
CAS 765 Fall’15
Mobile Computing and
Wireless Networking

Rong Zheng

Sensor & Sensor Data
Processing

Part II Inertial Measurement Units (IMU)

2

IMUs
• Includes

o Accelerometer measures acceleration
o Gyro measures Corilios force due to

rotation, or angular velocity
o Magnetometer reports the magnetic field
o All in <x, y, z>

• Microelectromechanical
systems (MEMS) sensors

• Single chip solution: 9-DOF IMU
sensors available in the market

3

http://electroiq.com/blog/2010/11/introduction-‐‑to-‐‑mems-‐‑
gyroscopes/

An Illustration of Hall Effect
for Magnetometer (from
Wikipedia)

An Illustration of Coriolis
Effect for Gyro

Device Attitude/Pose
• Global coordinate system

xE, yE, zE, and
• A device coordinate

system x, y, z
• Need to know the rotation

from the device
coordinate system to the
global coordinate system

• First, how to represent
rotation?

4

90 x CHAPTER 5 OVERVIEW OF PHYSICAL SENSORS

The reason for deprecation appears to be that it is an internal system sensor and has no general-
purpose use in apps.

Thus far, this chapter has discussed the various concepts surrounding sensors and the Android platform,
as well as enumerated the sensors that may be available on a given Android device. The remainder of the
chapter will be dedicated to implementing application code that makes use of the sensor data.

SENSING DEVICE ORIENTATION AND MOVEMENT
This section goes into depth describing Android inertial sensors. Inertial is just a term that refers
to motion measurement. These are different than the sensors in the previous section in that they
describe what the device is doing in its environment as opposed to describing the environment itself.

Coordinate Systems
When using orientation and movement sensors in Android, two coordinate systems are defi ned: the
global coordinate system xE, yE, zE, and a device coordinate system x, y, z. Both coordinate systems
are illustrated in Figure 5-4. This fi gure shows the device positioned at the equator of Earth, with
some tilt with respect to Earth. All coordinate systems for three-axis sensors obey these coordinate
systems, except Sensor.TYPE_ORIENTATION, which is deprecated.

Source: http://developer.android.com/reference/

android/hardware/SensorEvent.html

North magnetic pole

Earth

xE

x
z

zE

y

Global coordinate system

Device coordinate system

yE

South magnetic pole

FIGURE 5-4: Android coordinate systems

c05.indd 90c05.indd 90 5/10/2012 2:01:56 PM5/10/2012 2:01:56 PM

Review: Vector Product
• A = [x1, y1, z1], B = [x2, y2, z2]
• Dot product A�B = x1x2+y1y2+z1z2

• Cross product A x B =
[y1z2 – z1y2, z1x2 – x1z2, x1y2 – y1x2]

5

(𝑥#𝑖 + 𝑦#𝑗+𝑧#𝑘)x(𝑥*𝑖 + 𝑦*𝑗+𝑧*𝑘)
= 𝑦#𝑧* − 𝑧#𝑦* 𝑖 + (z1x2 – x1z2)𝑗+ (𝑥#𝑦*-‐‑𝑦#𝑥*)𝑘

j

k

i

Euler Angles and Rotation Matrices
• A rotation of φ radians about the z-

axis (yaw/azimuth)

• A rotation of ψ radians about the x-
axis (roll)

• A rotation of θ radians about the y-
axis (pitch)

6

Computing Euler angles from a rotation matrix

Gregory G. Slabaugh

Abstract

This document discusses a simple technique to find all possible Euler angles from
a rotation matrix. Determination of Euler angles is sometimes a necessary step
in computer graphics, vision, robotics, and kinematics. However, the solution
may or may not be obvious.

Rotation matrices

We start o↵ with the standard definition of the rotations about the three prin-
ciple axes.

A rotation of radians about the x-axis is defined as

R

x

() =

2

4
1 0 0
0 cos � sin
0 sin cos

3

5

Similarly, a rotation of ✓ radians about the y-axis is defined as

R

y

(✓) =

2

4
cos ✓ 0 sin ✓

0 1 0
� sin ✓ 0 cos ✓

3

5

Finally, a rotation of � radians about the z-axis is defined as

R

z

(�) =

2

4
cos� � sin� 0
sin� cos� 0

0 0 1

3

5

The angles , ✓, and � are the Euler angles.

Generalized rotation matrices

A general rotation matrix can will have the form,

R =

2

4
R

11

R

12

R

13

R

21

R

22

R

23

R

31

R

32

R

33

3

5

1

Computing Euler angles from a rotation matrix

Gregory G. Slabaugh

Abstract

This document discusses a simple technique to find all possible Euler angles from
a rotation matrix. Determination of Euler angles is sometimes a necessary step
in computer graphics, vision, robotics, and kinematics. However, the solution
may or may not be obvious.

Rotation matrices

We start o↵ with the standard definition of the rotations about the three prin-
ciple axes.

A rotation of radians about the x-axis is defined as

R

x

() =

2

4
1 0 0
0 cos � sin
0 sin cos

3

5

Similarly, a rotation of ✓ radians about the y-axis is defined as

R

y

(✓) =

2

4
cos ✓ 0 sin ✓

0 1 0
� sin ✓ 0 cos ✓

3

5

Finally, a rotation of � radians about the z-axis is defined as

R

z

(�) =

2

4
cos� � sin� 0
sin� cos� 0

0 0 1

3

5

The angles , ✓, and � are the Euler angles.

Generalized rotation matrices

A general rotation matrix can will have the form,

R =

2

4
R

11

R

12

R

13

R

21

R

22

R

23

R

31

R

32

R

33

3

5

1

Computing Euler angles from a rotation matrix

Gregory G. Slabaugh

Abstract

This document discusses a simple technique to find all possible Euler angles from
a rotation matrix. Determination of Euler angles is sometimes a necessary step
in computer graphics, vision, robotics, and kinematics. However, the solution
may or may not be obvious.

Rotation matrices

We start o↵ with the standard definition of the rotations about the three prin-
ciple axes.

A rotation of radians about the x-axis is defined as

R

x

() =

2

4
1 0 0
0 cos � sin
0 sin cos

3

5

Similarly, a rotation of ✓ radians about the y-axis is defined as

R

y

(✓) =

2

4
cos ✓ 0 sin ✓

0 1 0
� sin ✓ 0 cos ✓

3

5

Finally, a rotation of � radians about the z-axis is defined as

R

z

(�) =

2

4
cos� � sin� 0
sin� cos� 0

0 0 1

3

5

The angles , ✓, and � are the Euler angles.

Generalized rotation matrices

A general rotation matrix can will have the form,

R =

2

4
R

11

R

12

R

13

R

21

R

22

R

23

R

31

R

32

R

33

3

5

1

z, z’

x

y

x’

y’
φ

z

x,x’

y

z

x

y

ψ

θ

Example
• Φ=𝜋/2

7

Computing Euler angles from a rotation matrix

Gregory G. Slabaugh

Abstract

This document discusses a simple technique to find all possible Euler angles from
a rotation matrix. Determination of Euler angles is sometimes a necessary step
in computer graphics, vision, robotics, and kinematics. However, the solution
may or may not be obvious.

Rotation matrices

We start o↵ with the standard definition of the rotations about the three prin-
ciple axes.

A rotation of radians about the x-axis is defined as

R

x

() =

2

4
1 0 0
0 cos � sin
0 sin cos

3

5

Similarly, a rotation of ✓ radians about the y-axis is defined as

R

y

(✓) =

2

4
cos ✓ 0 sin ✓

0 1 0
� sin ✓ 0 cos ✓

3

5

Finally, a rotation of � radians about the z-axis is defined as

R

z

(�) =

2

4
cos� � sin� 0
sin� cos� 0

0 0 1

3

5

The angles , ✓, and � are the Euler angles.

Generalized rotation matrices

A general rotation matrix can will have the form,

R =

2

4
R

11

R

12

R

13

R

21

R

22

R

23

R

31

R

32

R

33

3

5

1

0 −1 0
1 0 0
0 0 1

Sequence of Rotations
• Represented by matrix product

• Note: not communicative (order matters!), not
unique
o Only 3 degree of freedom (DoF)

8

This matrix can be thought of a sequence of three rotations, one about each
principle axis. Since matrix multiplication does not commute, the order of the
axes which one rotates about will a↵ect the result. For this analysis, we will
rotate first about the x-axis, then the y-axis, and finally the z-axis. Such a
sequence of rotations can be represented as the matrix product,

R = R

z

(�)R
y

(✓)R
x

()

=

2

4
cos ✓ cos� sin sin ✓ cos�� cos sin� cos sin ✓ cos�+ sin sin�
cos ✓ sin� sin sin ✓ sin�+ cos cos� cos sin ✓ sin�� sin cos�
� sin ✓ sin cos ✓ cos cos ✓

3

5

Given a rotation matrix R, we can compute the Euler angles, , ✓, and �

by equating each element in R with the corresponding element in the matrix
product R

z

(�)R
y

(✓)R
x

(). This results in nine equations that can be used to
find the Euler angles.

Finding two possible angles for ✓

Starting with R

31

, we find
R

31

= � sin ✓.

This equation can be inverted to yield

✓ = � sin�1(R
31

). (1)

However, one must be careful in interpreting this equation. Since sin(⇡ � ✓) =
sin(✓), there are actually two distinct values (for R

31

6= ±1) of ✓ that satisfy
Equation 1. Therefore, both the values

✓

1

= � sin�1(R
31

)
✓

2

= ⇡ � ✓
1

= ⇡ + sin�1(R
31

)

are valid solutions. We will handle the special case of R

31

= ±1 later in this
report. So using the R

31

element of the rotation matrix, we are able to determine
two possible values for ✓.

Finding the corresponding angles of

To find the values for , we observe that

R

32

R

33

= tan().

We use this equation to solve for , as

 = atan2(R
32

, R

33

), (2)

2

Computing Euler angles from a rotation matrix

Gregory G. Slabaugh

Abstract

This document discusses a simple technique to find all possible Euler angles from
a rotation matrix. Determination of Euler angles is sometimes a necessary step
in computer graphics, vision, robotics, and kinematics. However, the solution
may or may not be obvious.

Rotation matrices

We start o↵ with the standard definition of the rotations about the three prin-
ciple axes.

A rotation of radians about the x-axis is defined as

R

x

() =

2

4
1 0 0
0 cos � sin
0 sin cos

3

5

Similarly, a rotation of ✓ radians about the y-axis is defined as

R

y

(✓) =

2

4
cos ✓ 0 sin ✓

0 1 0
� sin ✓ 0 cos ✓

3

5

Finally, a rotation of � radians about the z-axis is defined as

R

z

(�) =

2

4
cos� � sin� 0
sin� cos� 0

0 0 1

3

5

The angles , ✓, and � are the Euler angles.

Generalized rotation matrices

A general rotation matrix can will have the form,

R =

2

4
R

11

R

12

R

13

R

21

R

22

R

23

R

31

R

32

R

33

3

5

1[x’, y’, z’]’ = R*[x,y,z]’

Computing Euler Angles
• If R31≠ ±1

• Both (θ1,ψ1,φ1) and (θ2,ψ2,φ2) are valid solutions

9

This matrix can be thought of a sequence of three rotations, one about each
principle axis. Since matrix multiplication does not commute, the order of the
axes which one rotates about will a↵ect the result. For this analysis, we will
rotate first about the x-axis, then the y-axis, and finally the z-axis. Such a
sequence of rotations can be represented as the matrix product,

R = R

z

(�)R
y

(✓)R
x

()

=

2

4
cos ✓ cos� sin sin ✓ cos�� cos sin� cos sin ✓ cos�+ sin sin�
cos ✓ sin� sin sin ✓ sin�+ cos cos� cos sin ✓ sin�� sin cos�
� sin ✓ sin cos ✓ cos cos ✓

3

5

Given a rotation matrix R, we can compute the Euler angles, , ✓, and �

by equating each element in R with the corresponding element in the matrix
product R

z

(�)R
y

(✓)R
x

(). This results in nine equations that can be used to
find the Euler angles.

Finding two possible angles for ✓

Starting with R

31

, we find
R

31

= � sin ✓.

This equation can be inverted to yield

✓ = � sin�1(R
31

). (1)

However, one must be careful in interpreting this equation. Since sin(⇡ � ✓) =
sin(✓), there are actually two distinct values (for R

31

6= ±1) of ✓ that satisfy
Equation 1. Therefore, both the values

✓

1

= � sin�1(R
31

)
✓

2

= ⇡ � ✓
1

= ⇡ + sin�1(R
31

)

are valid solutions. We will handle the special case of R

31

= ±1 later in this
report. So using the R

31

element of the rotation matrix, we are able to determine
two possible values for ✓.

Finding the corresponding angles of

To find the values for , we observe that

R

32

R

33

= tan().

We use this equation to solve for , as

 = atan2(R
32

, R

33

), (2)

2

where atan2(y, x) is arc tangent of the two variables x and y. It is similar to
calculating the arc tangent of y/x, except that the signs of both arguments are
used to determine the quadrant of the result, which lies in the range [�⇡,⇡].
The function atan2 is available in many programming languages.

One must be careful in interpreting Equation 2. If cos(✓) > 0, then =
atan2(R

32

, R

33

). However, when cos(✓) < 0, = atan2(�R

32

,�R

33

). A simple
way to handle this is to use the equation

 = atan2
✓

R

32

cos ✓
,

R

33

cos ✓

◆
(3)

to compute .
Equation 3 is valid for all cases except when cos ✓ = 0. We will deal with this

special case later in this report. For each value of ✓, we compute a corresponding
value of using Equation 3, yielding

1

= atan2
✓

R

32

cos ✓
1

,

R

33

cos ✓
1

◆
(4)

2

= atan2
✓

R

32

cos ✓
2

,

R

33

cos ✓
2

◆
(5)

Finding the corresponding angles of �

A similar analysis holds for finding �. We observe that
R

21

R

11

= tan�.

We solve for � using the equation

� = atan2
✓

R

21

cos ✓
,

R

11

cos ✓

◆
(6)

Again, this equation is valid for all cases except when cos ✓ = 0. We will
deal with this special case later in this report. For each value of ✓, we compute
a corresponding value of � using Equation 6,

�

1

= atan2
✓

R

21

cos ✓
1

,

R

11

cos ✓
1

◆
(7)

�

2

= atan2
✓

R

21

cos ✓
2

,

R

11

cos ✓
2

◆
(8)

Two solutions if cos ✓ 6= 0

For the case of cos ✓ 6= 0, we now have two triplets of Euler angles that reproduce
the rotation matrix, namely

(
1

, ✓

1

,�

1

)
(

2

, ✓

2

,�

2

)

Both of these solutions will be valid.

3

where atan2(y, x) is arc tangent of the two variables x and y. It is similar to
calculating the arc tangent of y/x, except that the signs of both arguments are
used to determine the quadrant of the result, which lies in the range [�⇡,⇡].
The function atan2 is available in many programming languages.

One must be careful in interpreting Equation 2. If cos(✓) > 0, then =
atan2(R

32

, R

33

). However, when cos(✓) < 0, = atan2(�R

32

,�R

33

). A simple
way to handle this is to use the equation

 = atan2
✓

R

32

cos ✓
,

R

33

cos ✓

◆
(3)

to compute .
Equation 3 is valid for all cases except when cos ✓ = 0. We will deal with this

special case later in this report. For each value of ✓, we compute a corresponding
value of using Equation 3, yielding

1

= atan2
✓

R

32

cos ✓
1

,

R

33

cos ✓
1

◆
(4)

2

= atan2
✓

R

32

cos ✓
2

,

R

33

cos ✓
2

◆
(5)

Finding the corresponding angles of �

A similar analysis holds for finding �. We observe that
R

21

R

11

= tan�.

We solve for � using the equation

� = atan2
✓

R

21

cos ✓
,

R

11

cos ✓

◆
(6)

Again, this equation is valid for all cases except when cos ✓ = 0. We will
deal with this special case later in this report. For each value of ✓, we compute
a corresponding value of � using Equation 6,

�

1

= atan2
✓

R

21

cos ✓
1

,

R

11

cos ✓
1

◆
(7)

�

2

= atan2
✓

R

21

cos ✓
2

,

R

11

cos ✓
2

◆
(8)

Two solutions if cos ✓ 6= 0

For the case of cos ✓ 6= 0, we now have two triplets of Euler angles that reproduce
the rotation matrix, namely

(
1

, ✓

1

,�

1

)
(

2

, ✓

2

,�

2

)

Both of these solutions will be valid.

3

Loss of DoF in Euler Angles
• If R31= ±1, R11, R21, R32, R33 = 0

o e.g.,θ= π/2, sinθ = 1, cosθ=0

• Infinite # of solutions!

10

This matrix can be thought of a sequence of three rotations, one about each
principle axis. Since matrix multiplication does not commute, the order of the
axes which one rotates about will a↵ect the result. For this analysis, we will
rotate first about the x-axis, then the y-axis, and finally the z-axis. Such a
sequence of rotations can be represented as the matrix product,

R = R

z

(�)R
y

(✓)R
x

()

=

2

4
cos ✓ cos� sin sin ✓ cos�� cos sin� cos sin ✓ cos�+ sin sin�
cos ✓ sin� sin sin ✓ sin�+ cos cos� cos sin ✓ sin�� sin cos�
� sin ✓ sin cos ✓ cos cos ✓

3

5

Given a rotation matrix R, we can compute the Euler angles, , ✓, and �

by equating each element in R with the corresponding element in the matrix
product R

z

(�)R
y

(✓)R
x

(). This results in nine equations that can be used to
find the Euler angles.

Finding two possible angles for ✓

Starting with R

31

, we find
R

31

= � sin ✓.

This equation can be inverted to yield

✓ = � sin�1(R
31

). (1)

However, one must be careful in interpreting this equation. Since sin(⇡ � ✓) =
sin(✓), there are actually two distinct values (for R

31

6= ±1) of ✓ that satisfy
Equation 1. Therefore, both the values

✓

1

= � sin�1(R
31

)
✓

2

= ⇡ � ✓
1

= ⇡ + sin�1(R
31

)

are valid solutions. We will handle the special case of R

31

= ±1 later in this
report. So using the R

31

element of the rotation matrix, we are able to determine
two possible values for ✓.

Finding the corresponding angles of

To find the values for , we observe that

R

32

R

33

= tan().

We use this equation to solve for , as

 = atan2(R
32

, R

33

), (2)

2

Example

• What is the relation between (a,b,c) and (a’,b’, c’)
• Rotation of the coordination system: rotate π/2 around z and

then rotate π around x
• Equivalently, the vector rotates -π/2 around z and then rotate
π around x

11

z

x

y
z’

y’

x’

0 1 0
-‐‑1 0 0
0 0 1

0 1 0
1 0 0
0 0 -‐‑1

Rz(-‐‑π/2)

(a,b,c)

(a’,b’,c’)

1 0 0
0 -‐‑1 0
0 0 -‐‑1

Rx(π)

Example (cont’d)

• What is the relation between (a,b,c) and (a’,b’, c’)?
• (1, 0, 0) à (0, 1, 0); (0, 1, 0) à (1, 0, 0); (0, 0, 1) à (0, 0, -1);

12

z

x

y
z’

y’

x’

0 1 0
1 0 0
0 0 -‐‑1

(x,y,z)

(x’,y’,z’)

a’
b’
c’

a
b
c

0 1 0
1 0 0
0 0 -‐‑1

a
b
c

a’
b’
c’

-‐‑1

Axis/angle Representation
• A rotation can be represented by a rotation axis

and an angle θ
• Rotation matrix known as Rodriguez’s formula

where

how many DoF?

13

2.1 Geometric primitives and transformations 41

v

vŏ

n̂

v×

v║ v××
uŏ

u

θ

Figure 2.5 Rotation around an axis n̂ by an angle ✓.

2.1.4 3D rotations

The biggest difference between 2D and 3D coordinate transformations is that the parameter-
ization of the 3D rotation matrix R is not as straightforward but several possibilities exist.

Euler angles

A rotation matrix can be formed as the product of three rotations around three cardinal axes,
e.g., x, y, and z, or x, y, and x. This is generally a bad idea, as the result depends on the
order in which the transforms are applied. What is worse, it is not always possible to move
smoothly in the parameter space, i.e., sometimes one or more of the Euler angles change
dramatically in response to a small change in rotation.1 For these reasons, we do not even
give the formula for Euler angles in this book—interested readers can look in other textbooks
or technical reports (Faugeras 1993; Diebel 2006). Note that, in some applications, if the
rotations are known to be a set of uni-axial transforms, they can always be represented using
an explicit set of rigid transformations.

Axis/angle (exponential twist)

A rotation can be represented by a rotation axis n̂ and an angle ✓, or equivalently by a 3D
vector ! = ✓n̂. Figure 2.5 shows how we can compute the equivalent rotation. First, we
project the vector v onto the axis n̂ to obtain

vk = n̂(n̂ · v) = (n̂n̂T)v, (2.29)

which is the component of v that is not affected by the rotation. Next, we compute the
perpendicular residual of v from n̂,

v? = v � vk = (I � n̂n̂T)v. (2.30)

1 In robotics, this is sometimes referred to as gimbal lock.

42 Computer Vision: Algorithms and Applications (September 3, 2010 draft)

We can rotate this vector by 90� using the cross product,

v⇥ = n̂⇥ v = [n̂]⇥v, (2.31)

where [n̂]⇥ is the matrix form of the cross product operator with the vector n̂ = (n̂x, n̂y, n̂z),

[n̂]⇥ =

2

64
0 �n̂z n̂y

n̂z 0 �n̂x

�n̂y n̂x 0

3

75 . (2.32)

Note that rotating this vector by another 90� is equivalent to taking the cross product again,

v⇥⇥ = n̂⇥ v⇥ = [n̂]2⇥v = �v?,

and hence
vk = v � v? = v + v⇥⇥ = (I + [n̂]2⇥)v.

We can now compute the in-plane component of the rotated vector u as

u? = cos ✓v? + sin ✓v⇥ = (sin ✓[n̂]⇥ � cos ✓[n̂]2⇥)v.

Putting all these terms together, we obtain the final rotated vector as

u = u? + vk = (I + sin ✓[n̂]⇥ + (1� cos ✓)[n̂]2⇥)v. (2.33)

We can therefore write the rotation matrix corresponding to a rotation by ✓ around an axis n̂

as
R(n̂, ✓) = I + sin ✓[n̂]⇥ + (1� cos ✓)[n̂]2⇥, (2.34)

which is known as Rodriguez’s formula (Ayache 1989).
The product of the axis n̂ and angle ✓, ! = ✓n̂ = (!x, !y, !z), is a minimal represen-

tation for a 3D rotation. Rotations through common angles such as multiples of 90� can be
represented exactly (and converted to exact matrices) if ✓ is stored in degrees. Unfortunately,
this representation is not unique, since we can always add a multiple of 360� (2⇡ radians) to
✓ and get the same rotation matrix. As well, (n̂, ✓) and (�n̂,�✓) represent the same rotation.

However, for small rotations (e.g., corrections to rotations), this is an excellent choice.
In particular, for small (infinitesimal or instantaneous) rotations and ✓ expressed in radians,
Rodriguez’s formula simplifies to

R(!) ⇡ I + sin ✓[n̂]⇥ ⇡ I + [✓n̂]⇥ =

2

64
1 �!z !y

!z 1 �!x

�!y !x 1

3

75 , (2.35)

42 Computer Vision: Algorithms and Applications (September 3, 2010 draft)

We can rotate this vector by 90� using the cross product,

v⇥ = n̂⇥ v = [n̂]⇥v, (2.31)

where [n̂]⇥ is the matrix form of the cross product operator with the vector n̂ = (n̂x, n̂y, n̂z),

[n̂]⇥ =

2

64
0 �n̂z n̂y

n̂z 0 �n̂x

�n̂y n̂x 0

3

75 . (2.32)

Note that rotating this vector by another 90� is equivalent to taking the cross product again,

v⇥⇥ = n̂⇥ v⇥ = [n̂]2⇥v = �v?,

and hence
vk = v � v? = v + v⇥⇥ = (I + [n̂]2⇥)v.

We can now compute the in-plane component of the rotated vector u as

u? = cos ✓v? + sin ✓v⇥ = (sin ✓[n̂]⇥ � cos ✓[n̂]2⇥)v.

Putting all these terms together, we obtain the final rotated vector as

u = u? + vk = (I + sin ✓[n̂]⇥ + (1� cos ✓)[n̂]2⇥)v. (2.33)

We can therefore write the rotation matrix corresponding to a rotation by ✓ around an axis n̂

as
R(n̂, ✓) = I + sin ✓[n̂]⇥ + (1� cos ✓)[n̂]2⇥, (2.34)

which is known as Rodriguez’s formula (Ayache 1989).
The product of the axis n̂ and angle ✓, ! = ✓n̂ = (!x, !y, !z), is a minimal represen-

tation for a 3D rotation. Rotations through common angles such as multiples of 90� can be
represented exactly (and converted to exact matrices) if ✓ is stored in degrees. Unfortunately,
this representation is not unique, since we can always add a multiple of 360� (2⇡ radians) to
✓ and get the same rotation matrix. As well, (n̂, ✓) and (�n̂,�✓) represent the same rotation.

However, for small rotations (e.g., corrections to rotations), this is an excellent choice.
In particular, for small (infinitesimal or instantaneous) rotations and ✓ expressed in radians,
Rodriguez’s formula simplifies to

R(!) ⇡ I + sin ✓[n̂]⇥ ⇡ I + [✓n̂]⇥ =

2

64
1 �!z !y

!z 1 �!x

�!y !x 1

3

75 , (2.35)

n̂ = [n̂x, n̂y, n̂z]

Determining Device Attitude (I)
• Now that we know how to

represent rotation, next step is
how to infer device attitude
(e.g., the rotation matrix that
transform a vector from the
device frame to the world’s
[global] coordinate system)

• This is non-trivial due to
magnetic interference from
the environment
o We do not always know “true north”

14

90 x CHAPTER 5 OVERVIEW OF PHYSICAL SENSORS

The reason for deprecation appears to be that it is an internal system sensor and has no general-
purpose use in apps.

Thus far, this chapter has discussed the various concepts surrounding sensors and the Android platform,
as well as enumerated the sensors that may be available on a given Android device. The remainder of the
chapter will be dedicated to implementing application code that makes use of the sensor data.

SENSING DEVICE ORIENTATION AND MOVEMENT
This section goes into depth describing Android inertial sensors. Inertial is just a term that refers
to motion measurement. These are different than the sensors in the previous section in that they
describe what the device is doing in its environment as opposed to describing the environment itself.

Coordinate Systems
When using orientation and movement sensors in Android, two coordinate systems are defi ned: the
global coordinate system xE, yE, zE, and a device coordinate system x, y, z. Both coordinate systems
are illustrated in Figure 5-4. This fi gure shows the device positioned at the equator of Earth, with
some tilt with respect to Earth. All coordinate systems for three-axis sensors obey these coordinate
systems, except Sensor.TYPE_ORIENTATION, which is deprecated.

Source: http://developer.android.com/reference/

android/hardware/SensorEvent.html

North magnetic pole

Earth

xE

x
z

zE

y

Global coordinate system

Device coordinate system

yE

South magnetic pole

FIGURE 5-4: Android coordinate systems

c05.indd 90c05.indd 90 5/10/2012 2:01:56 PM5/10/2012 2:01:56 PM

Determining Device Attitude (II)
• Given <accx, accy, accz> and

<magx, magy, magz> from the
accelerometer and the
magnetometer (in device
coordinate)

• Assume 1) stationary device, 2) no
magnetic interference, 3) not in
north pole

• How to determine the rotation
matrix?

• If the device coordinates aligns with
the global coordinates what the
readings should be?
o <0, 0, g>, <0, magy, 0>

15

90 x CHAPTER 5 OVERVIEW OF PHYSICAL SENSORS

The reason for deprecation appears to be that it is an internal system sensor and has no general-
purpose use in apps.

Thus far, this chapter has discussed the various concepts surrounding sensors and the Android platform,
as well as enumerated the sensors that may be available on a given Android device. The remainder of the
chapter will be dedicated to implementing application code that makes use of the sensor data.

SENSING DEVICE ORIENTATION AND MOVEMENT
This section goes into depth describing Android inertial sensors. Inertial is just a term that refers
to motion measurement. These are different than the sensors in the previous section in that they
describe what the device is doing in its environment as opposed to describing the environment itself.

Coordinate Systems
When using orientation and movement sensors in Android, two coordinate systems are defi ned: the
global coordinate system xE, yE, zE, and a device coordinate system x, y, z. Both coordinate systems
are illustrated in Figure 5-4. This fi gure shows the device positioned at the equator of Earth, with
some tilt with respect to Earth. All coordinate systems for three-axis sensors obey these coordinate
systems, except Sensor.TYPE_ORIENTATION, which is deprecated.

Source: http://developer.android.com/reference/

android/hardware/SensorEvent.html

North magnetic pole

Earth

xE

x
z

zE

y

Global coordinate system

Device coordinate system

yE

South magnetic pole

FIGURE 5-4: Android coordinate systems

c05.indd 90c05.indd 90 5/10/2012 2:01:56 PM5/10/2012 2:01:56 PM

Determining Rotation Matrix

16

A = <accx, accy, accz>
E = <magx, magy, magz>

H = ExA

Normalize A, H àA’, H’;
M = A’xH’

R =
h1’ h2’ h3’
m1 m2 m3

a1’ a2’ a3’

y

z

x

World coordinate

E

A

H

M

transpose R’ = R-‐‑1

Android Specifics
• Device frame depends on the default orientation

o Phone – Portrait
o Table – landscape
o Device coordinate frame differs from screen coordinate frame:

getRotation() and remapCoordinateSystem()

• getOrientation (do not confuse with rotation): return
the azimuth (Z), pitch (X), and yaw (Y) wrt inverted
world coordinate frame

17

y

z

x

World coordinate

y
z

x

Inverted world coordinate for orientation
(rotate 𝜋)

R’ =
-‐‑h1’ -‐‑h2’ -‐‑h3’
m1 m2 m3

-‐‑a1’ -‐‑a2’ -‐‑a3’

Implementation Notes
• The above rotation matrix R allows transformation

from device coordinates to world coordinates
o R-1 is needed for the opposite and the transpose R’ = R-1

• For stationary devices, may average or apply a low
pass filter to get the average acceleration and
magnetometer readings (more later)

• Recall the 3 conditions 1) stationary device, 2) no
magnetic interference, 3) not in north pole
o Stationarity can be reasonably inferred from the magnitude of

acceleration
o Near north pole à GPS or magnetometer readings
o No magnetic interferences difficult to guarantee

18

Step Counts
• Nowadays most wearable can do step counts –

some are more accurate than the others
o Why? How?

• Human gait cycle
o Stance phase: when one foot touch the ground
o Swing phase: the foot leaves the ground
o [in jogging/running, both feet may be off the ground]

19

More Terminologies
• Stride: two consecutive heel strike of the same foot
• Stride length: distance traveled in one stride
• Step: successive heel strikes of opposite feet
• Step length: distance between heel strike of one

limb and heel strike of the other limb
• Step width: distance we keep our feet apart when

we walk (2 – 4 inches)
• Cadence: Walking speed, or number of steps taken

per minute

20

Step Counting Using
Accelerometer Data

• Acceleration and
deceleration easily
identifiable along all
axises

• Noisy

21

a)

0 500 1000 1500 2000 2500 3000 3500 4000
−50

0

50

a x

Acceleration (m/s2)

0 500 1000 1500 2000 2500 3000 3500 4000
−50

0

50

a y

0 500 1000 1500 2000 2500 3000 3500 4000
−50

0

50

a z

samples

b)

0 500 1000 1500 2000 2500 3000 3500 4000
−5

0

5

w
x

Angular rate (rad/s)

0 500 1000 1500 2000 2500 3000 3500 4000
−10

0

10

w
y

0 500 1000 1500 2000 2500 3000 3500 4000
−5

0

5

w
z

samples

c)

0 500 1000 1500 2000 2500 3000 3500 4000
−1

0

1

m
x

Magnetic field (a.u.)

0 500 1000 1500 2000 2500 3000 3500 4000
−1

0

1

m
y

0 500 1000 1500 2000 2500 3000 3500 4000
−1

0

1

m
z

samples

Fig. 3. Raw sensor readings for a test of 30 meters walking in one direction
and returning back after a 180 degree turn: a) Acceleration, b) Gyroscope,
and c) Magnetometer readings.

50 100 150 200 250 300 350 400

0

5

10

15

20

25

30

35

40

45

50

m
/s

2

Step detection with Acceleration readings

samples

ai

ai
σai

B1

B2

Step

Fig. 4. Steps detection using accelerations. The detected steps are marked
with red circles. Additional line plots represent intermediate processing values
as explained in equations 1 to 3.

1) Compute the magnitude of the acceleration, ai, for every
sample i:

ai =
√

a2
xi

+ a2
yi

+ a2
zi

. (1)

2) Compute the local acceleration variance, to highlight the
foot activity and to remove gravity:

σ2

ai
=

1

2w + 1

i+w∑

j=i−w

(aj − aj)
2, (2)

where aj is a local mean acceleration value, computed
by this expression: aj = 1

2w+1

∑i+w
q=i−w aq , and w de-

fines the size of the averaging window (w=15 samples).
3) Thresholding. A first threshold is applied to detect the

swing phase with high accelerations (T1=2 m/s2).

B1i =

{
T1 σai > T1
0 otherwise . (3)

A second threshold (T2=1 m/s2) is used to detect the
stance phase (B2i = T2, if σai < T2).

4) A step is detected in sample i when a swing phase ends
and stance phase starts. These two conditions must be
satisfied: 1) a transition from high to low acceleration
(B1i−1 < B1i), and 2) there must be at least one low
acceleration detection in a window of size w ahead of
current sample i, i.e.: max(B2i:i+w) = T2.

Figure 4 shows details of this step detection process.

D. Step detection using gyroscopes and magnetometers
We implemented a step detection algorithm based on angu-

lar rate readings [2]. It initially computes the total angular rate
magnitude using the three individual gyroscopic sensors, then
it performs a threshold at 1 rad/s, after that it applies a median
filter to remove outliers, and finally it detects transitions to a
motionless state.

WISP 2009 • 6th IEEE International Symposium on Intelligent Signal Processing • 26–28 August, 2009 Budapest, Hungary

39

Turn
A.R. Jime ́nez, F. Seco, C. Prieto and J. Guevara, A Comparison of
Pedestrian Dead-‐‑Reckoning Algorithms using a Low-‐‑Cost MEMS IMU

Algorithmic Sketch

22

Compute linear
acceleration

Compute
magnitude

Apply low-‐‑pass
filter (LPF)

Square, LPF

Find Peaks

𝑎𝑐𝑐 = 𝑎𝑐𝑐5* + 𝑎𝑐𝑐6* + 𝑎𝑐𝑐7*

Remove the gravity component

Peak to peak à one step

Optional

Low-‐‑pass Filter (LPF)
• A low-pass filter is a filter that passes signals with a frequency

lower than a certain cutoff frequency fc and attenuates
signals with frequencies higher than the cutoff frequency

23

Must not alter
the desired signal! Sharp Transition

in order to attenuate
the interference

Affect selectivity

Two Types of Digital LPFs
• Finite impulse response filter (FIR)

o 𝑦8 = ∑ 𝑎:𝑥8;:<
:=>

o Transfer function 𝐻 𝑧 = ∑ 𝑎:𝑧;:<
:=>

o No feedback
o Roughly linear phase

• Infinite impulse response filter (IIR)
o ∑ 𝑎@𝑦8;@

A
@=> = ∑ 𝑏:𝑥8;:<

:=>

o Transfer function 𝐻 𝑧 = ∑ CD7EDF
DGH

∑ IJ7EJ
K
JGH

o With feedback
o Can match a particular freq response with relatively fewer parameters

than FIR (more computationally efficient)

24

Commonly Used LPFs
• Exponential moving average (EMA)

o y(n) = (1-a)x(n)+ay(n-1)
o Bigger a à more history; smaller a à more current
o Approximately, a ≈ exp(-2𝜋fc/fs), fc cut-off freq, fs sampling freq

25

Commonly Used LPFs
• Butterworth filter

o Can use Matlab [B, A] = butter(N, Wn, 'low')

26

Cut-‐‑off freq
Order

numerator

denumerator

0.0 < Wn < 1.0, with 1.0
corresponding to half the
sample rate.

Frequency (Hz)

Cut-‐‑off Frequency?
• Informed guess

o Step frequency 1 – 3 Hz for walking

• Frequency domain analysis (Libby’09)
o Perform DFT and find the frequency fc, where the x% of total energy fall

below fc

27

219

OBERG et al .

Basic Gait Parameters

Table 5a.
Step frequency . Normal gait . Men.

Age

N

Mean S.D. C .V . 95 07o C.I . 95 07o P .I.
years

steps/s steps/s steps/s steps/s

10-14

12

2.14 0 .19 0 .09 2 .02-2 .26 1 .72-2 .56

15-19

15

2.02 0 .20 0 .10 1 .91-2 .13 1 .58-2 .46

20-29

15

1 .98 0 .13 0 .07 1 .91-2 .05 1 .71-2 .25

30-39

15

2 .00 0 .14 0 .07 1 .92-2 .08 1 .71-2 .29

40-49

15

2 .01 0 .11 0 .05 1 .95-2 .07 1 .78-2 .24

50-59

15

1 .96 0 .18 0 .09 1 .86-2 .06 1 .58-2 .34

60-69

15

1 .95 0 .14 0 .07 1 .87-2 .03 1 .66-2 .24

70-79

14

1 .91 0 .14 0 .07 1 .83-1 .99 1 .62-2 .20

Table 5b.
Step frequency . Normal gait . Women.

Age N

Mean S.D. C.V . 95 07o C.I . 95 07o P .I.
years steps/s steps/s steps/s steps/s

10-14 12

1 .97 0 .17 0 .09 1 .86-2 .08 1 .60-2 .34

15-19 15

2 .09 0 .18 0 .09 1 .99-2 .19 1 .69-2 .49

20-29 15

2 .08 0 .15 0 .07 2 .00-2 .16 1 .77-2 .40

30-39 15

2 .13 0 .17 0 .08 2 .04-2 .22 1 .77-2 .49

40-49 15

2 .16 0 .16 0 .07 2 .07-2 .25 1 .82-2 .50

50-59 15

2 .03 0 .13 0 .06 1 .96-2 .10 1 .76-2 .30

60-69 15

2.06 0 .18 0 .09 1 .96-2 .16 1 .68-2 .44

70-79 15

2 .03 0 .14 0 .07 1 .95-2 .11 1 .74-2 .32

N = number of subjects

C .I . = confidence interval
S .D . = standard deviation

P .I . = prediction interval
C .V . = coefficient of variation

219

OBERG et al .

Basic Gait Parameters

Table 5a.
Step frequency . Normal gait . Men.

Age

N

Mean S.D. C .V . 95 07o C.I . 95 07o P .I.
years

steps/s steps/s steps/s steps/s

10-14

12

2.14 0 .19 0 .09 2 .02-2 .26 1 .72-2 .56

15-19

15

2.02 0 .20 0 .10 1 .91-2 .13 1 .58-2 .46

20-29

15

1 .98 0 .13 0 .07 1 .91-2 .05 1 .71-2 .25

30-39

15

2 .00 0 .14 0 .07 1 .92-2 .08 1 .71-2 .29

40-49

15

2 .01 0 .11 0 .05 1 .95-2 .07 1 .78-2 .24

50-59

15

1 .96 0 .18 0 .09 1 .86-2 .06 1 .58-2 .34

60-69

15

1 .95 0 .14 0 .07 1 .87-2 .03 1 .66-2 .24

70-79

14

1 .91 0 .14 0 .07 1 .83-1 .99 1 .62-2 .20

Table 5b.
Step frequency . Normal gait . Women.

Age N

Mean S.D. C.V . 95 07o C.I . 95 07o P .I.
years steps/s steps/s steps/s steps/s

10-14 12

1 .97 0 .17 0 .09 1 .86-2 .08 1 .60-2 .34

15-19 15

2 .09 0 .18 0 .09 1 .99-2 .19 1 .69-2 .49

20-29 15

2 .08 0 .15 0 .07 2 .00-2 .16 1 .77-2 .40

30-39 15

2 .13 0 .17 0 .08 2 .04-2 .22 1 .77-2 .49

40-49 15

2 .16 0 .16 0 .07 2 .07-2 .25 1 .82-2 .50

50-59 15

2 .03 0 .13 0 .06 1 .96-2 .10 1 .76-2 .30

60-69 15

2.06 0 .18 0 .09 1 .96-2 .16 1 .68-2 .44

70-79 15

2 .03 0 .14 0 .07 1 .95-2 .11 1 .74-2 .32

N = number of subjects

C .I . = confidence interval
S .D . = standard deviation

P .I . = prediction interval
C .V . = coefficient of variation

Linear Acceleration
• Goal: to remove the (constant) gravity component

from acceleration measurements due to motion
• Idea A: gravity is constant

o apply a high-pass filter
o Or, apply a low-pass filter and then subtract the resulting signal from the

raw signal
o Cutoff frequency?

• 0.1Hz would be reasonable for walking. At 50Hz sampling frequency,
this is equivalent to a weight a = exp(-2𝜋fc/fs) = 0.9875

28

Accx, Accy,
Accz

Component-‐‑
wise
LPF

+ -‐‑

Linear Acc

Linear Acceleration (Cont’d)
• Idea B:

o Determine the tilt angle
o Subtract the gravity components
o A rather complex method but it demonstrates how to use gyro to

determine device orientation changes during motion

• Recall Gyro measures Corilios force due to rotation,
or angular velocity
o In the device frame
o < 𝜔x(t), 𝜔y(t), 𝜔z(t)> represents the angular velocity around x, y, z axis at

time t
o Then, the angular changes are Δ𝑥 = 𝜔5 𝑡 𝑑𝑡, Δ𝑦 = 𝜔6 𝑡 𝑑𝑡, Δ𝑧 = 𝜔7 𝑡 𝑑𝑡

o Δ = ∆5* + ∆6* + ∆7*	 , Δ𝑥S = Δ𝑥/Δ, Δ𝑦= Δ𝑦/Δ, Δ𝑧S = Δ𝑧/Δ,

29

Linear Acceleration (Cont’d)
• Derive rotation matrix
• If initial orientation is known à new orientation

o Can optionally combine the orientation from gyro and the orientation estimated from
accelerometer and compass (see below)

• Finally, given the orientation, we can subtract the gravity from
accelerometer data

30
http://www.codeproject.com/Articles/729759/Android-‐‑Sensor-‐‑Fusion-‐‑Tutorial

LPF

HPF

Complimentary filter for device orientation

Complementary Filters

31

Summary

32

Acc Compass Gyro

Stationary
Device

orientation

Moving
Device

orientation
Step countsLinear

Acceleration

Further Reading
• Greg Milette, Adam Stroud, "Professional Android

Sensor Programming", 2012
• Gregory G. Slabaugh, “Computing Euler angles

from a rotation matrix”
• A.R. Jime	 ́nez, F. Seco, C. Prieto and J. Guevara, A

Comparison of Pedestrian Dead-Reckoning
Algorithms using a Low-Cost MEMS IMU

33

