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Disclaimer
• This is a fast-food version of a semester long course 

packed into 3-hr 
• Learning objectives

o Machine learning pipeline
o Basic concepts in machine learning: supervised vs. unsupervised; 

discrimitive vs generative
o The proper way of training, testing and handling model complexity 

(underfitting, overfitting) in regression
o Commonly used classifiers: SVM (discrimitive) and naïve Bayesian 

(generative)
o Commonly used (unsupervised) clustering methods: K-mean

• If you want to know more, check out machine 
learning courses on Coursera
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What is Machine Learning
• Definition: 

o “Field of study that gives computers the ability to learn without being 
explicitly programmed” – Arthur Samuel

o "A computer program is said to learn from experience E with respect to 
some class of tasks T and performance measure P, if its performance at 
tasks in T, as measured by P, improves with experience E” – Tom M Mitchell

• Two types of machine learning problems
o Examples à generalization à prediction
o Identifying patterns in data sets 

• Applications of machine learning?
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Supervised learning

Unsupervised learning



Supervised Learning Pipeline

• Feature extraction: builds derived values from 
measured data
o In some cases, feature selection is further conducted

• Training takes features and labels to derive models 
for prediction
o Labels are typically obtained manually – one recent development is via 

crowdsourcing
o It is a common practice to divide the training data into training set, cross-

validation set and testing set

5

Data 
collection

Feature 
Extraction Training

Labels

Model Inference



Supervised Learning Pipeline

Model: in general parameterized*
• The purpose of training is thus to derive the 

parameters
• One important issue is model complexity: how many 

parameters? 
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* you might’ve heard of non-parametric model but in fact they are just a more sophisticated kind 
of parameterized model (e.g., classes of models or hierarchical graphical models)



Model Overfitting and Underfitting
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Underfitting Just right Overfitting
Training Large error Small error Small error
Testing Large error Small error Large error

More later



Supervised Learning Pipeline

Model: in general parameterized by 𝜃
• What kind of model?

o Discrimitive: model the contingency of the world state on the data P(w|x, 
𝜃) – an easy way to think about it is to view the word state as a function of 
the observation, e.g, w = f(x, 𝜃) + n, where n is a noise term

o Generative: model the contingency of the data on the world state P(x|w, 
𝜃) 
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Discrimitive Model
• Learning: given the training data <wi, 

xi>’s, learning 𝜃 in P(w|x, 𝜃) 
o Maximum likelihood 

𝜃 = argmax 𝑃(𝑤|𝑥, 𝜃)
o Maximum a posterior 
𝜃 = argmax 𝑃(𝜃|𝑥,𝑤)~ argmax 𝑃 𝑤 𝑥, 𝜃 𝑃(𝜃)

o E.g., given the house square footage (x) and price 
(w), to determine a quadratic relation between the 
two

• Inferencing
o Given the model (𝜃) and x, 𝑤 = argmax 𝑃(𝑤|𝑥, 𝜃)
o E.g., with the above model, a new house of size x 

comes to market, what should the listing price be?
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Generative Model
• Learning: given the training data <wi, 

xi>’s, learning 𝜃 in P(x|w, 𝜃) 
o Maximum likelihood 𝜃 = argmax 𝑃(𝑥|𝑤, 𝜃)
o X-ray lung data (x) collected from smoker and non-

smoker (w) groups

• Inferencing
o Given the model 𝜃 and x, 𝑤 =

argmax 𝑃(𝑥|𝑤, 𝜃)~	argmax 𝑃 𝑤 𝑥, 𝜃 𝑃(𝑤)
o As we can see, one key difference between 

generative and discrimitive models is the 
incorporation of priori information in the inference

o E.g., Given some x-ray lung data, is the person a 
smoker or a non-smoker
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Unsupervised Learning Pipeline
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Regression
• One class of supervised 

learning problems
o Estimate relationships among variables 

E(Y|X) =f(X, 𝜃), where X = (x1, x2,…, xn)
o Typically, Y is a continuous variable –

used for prediction and forecasting
o If Y is a discrete variable, it is called 

logistic regression – in fact, a form of 
classification problem

• We have in fact dealt with 
regression problems to some 
extent
o Fitting of log-normal distance model
o Fingerprinting based localization 
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Figure 2.1: Minmax fitted surface with ∆ = 0
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Figure 2.2: Minmax fitted surface with ∆ = σ
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Linear Regression
Housing price

13Materials borrowed from Andrew Ng’s Machine learning course

Size in feet2 (x) Price ($) in 1000's (y)
2104 460
1416 232
1534 315
852 178
… …

Notation:
m = Number of training examples
x’s = “input” variable / features
y’s = “output” variable / “target” variable



Linear Regression (Cont’d)
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• What is the order of h?
o ℎ 𝑥 = 𝜃2 + 𝜃4𝑥
o ℎ 𝑥 = 𝜃2 + 𝜃4𝑥 + 𝜃5𝑥5

o ℎ 𝑥 = 𝜃2 + 𝜃4𝑥 + 𝜃5𝑥5 + 𝜃6𝑥6

• Given the known order, how 
to estimate the parameters?



Parameter Estimation (1)
• Assume 1st-order model, s.t., 
𝑦 = ℎ 𝑥 + 𝑛	 = 𝜃2 + 𝜃4𝑥 + 𝑛
(noise)

• Goal: to estimate 𝜃2and 
𝜃4such that the fitting is “as 
close as possible”
• Given 𝜃2 and 𝜃4, we can 

compute 𝑦9 = 𝜃2 + 𝜃4𝑥
• Make dist(y1, 𝑦91), dist(y2, 𝑦92), …, 

dist(ym, 𝑦9m) small

• Need to quantify the 
“closeness” or alternatively, 
the distance metric
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Parameter Estimation (2)
• Recall our model 𝑦 = ℎ 𝑥 +𝑛	 = 𝜃2 +𝜃4𝑥 + 𝑛

o Assume the noise is zero mean Gaussian r.v. with unknown variance 𝜎5

o y ~ P(y|x, 𝜃) = 4
5AB

exp	(− (EF GHIGJK )L

5BL
) and x’s are independent

o A maximum likelihood estimator  𝜃 = argmax 𝑃 𝑦 𝑥, 𝜃 gives 
𝜃 = argmax ∏ 𝑃 𝑦N 𝑥N, 𝜃O

NP4 or equivalently

𝜃 = argmaxQ log𝑃 𝑦N 𝑥N, 𝜃
O

NP4

= argmax ∑ log𝑃 𝑦N 𝑥N, 𝜃O
NP4

												= argm𝑖𝑛Q 𝑦N − 𝜃2 + 𝜃4𝑥N
5

O

NP4

o The last equation corresponds to a least square error (LSE) estimator
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Cost Function:

m is the size of the training set 



Solving LSE
• Can be solved in closed-form 

• Or, gradient descent
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Both parameters are updated 
simultaneously 
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the training examples’ input values in its rows:

X =

⎡

⎢

⎢

⎢

⎣

— (x(1))T —
— (x(2))T —

...
— (x(m))T —

⎤

⎥

⎥

⎥

⎦

.

Also, let y⃗ be the m-dimensional vector containing all the target values from
the training set:

y⃗ =

⎡

⎢

⎢

⎢

⎣

y(1)

y(2)
...

y(m)

⎤

⎥

⎥

⎥

⎦

.

Now, since hθ(x(i)) = (x(i))T θ, we can easily verify that

Xθ − y⃗ =

⎡

⎢

⎣

(x(1))T θ
...

(x(m))T θ

⎤

⎥

⎦

−

⎡

⎢

⎣

y(1)
...

y(m)

⎤

⎥

⎦

=

⎡

⎢

⎣

hθ(x(1))− y(1)
...

hθ(x(m))− y(m)

⎤

⎥

⎦

.

Thus, using the fact that for a vector z, we have that zT z =
∑

i z
2
i :

1

2
(Xθ − y⃗)T (Xθ − y⃗) =

1

2

m
∑

i=1

(hθ(x
(i))− y(i))2

= J(θ)

Finally, to minimize J , let’s find its derivatives with respect to θ. Combining
Equations (2) and (3), we find that

∇AT trABATC = BTATCT +BATC (5)

10

the training examples’ input values in its rows:

X =

⎡

⎢

⎢

⎢

⎣

— (x(1))T —
— (x(2))T —

...
— (x(m))T —

⎤

⎥

⎥

⎥

⎦

.

Also, let y⃗ be the m-dimensional vector containing all the target values from
the training set:

y⃗ =

⎡

⎢

⎢

⎢

⎣

y(1)

y(2)
...

y(m)

⎤

⎥

⎥

⎥

⎦

.

Now, since hθ(x(i)) = (x(i))T θ, we can easily verify that

Xθ − y⃗ =

⎡

⎢

⎣

(x(1))T θ
...

(x(m))T θ

⎤

⎥

⎦

−

⎡

⎢

⎣

y(1)
...

y(m)

⎤

⎥

⎦

=

⎡

⎢

⎣

hθ(x(1))− y(1)
...

hθ(x(m))− y(m)

⎤

⎥

⎦

.

Thus, using the fact that for a vector z, we have that zT z =
∑

i z
2
i :

1

2
(Xθ − y⃗)T (Xθ − y⃗) =

1

2

m
∑

i=1

(hθ(x
(i))− y(i))2

= J(θ)

Finally, to minimize J , let’s find its derivatives with respect to θ. Combining
Equations (2) and (3), we find that

∇AT trABATC = BTATCT +BATC (5)

11

Hence,

∇θJ(θ) = ∇θ

1

2
(Xθ − y⃗)T (Xθ − y⃗)

=
1

2
∇θ

(

θTXTXθ − θTXT y⃗ − y⃗TXθ + y⃗T y⃗
)

=
1

2
∇θ tr

(

θTXTXθ − θTXT y⃗ − y⃗TXθ + y⃗T y⃗
)

=
1

2
∇θ

(

tr θTXTXθ − 2tr y⃗TXθ
)

=
1

2

(

XTXθ +XTXθ − 2XT y⃗
)

= XTXθ −XT y⃗

In the third step, we used the fact that the trace of a real number is just the
real number; the fourth step used the fact that trA = trAT , and the fifth
step used Equation (5) with AT = θ, B = BT = XTX , and C = I, and
Equation (1). To minimize J , we set its derivatives to zero, and obtain the
normal equations:

XTXθ = XT y⃗

Thus, the value of θ that minimizes J(θ) is given in closed form by the
equation

θ = (XTX)−1XT y⃗.

3 Probabilistic interpretation

When faced with a regression problem, why might linear regression, and
specifically why might the least-squares cost function J , be a reasonable
choice? In this section, we will give a set of probabilistic assumptions, under
which least-squares regression is derived as a very natural algorithm.

Let us assume that the target variables and the inputs are related via the
equation

y(i) = θTx(i) + ϵ(i),

where ϵ(i) is an error term that captures either unmodeled effects (such as
if there are some features very pertinent to predicting housing price, but
that we’d left out of the regression), or random noise. Let us further assume
that the ϵ(i) are distributed IID (independently and identically distributed)
according to a Gaussian distribution (also called a Normal distribution) with

Implementation note:
• Gradient descent is advantageous in computation and storage complexity
• In general, GD converges to local minimum but in the case of convex 

optimization, local minimum = global minimum
• Big 𝛼 leads to fluctuation, small 𝛼 gives slow convergence



Illustration: Gradient Descent
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Polynomial Regression
• The discussion so far also applies tomulti-variable

𝑦 = ℎ 𝒙 + 𝑛	 = 𝜽Y𝒙+ 𝑛 or more generally, 
𝑦 = 𝜽Y𝛷(𝒙) + 𝑛

• If we set 𝑥4 = 𝑥, 𝑥5 = 𝑥5,… , 𝑥\ = 𝑥\, we have nth 
order polynomial regression

• In fact, we can even make 𝑥4, 𝑥5,…, 𝑥\ other 
functions of x

• How to pick the right order n?
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Picking the Right Order

• Solution 1: divide the data into training, cross-
validation and testing sets
o Pick different n’s such that the errors are both small for training & cross-

validation set

20

Underfitting Just right Overfitting
Training Large error Small error Small error
Testing Large error Small error Large error

n

Cross-validation
error

Training
error



Picking the Right Order
• Solution 2: regularization – a common used 

technique to deal with an ill-posed problem and to 
prevent overfitting

• Introducing a “penalty” term
o Intuition: If 𝜆 > 0 is picked appropriately, large 𝜃_𝑠 will be “discouraged” as 

they would increase the cost
o Can be solved via gradient descent or directly
o Impact of large 𝜆? Impact of small 𝜆?
o How to choose 𝜆?
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Classification
• E(Y|X) =f(X, 𝜃),Y is a binary variable regression

o Here Y can be thought as class labels 0, 1

• Example: 
o Email: Spam / Not Spam?
o Online Transactions: Fraudulent (Yes / No)?
o Tumor: Malignant / Benign ?

22

0: “Negative Class” (e.g., benign tumor)
1: “Positive Class” (e.g., malignant tumor)



Classification as a Regression Problem
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𝑔(𝑧)

𝑦 = c
1, 𝑔 𝜃Y𝑥 > 0.5
0, 𝑔 𝜃Y𝑥 < 0.5

𝑧 = 𝜃Y𝑥

Choose g(z) as sigmod function à Logistic regression



Support Vector Machine (SVM)
• Logistic regression is limiting in two aspects:

o Hard to model irregular decision boundary
o May be sensitive to noise
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Intuition: Linearly Separable
• Given m training samples (xi, yi), 

where 𝑥N ∈ 𝑅\, 𝑦N ∈ {0,1}, to find a 
separating hyperplane in 𝑅\, 𝑤 j
𝑥 + 𝑏 = 0

• min
n

4
5
𝑤 5

s.t., o 𝑤 j 𝑥N + 𝑏 ≥ 1, 𝑖𝑓𝑦N = 1
𝑤 j 𝑥N + 𝑏 ≤ −1, 𝑖𝑓𝑦N = 0 , ∀𝑖

• Why min
n

4
5
𝑤 5

• Why 1, -1?

• Testing phase: 𝑤 j 𝑥 + 𝑏><0
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Solution Approach
• Constrained convex optimization

min
n

1
2 𝑤 5

s.t., o 𝑤 j 𝑥N + 𝑏 ≥ 1, 𝑖𝑓𝑦N = 1
𝑤 j 𝑥N + 𝑏 ≤ −1, 𝑖𝑓𝑦N = −1 , ∀𝑖

• Dual problem

max
n

1
2 𝑤 5 −Q𝛼N𝑦N 𝑤 j 𝑥N + 𝑏

t

NP4

+Q𝛼N

t

NP4
s.t., 𝛼N ≥ 0
• 𝛼N’s are called Lagrangian multiplier 
• No duality gap for convex problems
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𝑦N(𝑤 j 𝑥N + 𝑏) − 1 ≥ 0



Solution Approach
𝑓 𝑤, 𝑏 = 	

1
2 𝑤 5 −Q𝛼N𝑦N 𝑤 j 𝑥N + 𝑏

t

NP4

+Q𝛼N

t

NP4
Karush-Kuhn-Tucker (KKT) conditions hold

1. u
unv

𝑓 𝑤, 𝑏 =0, u
uw
𝑓 𝑤, 𝑏 =0

o 𝑤 = ∑ 𝛼Nt
NP4 𝑦N𝑥N

2. 𝑦N 𝑤 j 𝑥N + 𝑏 -1 ≥ 0
3. 𝛼N ≥ 0
4. 𝛼N(𝑦N 𝑤 j 𝑥N + 𝑏 -1)=0 à support vectors 𝑦N 𝑤 j 𝑥N + 𝑏 -

1=0, 𝛼N> 0
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Linear Non-separable Case
• Introduce slacks in case of violation

min
n

1
2 𝑤 5 + 𝐶Q𝜀N

t

NP4

s.t., o 𝑤 j 𝑥N + 𝑏 ≥ 1 − 𝜀N, 𝑖𝑓𝑦N = 1
𝑤 j 𝑥N + 𝑏 ≤ −1 + 𝜀N, 𝑖𝑓𝑦N = −1 , ∀𝑖

𝜀N ≥ 0
• Can also be solved via dual decomposition and KKT 

conditions
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Non-linear Cases
• Non-linear classifier can be viewed as a 

linear classifier in a projected space H 
via 𝜙: 𝑅u ↦ 𝐻

• Note that in previous derivation only 
needed the dot products 𝑤 j 𝑥N , 𝑥� j 𝑥N
o Sufficient to introduce a kernel function (for similarity 

measure) without explicit form of 𝜙
𝐾(𝑥�,𝑥N) ≡ 𝜙(𝑥N) j 𝜙(𝑥�)

• Example kernel functions
o 𝐾(𝑥�,𝑥N) = (𝑥� j 𝑥N + 1)	�

o Gaussian radial basis 𝐾(𝑥�,𝑥N) = 𝑒	F K�FK�
L/5BL

o Two-layer sigmoid neural network 𝐾(𝑥�,𝑥N) = tanh(𝜅𝑥� j
𝑥N − 𝛿)

• However, only a subset of kernel 
functions are valid

29



Using SVM
• Perform well with good generalization – thanks to 

“maximum margin”, complexity is controlled 
• Unique solution exists or a set of equally good 

classifiers exist (when non-unique)
• Choice of kernel function requires knowledge of the 

dataset for non-linear classification – what is a good 
measure of similarity?
o GRB may be a good start

• 1 vs N-1 training for each class

30
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4.3. Some Examples of Nonlinear SVMs

The first kernels investigated for the pattern recognition problem were the following:

K(x,y) = (x · y + 1)p (74)

K(x,y) = e−∥x−y∥2/2σ2
(75)

K(x,y) = tanh(κx · y − δ) (76)

Eq. (74) results in a classifier that is a polynomial of degree p in the data; Eq. (75) gives
a Gaussian radial basis function classifier, and Eq. (76) gives a particular kind of two-layer
sigmoidal neural network. For the RBF case, the number of centers (NS in Eq. (61)),
the centers themselves (the si), the weights (αi), and the threshold (b) are all produced
automatically by the SVM training and give excellent results compared to classical RBFs,
for the case of Gaussian RBFs (Schölkopf et al, 1997). For the neural network case, the
first layer consists of NS sets of weights, each set consisting of dL (the dimension of the
data) weights, and the second layer consists of NS weights (the αi), so that an evaluation
simply requires taking a weighted sum of sigmoids, themselves evaluated on dot products of
the test data with the support vectors. Thus for the neural network case, the architecture
(number of weights) is determined by SVM training.

Note, however, that the hyperbolic tangent kernel only satisfies Mercer’s condition for
certain values of the parameters κ and δ (and of the data ∥x∥2). This was first noticed
experimentally (Vapnik, 1995); however some necessary conditions on these parameters for
positivity are now known14.

Figure 9 shows results for the same pattern recognition problem as that shown in Figure
7, but where the kernel was chosen to be a cubic polynomial. Notice that, even though
the number of degrees of freedom is higher, for the linearly separable case (left panel), the
solution is roughly linear, indicating that the capacity is being controlled; and that the
linearly non-separable case (right panel) has become separable.

Figure 9. Degree 3 polynomial kernel. The background colour shows the shape of the decision surface.

Finally, note that although the SVM classifiers described above are binary classifiers, they
are easily combined to handle the multiclass case. A simple, effective combination trains



Naïve Bayesian Classifier
• Assume that all features are independent given the 

class label Y:

• Suppose m values for each feature
o w/o independence à mn parameters for each value of Y
o With independence à mn parameters for each value of Y

• Bag of word model in natural language processing
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Naïve Bayes Training
• Training in Naïve Bayes is easy:

o Estimate P(Y=v) as the fraction of records with Y=v

o Estimate P(Xi=u|Y=v) as the fraction of records with Y=v for 
which Xi=u

• (This corresponds to Maximum Likelihood estimation of model 
parameters)



Naïve Bayes Training
• In practice, some of these counts can be zero
• Fix this by adding “virtual” counts:

o (This is like putting a prior on parameters and 
doing MAP estimation instead of MLE)

o This is called Smoothing



Naïve Bayes Classification
• argmax𝑃(𝑋4𝑋5…𝑋\|𝑌) = argmax∏ 𝑃(𝑋N|𝑌)\

NP4
• Find the class label maximizing the posterior
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How to Evaluate?
• Training samples need to be sufficiently random
• n-fold cross-validation: For each of n experiments, 

use n-1 folds for training and the remaining one for 
testing
o Compute the mean error

35

Intelligent Sensor Systems
Ricardo Gutierrez-Osuna
Wright State University

7

K-Fold Cross-validation
Create a K-fold partition of the the dataset

For each of K experiments, use K-1 folds for training and the remaining 
one for testing 

K-Fold Cross validation is similar to Random Subsampling 
The advantage of K-Fold Cross validation is that all the examples in the 
dataset are eventually used for both training and testing

As before, the true error is estimated as the average error rate

Total number of examples

Experiment 1

Experiment 2

Experiment 3
Test examples

Experiment 4

∑
=

=
K

1i
iE

K
1E



Performance Metrics
• For binary (positive/negative) classification

o True positive (TP) aka “hit”, false positive (FP), false negative (FN)
o Precision = TP/(TP + FP)
o Recall = TP/(TP+FN)
o Accuracy = (TP + TN)/Total Test Size
o F1 = 2TP/(2TP+FP+FN) = 2 j	PrecisionjRecall/(Precision + Recall)

• For multi-class classification
o Confusion matrix

36



Unsupervised Learning
• K-mean: Given a set of 

observations (x1, x2, …, xn), 
where each observation is a d-
dimensional real vector, k-
means clustering aims to 
partition the n observations into 
k (≤ n) sets S = {S1, S2, …, Sk} so as 
to minimize the within-cluster 
sum of squares (WCSS)
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K-mean (cont’d)
• Lloyd algorithm: iterative refinement

38

1. k initial "means" 
(in this case k=3) are 
randomly generated 
within the data 
domain (shown in 
color).

2. k clusters are 
created by 
associating every 
observation with the 
nearest mean. The 
partitions here 
represent the 
Voronoi diagram
generated by the 
means.

3. The 
centroid of 
each of the k
clusters 
becomes the 
new mean.

4. Steps 2 and 3 
are repeated until 
convergence has 
been reached.



Additional Reading Materials
• CHRISTOPHER J.C. BURGES, “A Tutorial on Support 

Vector Machines for Pattern Recognition”
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