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Feature Extraction
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Machine Learning Pipeline

• Feature extraction builds derived values from measured data
o In some cases, feature selection is further conducted

• Why not use measured data directly? 
• Features typically are domain specific

o E.g., term frequency-inverse document frequency for NLP, zero-crossing for EMG, 
edge, shape, SIFT in images

o Requires understanding of the signal characteristics 

• Not always possible to know which features are most useful
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Learning Objectives
• Features for Electromyogram (EMG), 

Electroencephalography (EEG) 
o Both are time domain signals

• Dimension reduction: Principle component analysis
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Principle Component Analysis (PCA)
• Convert a set of observations 

of possibly correlated variables 
into a set of values of linearly 
uncorrelated variables
o Data compression
o Data visualization
o Noise reduction
o Reduction of computation complexity

• Difference between 
correlation and dependence
o Independent à uncorrelated
o Uncorrelated à independence
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Intuition – De-correlation
• Correlation: observations concentrated around the 

line y = 0.5x -5 
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Intuition – Dimension Reduction
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• After projections to another basis, pick the 
dimensions with higher variance



PCA algorithm
• Reduce data from  n-dimensions to  k-dimensions (n 

> k)
• Compute “covariance matrix”:

• Compute “eigenvectors” of matrix:
[U,S,V] = svd(𝚺);

where U, V are unitary matrices: 𝑈𝑈𝐓 = 𝐼,𝑉𝐓𝑉 = 𝐼
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How to Select k?
• Typically, choose k to be smallest value so that

• Can be thought of as choosing the k dimensions 
that have the maximum variances
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Interpretation– Optimization 
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12.1. Principal Component Analysis 561

Figure 12.2 Principal component analysis seeks a space
of lower dimensionality, known as the princi-
pal subspace and denoted by the magenta
line, such that the orthogonal projection of
the data points (red dots) onto this subspace
maximizes the variance of the projected points
(green dots). An alternative definition of PCA
is based on minimizing the sum-of-squares
of the projection errors, indicated by the blue
lines.
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a particular form of linear-Gaussian latent variable model. This probabilistic refor-Section 12.2
mulation brings many advantages, such as the use of EM for parameter estimation,
principled extensions to mixtures of PCA models, and Bayesian formulations that
allow the number of principal components to be determined automatically from the
data. Finally, we discuss briefly several generalizations of the latent variable concept
that go beyond the linear-Gaussian assumption including non-Gaussian latent vari-
ables, which leads to the framework of independent component analysis, as well as
models having a nonlinear relationship between latent and observed variables.Section 12.4

12.1. Principal Component Analysis

Principal component analysis, or PCA, is a technique that is widely used for appli-
cations such as dimensionality reduction, lossy data compression, feature extraction,
and data visualization (Jolliffe, 2002). It is also known as the Karhunen-Loève trans-
form.

There are two commonly used definitions of PCA that give rise to the same
algorithm. PCA can be defined as the orthogonal projection of the data onto a lower
dimensional linear space, known as the principal subspace, such that the variance of
the projected data is maximized (Hotelling, 1933). Equivalently, it can be defined as
the linear projection that minimizes the average projection cost, defined as the mean
squared distance between the data points and their projections (Pearson, 1901). The
process of orthogonal projection is illustrated in Figure 12.2. We consider each of
these definitions in turn.

12.1.1 Maximum variance formulation
Consider a data set of observations {xn} where n = 1, . . . , N , and xn is a

Euclidean variable with dimensionality D. Our goal is to project the data onto a
space having dimensionality M < D while maximizing the variance of the projected
data. For the moment, we shall assume that the value of M is given. Later in this


