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Sensor  &  Sensor  Data  
Processing

Part II Inertial Measurement Units (IMU)
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IMUs
• Includes

o Accelerometer measures acceleration
o Gyro measures Corilios force due to 

rotation, or angular velocity 
o Magnetometer reports the magnetic field
o All in <x, y, z>

• Microelectromechanical
systems (MEMS) sensors

• Single chip solution: 9-DOF IMU 
sensors available in the market
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http://electroiq.com/blog/2010/11/introduction-‐‑to-‐‑mems-‐‑
gyroscopes/

An  Illustration  of  Hall  Effect  
for  Magnetometer  (from  
Wikipedia)

An  Illustration  of  Coriolis
Effect  for  Gyro



Device  Attitude/Pose
• Global coordinate system 

xE, yE, zE, and 
• A device coordinate 

system x, y, z
• Need to know the rotation

from the device 
coordinate system to the 
global coordinate system

• First, how to represent 
rotation?
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90 x CHAPTER 5  OVERVIEW OF PHYSICAL SENSORS

The reason for deprecation appears to be that it is an internal system sensor and has no general-
purpose use in apps.

Thus far, this chapter has discussed the various concepts surrounding sensors and the Android platform, 
as well as enumerated the sensors that may be available on a given Android device. The remainder of the 
chapter will be dedicated to implementing application code that makes use of the sensor data.

SENSING DEVICE ORIENTATION AND MOVEMENT
This section goes into depth describing Android inertial sensors. Inertial is just a term that refers 
to motion measurement. These are different than the sensors in the previous section in that they 
describe what the device is doing in its environment as opposed to describing the environment itself.

Coordinate Systems
When using orientation and movement sensors in Android, two coordinate systems are defi ned: the 
global coordinate system xE, yE, zE, and a device coordinate system x, y, z. Both coordinate systems 
are illustrated in Figure 5-4. This fi gure shows the device positioned at the equator of Earth, with 
some tilt with respect to Earth. All coordinate systems for three-axis sensors obey these coordinate 
systems, except Sensor.TYPE_ORIENTATION, which is deprecated. 

Source: http://developer.android.com/reference/

android/hardware/SensorEvent.html
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FIGURE 5-4: Android coordinate systems
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Review:  Vector  Product
• A = [x1, y1, z1], B = [x2, y2, z2]
• Dot product A�B = x1x2+y1y2+z1z2

• Cross product A x B = 
[y1z2 – z1y2, z1x2 – x1z2, x1y2 – y1x2]
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(𝑥#𝑖 + 𝑦#𝑗+𝑧#𝑘)x(𝑥*𝑖 + 𝑦*𝑗+𝑧*𝑘)
= 𝑦#𝑧* − 𝑧#𝑦* 𝑖 + (z1x2  –  x1z2)𝑗+ (𝑥#𝑦*-‐‑𝑦#𝑥*)𝑘
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Euler  Angles  and  Rotation  Matrices
• A rotation of φ radians about the z-

axis (yaw/azimuth)

• A rotation of ψ radians about the x-
axis (roll)

• A rotation of θ radians about the y-
axis (pitch)
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Computing Euler angles from a rotation matrix

Gregory G. Slabaugh

Abstract

This document discusses a simple technique to find all possible Euler angles from
a rotation matrix. Determination of Euler angles is sometimes a necessary step
in computer graphics, vision, robotics, and kinematics. However, the solution
may or may not be obvious.

Rotation matrices

We start o↵ with the standard definition of the rotations about the three prin-
ciple axes.

A rotation of  radians about the x-axis is defined as

R

x

( ) =

2

4
1 0 0
0 cos � sin 
0 sin cos 

3

5

Similarly, a rotation of ✓ radians about the y-axis is defined as

R

y

(✓) =

2

4
cos ✓ 0 sin ✓

0 1 0
� sin ✓ 0 cos ✓

3

5

Finally, a rotation of � radians about the z-axis is defined as

R

z

(�) =

2

4
cos� � sin� 0
sin� cos� 0

0 0 1

3

5

The angles  , ✓, and � are the Euler angles.

Generalized rotation matrices

A general rotation matrix can will have the form,

R =

2

4
R
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12
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13
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21
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23
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31
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32
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Example
• Φ=𝜋/2

7

Computing Euler angles from a rotation matrix

Gregory G. Slabaugh

Abstract

This document discusses a simple technique to find all possible Euler angles from
a rotation matrix. Determination of Euler angles is sometimes a necessary step
in computer graphics, vision, robotics, and kinematics. However, the solution
may or may not be obvious.

Rotation matrices

We start o↵ with the standard definition of the rotations about the three prin-
ciple axes.

A rotation of  radians about the x-axis is defined as

R

x

( ) =

2

4
1 0 0
0 cos � sin 
0 sin cos 

3

5

Similarly, a rotation of ✓ radians about the y-axis is defined as

R

y

(✓) =

2

4
cos ✓ 0 sin ✓

0 1 0
� sin ✓ 0 cos ✓

3

5

Finally, a rotation of � radians about the z-axis is defined as

R

z

(�) =

2

4
cos� � sin� 0
sin� cos� 0

0 0 1

3

5

The angles  , ✓, and � are the Euler angles.

Generalized rotation matrices

A general rotation matrix can will have the form,

R =

2

4
R

11

R

12

R

13

R

21

R

22

R

23

R

31

R

32

R

33

3

5

1

0 −1 0
1 0 0
0 0 1



Sequence  of  Rotations
• Represented by matrix product

• Note: not communicative (order matters!), not 
unique
o Only 3 degree of freedom (DoF)
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This matrix can be thought of a sequence of three rotations, one about each
principle axis. Since matrix multiplication does not commute, the order of the
axes which one rotates about will a↵ect the result. For this analysis, we will
rotate first about the x-axis, then the y-axis, and finally the z-axis. Such a
sequence of rotations can be represented as the matrix product,

R = R

z

(�)R
y

(✓)R
x

( )

=

2

4
cos ✓ cos� sin sin ✓ cos�� cos sin� cos sin ✓ cos�+ sin sin�
cos ✓ sin� sin sin ✓ sin�+ cos cos� cos sin ✓ sin�� sin cos�
� sin ✓ sin cos ✓ cos cos ✓

3

5

Given a rotation matrix R, we can compute the Euler angles,  , ✓, and �

by equating each element in R with the corresponding element in the matrix
product R

z

(�)R
y

(✓)R
x

( ). This results in nine equations that can be used to
find the Euler angles.

Finding two possible angles for ✓

Starting with R

31

, we find
R

31

= � sin ✓.

This equation can be inverted to yield

✓ = � sin�1(R
31

). (1)

However, one must be careful in interpreting this equation. Since sin(⇡ � ✓) =
sin(✓), there are actually two distinct values (for R

31

6= ±1) of ✓ that satisfy
Equation 1. Therefore, both the values

✓

1

= � sin�1(R
31

)
✓

2

= ⇡ � ✓
1

= ⇡ + sin�1(R
31

)

are valid solutions. We will handle the special case of R

31

= ±1 later in this
report. So using the R

31

element of the rotation matrix, we are able to determine
two possible values for ✓.

Finding the corresponding angles of  

To find the values for  , we observe that

R

32

R

33

= tan( ).

We use this equation to solve for  , as

 = atan2(R
32

, R

33

), (2)
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Computing  Euler  Angles
• If R31≠ ±1

• Both (θ1,ψ1,φ1) and (θ2,ψ2,φ2) are valid solutions
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where atan2(y, x) is arc tangent of the two variables x and y. It is similar to
calculating the arc tangent of y/x, except that the signs of both arguments are
used to determine the quadrant of the result, which lies in the range [�⇡,⇡].
The function atan2 is available in many programming languages.

One must be careful in interpreting Equation 2. If cos(✓) > 0, then  =
atan2(R

32

, R

33

). However, when cos(✓) < 0,  = atan2(�R

32

,�R

33

). A simple
way to handle this is to use the equation

 = atan2
✓

R

32

cos ✓
,

R

33

cos ✓

◆
(3)

to compute  .
Equation 3 is valid for all cases except when cos ✓ = 0. We will deal with this

special case later in this report. For each value of ✓, we compute a corresponding
value of  using Equation 3, yielding

 

1

= atan2
✓

R
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cos ✓
1

,

R
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1

◆
(4)

 

2
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R
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Finding the corresponding angles of �

A similar analysis holds for finding �. We observe that
R

21

R

11

= tan�.

We solve for � using the equation

� = atan2
✓

R

21

cos ✓
,

R

11

cos ✓

◆
(6)

Again, this equation is valid for all cases except when cos ✓ = 0. We will
deal with this special case later in this report. For each value of ✓, we compute
a corresponding value of � using Equation 6,

�

1

= atan2
✓

R
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cos ✓
1

,

R
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cos ✓
1

◆
(7)

�

2

= atan2
✓

R
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cos ✓
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◆
(8)

Two solutions if cos ✓ 6= 0

For the case of cos ✓ 6= 0, we now have two triplets of Euler angles that reproduce
the rotation matrix, namely

( 
1

, ✓

1

,�

1

)
( 

2

, ✓

2

,�

2

)

Both of these solutions will be valid.
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Loss  of  DoF in  Euler  Angles
• If R31= ±1, R11, R21, R32, R33 = 0

o e.g.,θ= π/2, sinθ = 1, cosθ=0

• Infinite # of solutions!
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Example

• What is the relation between (a,b,c) and (a’,b’, c’)
• Rotation of the coordination system: rotate π/2 around z and 

then rotate π around x
• Equivalently, the vector rotates -π/2 around z and then rotate 
π around x
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z

x

y
z’

y’

x’

0  1    0
-‐‑1    0    0
0    0    1

0    1    0
1    0    0
0    0  -‐‑1

Rz(-‐‑π/2  )

(a,b,c)

(a’,b’,c’)

1    0    0
0  -‐‑1    0
0    0  -‐‑1

Rx(π)



Example  (cont’d)

• What is the relation between (a,b,c) and (a’,b’, c’)?
• (1, 0, 0) à (0, 1, 0); (0, 1, 0) à (1, 0, 0); (0, 0, 1) à (0, 0, -1); 
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z

x

y
z’

y’

x’

0    1    0
1    0    0
0    0  -‐‑1

(x,y,z)

(x’,y’,z’)

a’    
b’    
c’

a
b    
c

0    1    0
1    0    0
0    0  -‐‑1

a
b    
c

a’    
b’    
c’

-‐‑1



Axis/angle  Representation
• A rotation can be represented by a rotation axis 

and an angle θ
• Rotation matrix known as Rodriguez’s formula

where 

how many DoF?
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2.1 Geometric primitives and transformations 41

v

vŏ

n̂

v×

v║ v××
uŏ

u

θ

Figure 2.5 Rotation around an axis n̂ by an angle ✓.

2.1.4 3D rotations

The biggest difference between 2D and 3D coordinate transformations is that the parameter-
ization of the 3D rotation matrix R is not as straightforward but several possibilities exist.

Euler angles

A rotation matrix can be formed as the product of three rotations around three cardinal axes,
e.g., x, y, and z, or x, y, and x. This is generally a bad idea, as the result depends on the
order in which the transforms are applied. What is worse, it is not always possible to move
smoothly in the parameter space, i.e., sometimes one or more of the Euler angles change
dramatically in response to a small change in rotation.1 For these reasons, we do not even
give the formula for Euler angles in this book—interested readers can look in other textbooks
or technical reports (Faugeras 1993; Diebel 2006). Note that, in some applications, if the
rotations are known to be a set of uni-axial transforms, they can always be represented using
an explicit set of rigid transformations.

Axis/angle (exponential twist)

A rotation can be represented by a rotation axis n̂ and an angle ✓, or equivalently by a 3D
vector ! = ✓n̂. Figure 2.5 shows how we can compute the equivalent rotation. First, we
project the vector v onto the axis n̂ to obtain

vk = n̂(n̂ · v) = (n̂n̂T )v, (2.29)

which is the component of v that is not affected by the rotation. Next, we compute the
perpendicular residual of v from n̂,

v? = v � vk = (I � n̂n̂T )v. (2.30)

1 In robotics, this is sometimes referred to as gimbal lock.

42 Computer Vision: Algorithms and Applications (September 3, 2010 draft)

We can rotate this vector by 90� using the cross product,

v⇥ = n̂⇥ v = [n̂]⇥v, (2.31)

where [n̂]⇥ is the matrix form of the cross product operator with the vector n̂ = (n̂x, n̂y, n̂z),

[n̂]⇥ =

2

64
0 �n̂z n̂y

n̂z 0 �n̂x

�n̂y n̂x 0

3

75 . (2.32)

Note that rotating this vector by another 90� is equivalent to taking the cross product again,

v⇥⇥ = n̂⇥ v⇥ = [n̂]2⇥v = �v?,

and hence
vk = v � v? = v + v⇥⇥ = (I + [n̂]2⇥)v.

We can now compute the in-plane component of the rotated vector u as

u? = cos ✓v? + sin ✓v⇥ = (sin ✓[n̂]⇥ � cos ✓[n̂]2⇥)v.

Putting all these terms together, we obtain the final rotated vector as

u = u? + vk = (I + sin ✓[n̂]⇥ + (1� cos ✓)[n̂]2⇥)v. (2.33)

We can therefore write the rotation matrix corresponding to a rotation by ✓ around an axis n̂

as
R(n̂, ✓) = I + sin ✓[n̂]⇥ + (1� cos ✓)[n̂]2⇥, (2.34)

which is known as Rodriguez’s formula (Ayache 1989).
The product of the axis n̂ and angle ✓, ! = ✓n̂ = (!x, !y, !z), is a minimal represen-

tation for a 3D rotation. Rotations through common angles such as multiples of 90� can be
represented exactly (and converted to exact matrices) if ✓ is stored in degrees. Unfortunately,
this representation is not unique, since we can always add a multiple of 360� (2⇡ radians) to
✓ and get the same rotation matrix. As well, (n̂, ✓) and (�n̂,�✓) represent the same rotation.
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1 �!z !y

!z 1 �!x

�!y !x 1

3

75 , (2.35)
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We can rotate this vector by 90� using the cross product,

v⇥ = n̂⇥ v = [n̂]⇥v, (2.31)
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[n̂]⇥ =

2

64
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n̂z 0 �n̂x

�n̂y n̂x 0

3
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n̂ = [n̂x, n̂y, n̂z ]



Determining  Device  Attitude  (I)
• Now that we know how to 

represent rotation, next step is 
how to infer device attitude 
(e.g., the rotation matrix that 
transform a vector from the 
device frame to the world’s 
[global] coordinate system)

• This is non-trivial due to 
magnetic interference from 
the environment
o We do not always know “true north”
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The reason for deprecation appears to be that it is an internal system sensor and has no general-
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SENSING DEVICE ORIENTATION AND MOVEMENT
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Determining  Device  Attitude  (II)
• Given <accx, accy, accz> and 

<magx, magy, magz> from the 
accelerometer and the 
magnetometer (in device 
coordinate)

• Assume 1) stationary device, 2) no
magnetic interference, 3) not in 
north pole

• How to determine the rotation 
matrix?

• If the device coordinates aligns with 
the global coordinates what the 
readings should be?
o <0, 0, g>, <0, magy, 0>
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Determining  Rotation  Matrix
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A  =  <accx,  accy,  accz>  
E  =  <magx,  magy,  magz>  

H    =  ExA

Normalize  A,  H  àA’,  H’;  
M  =  A’xH’  

R    =  
h1’  h2’  h3’
m1 m2 m3

a1’  a2’  a3’

y

z

x

World  coordinate

E

A

H

M

transpose  R’  =  R-‐‑1



Android  Specifics
• Device frame depends on the default orientation

o Phone – Portrait
o Table – landscape
o Device coordinate frame differs from screen coordinate frame: 

getRotation() and remapCoordinateSystem()

• getOrientation (do not confuse with rotation): return 
the azimuth (Z), pitch (X), and yaw (Y) wrt inverted 
world coordinate frame

17

y

z

x

World  coordinate

y
z

x

Inverted  world  coordinate  for  orientation  
(rotate  𝜋)

R’    =  
-‐‑h1’  -‐‑h2’  -‐‑h3’
m1 m2 m3

-‐‑a1’  -‐‑a2’  -‐‑a3’



Implementation  Notes
• The above rotation matrix R allows transformation 

from device coordinates to world coordinates
o R-1 is needed for the opposite and the transpose R’ = R-1

• For stationary devices, may average or apply a low 
pass filter to get the average acceleration and 
magnetometer readings (more later)

• Recall the 3 conditions 1) stationary device, 2) no 
magnetic interference, 3) not in north pole
o Stationarity can be reasonably inferred from the magnitude of 

acceleration
o Near north pole à GPS or magnetometer readings
o No magnetic interferences difficult to guarantee
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Step  Counts
• Nowadays most wearable can do step counts –

some are more accurate than the others
o Why? How?

• Human gait cycle
o Stance phase: when one foot touch the ground
o Swing phase: the foot leaves the ground
o [in jogging/running, both feet may be off the ground]

19



More  Terminologies
• Stride: two consecutive heel strike of the same foot 
• Stride length: distance traveled in one stride 
• Step: successive heel strikes of opposite feet 
• Step length: distance between heel strike of one 

limb and heel strike of the other limb 
• Step width: distance we keep our feet apart when 

we walk (2 – 4 inches)
• Cadence: Walking speed, or number of steps taken 

per minute

20



Step  Counting  Using  
Accelerometer  Data

• Acceleration and 
deceleration easily 
identifiable along all 
axises

• Noisy

21

a)

0 500 1000 1500 2000 2500 3000 3500 4000
−50

0

50

a x

Acceleration (m/s2)

0 500 1000 1500 2000 2500 3000 3500 4000
−50

0

50

a y

0 500 1000 1500 2000 2500 3000 3500 4000
−50

0

50

a z

samples

b)

0 500 1000 1500 2000 2500 3000 3500 4000
−5

0

5

w
x

Angular rate (rad/s)

0 500 1000 1500 2000 2500 3000 3500 4000
−10

0

10

w
y

0 500 1000 1500 2000 2500 3000 3500 4000
−5

0

5

w
z

samples

c)

0 500 1000 1500 2000 2500 3000 3500 4000
−1

0

1

m
x

Magnetic field (a.u.)

0 500 1000 1500 2000 2500 3000 3500 4000
−1

0

1

m
y

0 500 1000 1500 2000 2500 3000 3500 4000
−1

0

1

m
z

samples

Fig. 3. Raw sensor readings for a test of 30 meters walking in one direction
and returning back after a 180 degree turn: a) Acceleration, b) Gyroscope,
and c) Magnetometer readings.
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Fig. 4. Steps detection using accelerations. The detected steps are marked
with red circles. Additional line plots represent intermediate processing values
as explained in equations 1 to 3.

1) Compute the magnitude of the acceleration, ai, for every
sample i:

ai =
√

a2
xi

+ a2
yi

+ a2
zi

. (1)

2) Compute the local acceleration variance, to highlight the
foot activity and to remove gravity:

σ2

ai
=

1

2w + 1

i+w∑

j=i−w

(aj − aj)
2, (2)

where aj is a local mean acceleration value, computed
by this expression: aj = 1

2w+1

∑i+w
q=i−w aq , and w de-

fines the size of the averaging window (w=15 samples).
3) Thresholding. A first threshold is applied to detect the

swing phase with high accelerations (T1=2 m/s2).

B1i =

{
T1 σai > T1
0 otherwise . (3)

A second threshold (T2=1 m/s2) is used to detect the
stance phase (B2i = T2, if σai < T2).

4) A step is detected in sample i when a swing phase ends
and stance phase starts. These two conditions must be
satisfied: 1) a transition from high to low acceleration
(B1i−1 < B1i), and 2) there must be at least one low
acceleration detection in a window of size w ahead of
current sample i, i.e.: max(B2i:i+w) = T2.

Figure 4 shows details of this step detection process.

D. Step detection using gyroscopes and magnetometers
We implemented a step detection algorithm based on angu-

lar rate readings [2]. It initially computes the total angular rate
magnitude using the three individual gyroscopic sensors, then
it performs a threshold at 1 rad/s, after that it applies a median
filter to remove outliers, and finally it detects transitions to a
motionless state.

WISP 2009 •  6th IEEE International Symposium on Intelligent Signal Processing • 26–28 August, 2009 Budapest, Hungary 
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Algorithmic  Sketch
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Compute  linear  
acceleration

Compute  
magnitude

Apply   low-‐‑pass  
filter  (LPF)

Square,  LPF

Find  Peaks

𝑎𝑐𝑐 = 𝑎𝑐𝑐5* + 𝑎𝑐𝑐6* + 𝑎𝑐𝑐7*

Remove  the  gravity  component

Peak  to  peak  à one  step

Optional



Low-‐‑pass  Filter  (LPF)
• A low-pass filter is a filter that passes signals with a frequency 

lower than a certain cutoff frequency fc and attenuates
signals with frequencies higher than the cutoff frequency

23

Must not alter 
the desired signal! Sharp Transition

in order to attenuate
the interference

Affect selectivity



Two  Types  of  Digital  LPFs
• Finite impulse response filter (FIR)

o 𝑦8 = ∑ 𝑎:𝑥8;:<
:=>

o Transfer function 𝐻 𝑧 = ∑ 𝑎:𝑧;:<
:=>

o No feedback
o Roughly linear phase

• Infinite impulse response filter (IIR)
o ∑ 𝑎@𝑦8;@

A
@=> = ∑ 𝑏:𝑥8;:<

:=>

o Transfer function 𝐻 𝑧 = ∑ CD7EDF
DGH

∑ IJ7EJ
K
JGH

o With feedback
o Can match a particular freq response with relatively fewer parameters 

than FIR (more computationally efficient)
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Commonly  Used  LPFs
• Exponential moving average (EMA)

o y(n) = (1-a)x(n)+ay(n-1)
o Bigger a à more history; smaller a à more current
o Approximately, a ≈ exp(-2𝜋fc/fs), fc cut-off freq, fs sampling freq
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Commonly  Used  LPFs
• Butterworth filter

o Can use Matlab [B, A] = butter(N, Wn, 'low')
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Cut-‐‑off  freq
Order

numerator

denumerator

0.0  <  Wn <  1.0,  with  1.0  
corresponding  to  half  the  
sample  rate.

Frequency  (Hz)



Cut-‐‑off  Frequency?
• Informed guess

o Step frequency 1 – 3 Hz for walking

• Frequency domain analysis (Libby’09)
o Perform DFT and find the frequency fc, where the x% of total energy fall 

below fc
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Basic Gait Parameters

Table 5a.
Step frequency . Normal gait . Men.

Age

 

N

 

Mean S.D. C .V . 95 07o C.I . 95 07o P .I.
years

 

steps/s steps/s steps/s steps/s

10-14

 

12

 

2.14 0 .19 0 .09 2 .02-2 .26 1 .72-2 .56

15-19

 

15

 

2.02 0 .20 0 .10 1 .91-2 .13 1 .58-2 .46

20-29

 

15

 

1 .98 0 .13 0 .07 1 .91-2 .05 1 .71-2 .25

30-39

 

15

 

2 .00 0 .14 0 .07 1 .92-2 .08 1 .71-2 .29

40-49

 

15

 

2 .01 0 .11 0 .05 1 .95-2 .07 1 .78-2 .24

50-59

 

15

 

1 .96 0 .18 0 .09 1 .86-2 .06 1 .58-2 .34

60-69

 

15

 

1 .95 0 .14 0 .07 1 .87-2 .03 1 .66-2 .24

70-79

 

14

 

1 .91 0 .14 0 .07 1 .83-1 .99 1 .62-2 .20

Table 5b.
Step frequency . Normal gait . Women.

Age N

 

Mean S.D. C.V . 95 07o C.I . 95 07o P .I.
years steps/s steps/s steps/s steps/s

10-14 12

 

1 .97 0 .17 0 .09 1 .86-2 .08 1 .60-2 .34

15-19 15

 

2 .09 0 .18 0 .09 1 .99-2 .19 1 .69-2 .49

20-29 15

 

2 .08 0 .15 0 .07 2 .00-2 .16 1 .77-2 .40

30-39 15

 

2 .13 0 .17 0 .08 2 .04-2 .22 1 .77-2 .49

40-49 15

 

2 .16 0 .16 0 .07 2 .07-2 .25 1 .82-2 .50

50-59 15

 

2 .03 0 .13 0 .06 1 .96-2 .10 1 .76-2 .30

60-69 15

 

2.06 0 .18 0 .09 1 .96-2 .16 1 .68-2 .44

70-79 15

 

2 .03 0 .14 0 .07 1 .95-2 .11 1 .74-2 .32

N = number of subjects

 

C .I . = confidence interval
S .D . = standard deviation

 

P .I . = prediction interval
C .V . = coefficient of variation
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Linear  Acceleration
• Goal: to remove the (constant) gravity component 

from acceleration measurements due to motion
• Idea A: gravity is constant

o apply a high-pass filter
o Or, apply a low-pass filter and then subtract the resulting signal from the 

raw signal
o Cutoff frequency? 

• 0.1Hz would be reasonable for walking. At 50Hz sampling frequency, 
this is equivalent to a weight a = exp(-2𝜋fc/fs) = 0.9875 
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Accx,  Accy,  
Accz

Component-‐‑
wise
LPF

+ -‐‑

Linear  Acc



Linear  Acceleration  (Cont’d)
• Idea B: 

o Determine the tilt angle
o Subtract the gravity components
o A rather complex method but it demonstrates how to use gyro to 

determine device orientation changes during motion

• Recall Gyro measures Corilios force due to rotation, 
or angular velocity 
o In the device frame
o < 𝜔x(t), 𝜔y(t), 𝜔z(t)> represents the angular velocity around x, y, z axis at 

time t
o Then, the angular changes are Δ𝑥 = 𝜔5 𝑡 𝑑𝑡, Δ𝑦 = 𝜔6 𝑡 𝑑𝑡, Δ𝑧 = 𝜔7 𝑡 𝑑𝑡

o Δ = ∆5* + ∆6* + ∆7*	  , Δ𝑥S = Δ𝑥/Δ, Δ𝑦= Δ𝑦/Δ, Δ𝑧S = Δ𝑧/Δ,
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Linear  Acceleration  (Cont’d)
• Derive rotation matrix 
• If initial orientation is known à new orientation

o Can optionally combine the orientation from gyro and the orientation estimated from 
accelerometer and compass (see below)

• Finally, given the orientation, we can subtract the gravity from 
accelerometer data
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LPF

HPF

Complimentary  filter  for  device  orientation



Complementary  Filters
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Summary
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Acc Compass Gyro

Stationary  
Device  

orientation

Moving
Device  

orientation
Step  countsLinear  

Acceleration



Further  Reading
• Greg Milette, Adam Stroud, "Professional Android 

Sensor Programming", 2012
• Gregory G. Slabaugh, “Computing Euler angles 

from a rotation matrix”
• A.R. Jime	  ́nez, F. Seco, C. Prieto and J. Guevara, A 

Comparison of Pedestrian Dead-Reckoning 
Algorithms using a Low-Cost MEMS IMU 
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