
CAS 765 Fall’15
Mobile Computing and 

Wireless Networking 

Rong Zheng



Android Sensing 
Subsystem

Qiang Xu

2



What is a Sensor?
• A converter that measures a 

physical quantity and coverts it 
into a signal which can be read 
by an observer or by an 
instrument.
o Microphone, number keys, accelerometer, 

gyroscope
o Instead of carrying around 10 separate 

devices, now you just need 1

3



Sensor Categories
• Android sensors as separated into one of three 

broad categories:
o Motion sensors – measure force and rotation

• e.g. acceleration
o Environmental sensors – measure environmental parameters 

• e.g. illumination, air temperature and pressure
o Position sensors – measure physical positioning of the device

• e.g. GPS

4



Hardware vs. Software
• Although it might be natural to think of all sensors as 

hardware, that is NOT the case
• Sensor of Android is a component that provides 

information about the outside world
• Some “sensors” are actually software components 

that fuse data from hardware sensors generate 
different kinds of data

• These are called “compound sensors” or “virtual 
sensors”

5



Sensors? what sensors?
• Sensors are NOT guaranteed!
• There is no Android Specs for required 

sensors
• You need to check for the sensors first
• You can activate more than one sensors in 

one app
• Different device has different capability 

and driver

6



Android Sensors
• Common

o MIC
o Camera
o Temperature
o Location (GPS or Network)
o Orientation
o Accelerometer
o Proximity
o Pressure
o Light

• Special (Introduced since Android 4.4, only avail on 
Nexus 5 now)
o Sensor batching
o Step Detector and Step Counter

7



Sensor Stack

8
https://source.android.com/devices/sensors
/sensor-stack.html



Android.hardware Package
• Camera, Camera.Area, Camera.Cameralnfo, Camera.Face

and other Camera.XX
o Image related API, deprecated in API level 21, refer to android.hardware.camera2 for 

new apps
• ConsumerIrManager

o operates consumer infrared on the device
• ConsumerIrManager.CarrierFrequencyRange

o Represents a range of frequencies which the infrared transmitter can transmit
• GeomagneticField

o Estimates magnetic filed at a given point.
• Sensor

o Represents a sensor
• SensorEvent

o Represents a sensor event (a sensor measurement)
• SensorManager

o Let apps access sensors
• TriggerEvent

o Represents a Trigger sensor-the event associated with a Trigger sensor
• TriggerEventListener

o Listener used to handle Trigger Sensors

9



How to get data from sensors?

10



Class SensorManager
• An Android system service that gives an app access 

to hardware sensors
o it is a service, so it is running in the backend as a daemon process

• Allow apps to register or unregister for sensor events
o once registered, an app will receive sensor data from hardware

• Also, provides methods that process sensor data
o e.g. SensorManger.getOrientation()

• Methods
o Sensor getDefaultSensor(int type): get the default sensor for a given type
o List<Sensor> getSensorList(int type): get the list of avail sensors of certain 

type
o boolean registerListener(SensorEventListener listener, Sensor sensor, int

rate) 
o void unregisterListener(SensorEventListener listener, Sensor sensor) 

11

String service_name = Context.SENSOR_SERVICE;
SensorManagersensorManager= 
(SensorManager)getSystemService(service_name) 



Class Sensor
• Represents a sensor on a device
• Exposes information about the sensor

o Maximum range
o Minimum delay
o Name
o Power
o Resolution
o Type
o Vendor
o Version

12



Sensor.TYPE_XX
• TYPE_ACCELEROMETER
• TYPE_AMBIENT_TEMPERATURE
• TYPE_GAME_ROTATION_VECTOR
• TYPE_GEOMAGNETIC_ROTATION_VECTOR
• TYPE_GRAVITY
• TYPE_GYROSCOPE
• TYPE_GYROSCOPE_UNCALIBRATED
• TYPE_HEART_RATE
• TYPE_LIGHT
• TYPE_LINEAR_ACCELERATION
• TYPE_MAGNETIC_FIELD
• TYPE_MAGNETIC_FIELD_UNCALIBRATED
• TYPE_ORIENTATION
• TYPE_PRESSURE
• TYPE_PROXIMITY
• TYPE_RELATIVE_HUMIDITY
• TYPE_ROTATION_VECTOR
• TYPE_SIGNIFICANT_MOTION
• TYPE_STEP_COUNTER
• TYPE_STEP_DETECTOR

13

Note: 
• Availability depends 

on hardware
• May deprecate or 

only introduced in 
some API levels 



Interface SensorEventListener
• An interface that provides the callbacks to alert an 

app to sensor events
o onSensorChanged(SensorEvent event) : Monitor sensor changes
o onAccuracyChanged(Sensor sensor, int accuracy) : React to a change 

in Sensor Accuracy

• App need to register an concrete class that 
implements SensorEventListener with 
SensorManager

14

final SensorEventListenermySensorEventListener = new SensorEventListener() { 
public void onSensorChanged(SensorEvent sensorEvent) { 

// TODO Monitor Sensor changes. 
} 
public void onAccuracyChanged(Sensor sensor, int accuracy) { 

// TODO React to a change in Sensor accuracy. 
} } 



Register a sensor listener

• Update Rate
o Four options (0, 20, 67, and 200 milliseconds)

• SENSOR_DELAY_FASTEST 
• SENSOR_DELAY_GAME 
• SENSOR_DELAY_UI (Suitable for usual user interface functions, like rotating 

the screen orientation.) 
• SENSOR_DELAY_NORMAL (The default value)

o Only intended to be hints to the system, as events may be 
received faster or slower than the specified delay

15

// Usually in onResume
Sensor sensor = 
sensorManager.getDefaultSensor(Sensor.TYPE_PROXIMITY); 
sensorManager.registerListener(mySensorEventListener, sensor, 
SensorManager.SENSOR_DELAY_NORMAL); 
// Usually in onPause
sensorManager.unregisterListener(mySensorEventListener); 



Class SensorEvent
• SensorEvent parameter in onSensorChanged

method includes four properties:
o sensor: The sensor that triggered the event.
o accuracy: The accuracy of the Sensor when the event occurred. 
o values: A float array that contains the new value(s) detected.

• The sensor measurements
o timestamp: The time in nanosecond at which the event occurred. 

• VERY important. 
• The data values are not necessarily evenly spaced in time, this 

property allows you to access the timestamp associated with the data 
(which is held in the SensorEvent.values field) in nanoseconds. 

16



17



A complete example

18



Sensor Rate configuration:
A two-edged sword

• Set by 
SensorManager.registerListener(SensorEventListener
listener, Sensor sensor, int rate)
o Just a hint, no guarantee 

• Pros
o The timing of the sensor events is optimized for the particular device
o Allow sensor polling to be device-agnostic and future proofed

• Cons
o Unevenly spaced sensor data introduce inaccuracy
o Difficult for data processing in application

19



Why sensor data is unevenly 
spaced?

20

Real-Time Sensing on Android, Yin Yan, Shaun 
Cosgrove, Ethan Blanton, Steven Y. Ko, Lukasz Ziarek, 
Proceedings of the 12th International Workshop 
on Java Technologies for Real-time and 
Embedded Systems (JTRES), 2014



Android sensor architecture

21



Four Layers
• Kernel

o Bottom most layer
o Use Linux as the base kernel and most of the mechanisms for sensor 

support come directly from Linux
o Input devices (raw sensor) capture physical inputs and produce input 

events
o Input events will be dispatched to any subscribed handlers, which in turn 

available

• HAL (Hardware Abstraction Layer)
o User-space layer that interfaces with the kernel
o Polls the input events from kernel
o Provide an unifying hardware interfaces for other user-space processes
o All the vendor-specific details

22



Four Layers (cont’d)
• SensorService

o Part of a system process that starts from boot time
o Re-format raw hardware sensor data using application-friendly data 

structure
o Fuse reading from multiple hardware sensors to generate software sensor 

data
o To accomplish this, it needs to poll each sensor through HAL

• SensorManager
o An Android Library linked to each app at run time
o Provides registration and deregistration calls for app-implemented event 

handlers
o Maintains a SensorEventQueue that holds sensor data pulled from the 

SensorService

23



Two Reasons

• Two primary reasons:
o Android doesn’t have any priority support in sensor data delivery. All data 

delivery follows a single path from kernel to apps (SensorEventQueue)

o The amount of time it takes to deliver sensor data is unpredictable. 
Current Android sensor architecture relies heavily on polling and buffering 
to deliver sensor data. This happens at all layers. 

24

Current Android sensing architecture does NOT 
provide predictable sensing



Potential Remedies
• While using sensors, turn off other background 

processes
• Sensor Events are usually received faster if the 

hardware and garbage collection can keep up. 
• Do not set all sensor rates to SENSOR_DELAY_FASTEST
• Unregister unnecessary sensors
• Use other Real-Time Android (e.g. RTDroid)
• Tackle inside application side

o Interpolation makes sense (think about onSensorChange())
o Dedicated mechanism to handle unevenly spaced measurments

25



Further Readings
• Real-Time Sensing on Android, Yin Yan, Shaun 

Cosgrove, Ethan Blanton, Steven Y. Ko, Lukasz Ziarek, 
Proceedings of the 12th International Workshop on 
Java Technologies for Real-time and Embedded 
Systems (JTRES), 2014

• http://developer.android.com/guide/topics/sensors
/sensors_overview.html

26


