100

Data value

a
o

. : 1200
1000
800

° ®]12



Linear Regression

Housing price Size in feet2 (x) |Price ($) in 1000's (y)
2104 460
1416 232
1534 315
852 178
Notation:

m = Number of training examples
x’s = “input” variable / features
y’s = “output” variable/ “target” variable

Materials borrowed from Andrew Ng’s Machinelearning course® 13



Linear Regression (Cont'd)

Price
500
400
[ Training Set ] 300
¢ 200
100
[ Learning Algorithm ] 0
0 500 1000 1500 2000 2500
* What is the order of he
Size of Estimate o hx) =6y +06,x
. o h(x) =06, +0,x+0,x?
house d price o h() = 0y + 0, + 0,27 + 633

 Given the known order, how
to estimate the parameterse
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Parameter Estimation (1)

Assume 1s'-order model, s.t.,
y=hx)+n =05+ 6:x+n Price
(noise) 500
Goal: to estimate 6,and 400
0.such that the fitting is “as

close as possible” 200 . :
- Given g, and 6,, we can 100
compute y = 6, + 0,x b =—20,0, =0.5

0
Make dist(y;, y1). dist(y,, ¥5). ..., 0 500 1000 1500 2000 2500

dist(Ym, ¥rm) Sall

Need to quantify the
“closeness” or alternatively,
the distance metric

W

00 6, = 230,06, =0
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Parameter Estimation (2)

« Recallourmodely =h(x)4+n =6y+6:;x+n

o Assume the noise is zero mean Gaussian r.v. with unknown variance g2

1 _ (y=(6p+6:x))°
V2mo exp ( 202

o A maximum likelihood estimator 8 = argmax P(y|x,08) gives
6 = argmax [[, P(y;|x;, 6) or equivalently
m

o Yy~Ply|x 6)= ) and x’s are independent

0 = argmax Z log P(y;|x;, 6)

= argmax %::f’lil log P(y;|x;, 6)
= argmin Z(yi — (6, + 91xi))2
o The last equation corresponollzl’ro a least square error (LSE) estimator
m
Cost Function:  J(6p,0;) = 5= > (h@(ﬂ?(i)) — y(i))2

2m
1=1

. m is the size of the training set
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Solving LSE

e Can be solved in closed-form

(T Y
(T (2)
X = (2 ,> 7= v » 0= (X" X)"' X"y
i N (x(m))T N ] i y(m) ]

« Or, gradient descent

repeat until convergence {

O := 0y — al i (h (M) — y(i)) Both parameters are updated
=1 simultaneously

01 :=6; —ar 2 (hg(ac@ ) — y<i)) (0

Implementation note:

* Gradient descent is advantageous in computation and storage complexity

* In general, GD converges to local minimum but in the case of convex
optimization, local minimum = global minimum

ol Big a leads to fluctuation, small a gives slow convergence

®1/



[llustration: Gradient Descent
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Polynomial Regression

The discussion so far also applies tomulfi-variable
y = h(x) + n = 8" x + n or more generally,
y=0"d(x)+n
If we set x; = x,x, = x%,..., x,, = x™, we have nth
order polynomialregression

In fact, we can even make x4, x5,..., X, Other
functions of x

How to pick the right order ne

Underfitting Just right! overfitting
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Picking the Right Order
S ndertting, | Justright | Overtiting

Training Large error Small error Small error

Testing Large error Small error Large error

« Solution 1: divide the data into fraining, cross-
validation and testing sets

o Pick different n’s such that the errors are both small for training & cross-
validation set

Cross-validation
ITor

Training
error

° e 20



Picking the Right Order

» Solution 2: regularization — a common used

technigue to deal with an ill-posed problem and to
prevent overfitting

* Infroducing a “penalty” term

©)

Intuition: If A > 0 is picked appropriately, large 0's will be “discouraged™ as
they would increase the cost

Can be solved via gradient descent or directly
Impact of large 12 Impact of small A2
How to choose A¢

J(0) = ﬁ Z(he(w(i)) — y@D)2 4 )\ Zl 932
]:

1=1

2]



Classification
o E(Y|X) =f(X, 8),Yis abinary variable regression

o Here Y canbe thought as class labels 0, 1

 Example:

o Email: Spam / Not Spam?
o Online Transactions: Fraudulent (Yes / No)?
o Tumor: Malignant / Benign ¢

y € {0,1} 0: ”Nege}tive Class” (e.g., ber.1ign tumor)
1: “Positive Class” (e.g., malignant tumor)

° e 22



Class

X3

ification as a Regression Problem
A 2

X | X

|1, g(6"x) >0.5
Y= 0, g(6Tx) <0.5

Choose g(z) as sigmod function = Logistic regression %



Support Vector Machine (SVM)

» Logistic regressionis limifing in two aspects:

o Hard to model irregular decision boundary
o May be sensitive to noise

N

A\ 4

® ® 24



Intuition: Linearly Separable

« Given m training samples (x, Vi), X,
where x; € R™,y; € {0,1}, to find ©
separating hyperplanein R™, w -
x+b=0

+ min= ||w]|? )°Q
w2 1 2 3 X1
 t {W’)Ci-l-bZl, ify;=1

w-x;+b< -1, ifyi=0’w

° Whyminlllwll2
w2
 Whyl,-l¢
« Testing phosezw-x+bzo

° e 25



Solution Approach

» Constrained convex optimization

1
min= ||w]||?
w 2

S.t wexi+b =1, Jyi=1 Vi ‘Yi(W'xi‘l‘b)—lZO
T lwex;+b < -1, ify;=-1’

 Dual problem
l l

maxs Iwllz = Y ayiw-x +b)+ Y a,
i=1 1=1
s.t.,a; =0
* ;'S are called Lagrangian multiplier
* No duality gap for convex problems

° 026



Solution Approach

[
Gy, b) = E||W||2 Z lyi(w-xi+b)+2a

=1 =1
Karush-Kuhn-Tucker (KKT) conditions hold
d d _
i T dbf(w, b)=0

L wl
O W =) VX

2. yitw-x; +b)-1=0

a; = 0

4. a;(y;(w-x; + b)-1)=0 > support vectors y;(w - x; + b)-
1=0, a;> 0

W
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Linear Non-separable Case

 |Infroduceslacksin case of violo’rion

mln— IIWII2 + CE &

w-x;+b=1—¢, ify;=1 _. —
S.T., {W’Xi-l-b <-1+4¢;, ify;= _1,‘v’ - X1
& =0

 Can also be solved via dual decomposition and KKT
condifions

o e 28



Non-linear Cases

Non-linear classifier can be viewed as a
linear classifier in a projected space H
via ¢p:R% » H

Note that in previous derivation only

needed the dof products w - x;, x; - x;

o Sufficient to infroduce a kernel function (for similarity
measure) without explicit form of ¢

K(xjx) = ¢(x;) o (x)

Example kernel functions

O K(Xj,xi):(xj'xi+1)p

o Gaussian radial basis K (xj,x;) = e i /20?

o Two-layer sigmoid neural network K(xj,x;) = tanh(kx; -

X;—08)

However, only a subset of kernel
functions are valid

y = tanh(x)
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Using SVM

Perform well with good generalization — thanks to
“maximum margin’’, complexity is controlled

Unique solution exists or a set of equally good
classifiers exist (when non-unique)

Choice of kernel function requires knowledge of the
dataset for non-linear classification - whatis a good
measure of similaritye

o GRB may be a good start

1 vs N-1 training for each class

® 30




Naive Bayesian Classifier

Assume that all features are independent given the
class label Y:

P(Xy,..., X,|Y) =] P(x;|Y)
1=1

Suppose m values for each feature

o W/o independence =2 mn" parameters for each value of Y
o With independence =2 mn parameters for each value of Y

Bag of word model in naturallanguage processing

® 3]



Naive Bayes Iraining

* Training in Naive Bayes is easy:
o Estimate P(Y=v) as the fraction of records with Y=v

Count(Y = v)
# records

P(Y =v)=

o Estimate P(Xi=u|Y=v) as the fraction of records with Y=v for
which X=u
Count(X;=uAY =v)

PXi=ulYy =v) = Count(Y =v)

* (This corresponds to Maximum Likelihood estimatfion of model
parameters)



Naive Bayes Iraining

In practice, some of these counts can be zero
Fix this by adding “virtual” counts:

Count(X; =uAY =v)+1
Count(Y =v) + 2

P(XiZ’U,|Y:’U):

o (This is like putting a prior on parametersand
doing MAP estimation instead of MLE)

o This is called Smoothing



Naive Bayes Classification

e argmaxP(X;X,..X,|Y) =argmax][;L, P(X;|V)
* Find the class label maximizing the posterior
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How to Evaluate?

» Training samples need o be sufficiently random

» n-fold cross-validation: For each of n experiments,
use n-1 folds for training and the remaining one for

testing

o Compute the mean error

Experiment 1

Experiment 2

Experiment 3

Experiment 4

<

Total number of examples

/ Test examples
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Performance Metrics

« For binary (positive/negative) classification
True positive (TP) aka “hit”, false positive (FP), false negative (FN)
Precision = TP/(TP + FP)

Recall = TP/(TP+FN)

Accuracy = (TP + TN)/Total Test Size

F1 = 2TP/(2TP+FP+FN) = 2 - Precision-Recall/(Precision + Recall)

 For multi-class classification

o Confusion matrix

O O O O O

Positive Negative
(Predicted) (Predicted)

Positive

(Actual) 0 e
Negative
(Actual) 150 9700

° ® 364



Unsupervised Learning

« K-mean: Given a set of o 0 A
observations (X;, X,, ..., X,), 5o . gl
where each observationis ad- Tof™ —
dimensionalreal vector, k- (] . =
means clustering aims to O .'.ll
partition the n observationsinto Em "

kK (£n)setsS ={S;, Sy, ..., S} so as
to minimize the within-cluster
sum of squares (WCSS)

k
argmin > [x - pil/

i=1 x&85;
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1. kinitial "means”
(in this case k=3) are
randomly generated
within the data
domain (shown in
color).

2. kclusters are
created by
associating every
observation with the
nearest mean. The
partitions here
represent the
Voronoi diagram
generated by the
means.

K-mean (cont’d)

* Lloyd algorithm: iterative refinement

3. The
centroid of
each of the k

clusters

becomes the

new_mean.

4. Steps 2 and 3

are repeated until
convergence has
been reached.
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Additional Reading Materials

 CHRISTOPHER J.C. BURGES, "A Tutorial on Support
Vector Machines for Pattern Recognition”
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