CAS 765 Fall'15 <u>Mobile Computing</u> and <u>Wireless</u> Networking

Rong Zheng

Sensor & Sensor Data Processing

Part II Inertial Measurement Units (IMU)

IMUs

- Includes
 - Accelerometer measures acceleration
 - Gyro measures Corilios force due to rotation, or angular velocity
 - Magnetometer reports the magnetic field
 All in <x, y, z>
- Microelectromechanical systems (MEMS) sensors
- Single chip solution: 9-DOF IMU sensors available in the market

http://electroiq.com/blog/2010/11/introduction-to-mems-gyroscopes/

An Illustration of Hall Effect for Magnetometer (from Wikipedia)

Device Attitude/Pose

- Global coordinate system
 x_E, y_E, z_E, and
- A device coordinate system x, y, z
- Need to know the rotation from the device coordinate system to the global coordinate system
- First, how to represent rotation?

Review: Vector Product

- $A = [x_1, y_1, z_1], B = [x_2, y_2, z_2]$
- Dot product $A \cdot B = x_1 x_2 + y_1 y_2 + z_1 z_2$
- Cross product A x B =

 $[y_1 z_2 - z_1 y_2, z_1 x_2 - x_1 z_2, x_1 y_2 - y_1 x_2]$

 $(x_1i + y_1j + z_1k)x(x_2i + y_2j + z_2k)$ =(y_1z_2 - z_1y_2)i + (z_1x_2 - x_1z_2)j + (x_1y_2 - y_1x_2)k

Euler Angles and Rotation Matrices

 A rotation of φ radians about the zaxis (yaw/azimuth)

$$R_z(\phi) = \begin{bmatrix} \cos\phi & -\sin\phi & 0\\ \sin\phi & \cos\phi & 0\\ 0 & 0 & 1 \end{bmatrix}$$

• A rotation of ψ radians about the x-axis (roll) $\begin{bmatrix} 1 & 0 & 0 \end{bmatrix}$

$$R_x(\psi) = \begin{bmatrix} 1 & 0 & 0 \\ 0 & \cos \psi & -\sin \psi \\ 0 & \sin \psi & \cos \psi \end{bmatrix}$$

 A rotation of θ radians about the yaxis (pitch)

$$R_y(\theta) = \begin{bmatrix} \cos\theta & 0 & \sin\theta \\ 0 & 1 & 0 \\ -\sin\theta & 0 & \cos\theta \end{bmatrix}$$

• 6

Example

Sequence of Rotations

Represented by matrix product

$$R = R_{z}(\phi)R_{y}(\theta)R_{x}(\psi)$$

$$= \begin{bmatrix} \cos\theta\cos\phi & \sin\psi\sin\theta\cos\phi - \cos\psi\sin\phi & \cos\psi\sin\theta\cos\phi + \sin\psi\sin\phi \\ \cos\theta\sin\phi & \sin\psi\sin\theta\sin\phi + \cos\psi\cos\phi & \cos\psi\sin\theta\sin\phi - \sin\psi\cos\phi \\ -\sin\theta & \sin\psi\cos\theta & \cos\psi\cos\theta \end{bmatrix}$$

- Note: not communicative (order matters!), not unique
 - Only 3 degree of freedom (DoF)

$$R = \begin{bmatrix} R_{11} & R_{12} & R_{13} \\ R_{21} & R_{22} & R_{23} \\ R_{31} & R_{32} & R_{33} \end{bmatrix}$$

 $[x', y', z']' = R^*[x, y, z]'$

Computing Euler Angles

• If $R_{31} \neq \pm 1$

$$\theta_1 = -\sin^{-1}(R_{31}) \theta_2 = \pi - \theta_1 = \pi + \sin^{-1}(R_{31})$$

$$\psi_1 = \operatorname{atan2}\left(\frac{R_{32}}{\cos\theta_1}, \frac{R_{33}}{\cos\theta_1}\right)$$
$$\psi_2 = \operatorname{atan2}\left(\frac{R_{32}}{\cos\theta_2}, \frac{R_{33}}{\cos\theta_2}\right)$$

$$\operatorname{atan2}(y, x) = \begin{cases} \arctan(\frac{y}{x}) & \text{if } x > 0, \\ \arctan(\frac{y}{x}) + \pi & \text{if } x < 0 \text{ and } y \ge 0, \\ \arctan(\frac{y}{x}) - \pi & \text{if } x < 0 \text{ and } y < 0, \\ +\frac{\pi}{2} & \text{if } x = 0 \text{ and } y < 0, \\ -\frac{\pi}{2} & \text{if } x = 0 \text{ and } y < 0, \\ \operatorname{undefined} & \text{if } x = 0 \text{ and } y = 0. \end{cases}$$

$$\phi_1 = \operatorname{atan2}\left(\frac{R_{21}}{\cos\theta_1}, \frac{R_{11}}{\cos\theta_1}\right)$$
$$\phi_2 = \operatorname{atan2}\left(\frac{R_{21}}{\cos\theta_2}, \frac{R_{11}}{\cos\theta_2}\right)$$

• Both $(\theta_1, \psi_1, \phi_1)$ and $(\theta_2, \psi_2, \phi_2)$ are valid solutions

Loss of DoF in Euler Angles

• If
$$R_{31} = \pm 1$$
, R_{11} , R_{21} , R_{32} , $R_{33} = 0$
• e.g., $\theta = \pi/2$, $\sin \theta = 1$, $\cos \theta = 0$

$$R = R_{z}(\phi)R_{y}(\theta)R_{x}(\psi)$$

$$= \begin{bmatrix} \cos\theta\cos\phi & \sin\psi\sin\theta\cos\phi - \cos\psi\sin\phi & \cos\psi\sin\theta\cos\phi + \sin\psi\sin\phi\\ \cos\theta\sin\phi & \sin\psi\sin\theta\sin\phi + \cos\psi\cos\phi & \cos\psi\sin\theta\sin\phi - \sin\psi\cos\phi\\ -\sin\theta & \sin\psi\cos\theta & \cos\psi\cos\theta \end{bmatrix}$$

$$R = \begin{bmatrix} 0 & \sin(\psi - \phi) & \cos(\psi - \phi) \\ 0 & \cos(\psi - \phi) & -\sin(\psi - \phi) \\ -1 & 0 & 0 \end{bmatrix}$$

• Infinite # of solutions!

- What is the relation between (a,b,c) and (a',b', c')
- Rotation of the coordination system: rotate $\pi/2$ around z and then rotate π around x
- Equivalently, the vector rotates $-\pi/2$ around z and then rotate π around x

 $R_{z}(-\pi/2)$

•11

 $R_x(\pi)$

- What is the relation between (a,b,c) and (a',b', c')?
- $(1, 0, 0) \rightarrow (0, 1, 0); (0, 1, 0) \rightarrow (1, 0, 0); (0, 0, 1) \rightarrow (0, 0, -1);$

$$\begin{bmatrix} a'\\b'\\c' \end{bmatrix} = \begin{bmatrix} 0 & 1 & 0\\1 & 0 & 0\\0 & 0 & -1 \end{bmatrix} \bullet \begin{bmatrix} a\\b\\c \end{bmatrix}$$
$$\begin{bmatrix} 0 & 1 & 0\\0 & 0 & -1 \end{bmatrix} \bullet \begin{bmatrix} a'\\b'\\c' \end{bmatrix}$$

Axis/angle Representation

- A rotation can be represented by a rotation axis $\hat{n} = [\hat{n}_x, \hat{n}_y, \hat{n}_z]$ and an angle Θ
- Rotation matrix known as Rodriguez's formula

 $\boldsymbol{R}(\boldsymbol{\hat{n}},\theta) = \boldsymbol{I} + \sin\theta[\boldsymbol{\hat{n}}]_{\times} + (1-\cos\theta)[\boldsymbol{\hat{n}}]_{\times}^{2},$

where

$$[\hat{\boldsymbol{n}}]_{\times} = \begin{bmatrix} 0 & -\hat{n}_z & \hat{n}_y \\ \hat{n}_z & 0 & -\hat{n}_x \\ -\hat{n}_y & \hat{n}_x & 0 \end{bmatrix}$$

how many DoF?

Determining Device Attitude (I)

- Now that we know how to represent rotation, next step is how to infer device attitude (e.g., the rotation matrix that transform a vector from the device frame to the world's [global] coordinate system)
- This is non-trivial due to magnetic interference from the environment
 - We do not always know "true north"

Determining Device Attitude (II)

- Given <acc_x, acc_y, acc_z> and <mag_x, mag_y, mag_z> from the accelerometer and the magnetometer (in device coordinate)
- Assume 1) stationary device, 2) no magnetic interference, 3) not in north pole
- How to determine the rotation matrix?
- If the device coordinates aligns with the global coordinates what the readings should be?

Determining Rotation Matrix

16

Android Specifics

- Device frame depends on the default orientation
 - Phone Portrait
 - Table landscape
 - Device coordinate frame differs from screen coordinate frame: \bigcirc getRotation() and remapCoordinateSystem()
- getOrientation (do not confuse with rotation): return the azimuth (Z), pitch (X), and yaw (Y) wrt inverted world coordinate frame

Implementation Notes

 The above rotation matrix R allows transformation from device coordinates to world coordinates

 \circ R⁻¹ is needed for the opposite and the transpose R' = R⁻¹

- For stationary devices, may average or apply a low pass filter to get the average acceleration and magnetometer readings (more later)
- Recall the 3 conditions 1) stationary device, 2) no magnetic interference, 3) not in north pole
 - Stationarity can be reasonably inferred from the magnitude of acceleration
 - Near north pole \rightarrow GPS or magnetometer readings
 - No magnetic interferences difficult to guarantee

Step Counts

- Nowadays most wearable can do step counts some are more accurate than the others
 - Why? How?
- Human gait cycle
 - Stance phase: when one foot touch the ground
 - Swing phase: the foot leaves the ground
 - [in jogging/running, both feet may be off the ground]

More Terminologies

- Stride: two consecutive heel strike of the same foot
- Stride length: distance traveled in one stride
- Step: successive heel strikes of opposite feet
- Step length: distance between heel strike of one limb and heel strike of the other limb
- Step width: distance we keep our feet apart when we walk (2 – 4 inches)
- Cadence: Walking speed, or number of steps taken per minute

Step Counting Using Accelerometer Data

 Acceleration and deceleration easily identifiable along all axises

• Noisy

Turn

A.R. Jime nez, F. Seco, C. Prieto and J. Guevara, A Comparison of Pedestrian Dead-Reckoning Algorithms using a Low-Cost MEMS IMU^{•21}

Algorithmic Sketch

Compute linear acceleration

Compute magnitude

Apply low-pass filter (LPF)

Square, LPF

Find Peaks

Remove the gravity component

$$acc = \sqrt{acc_x^2 + acc_y^2 + acc_z^2}$$

Optional

Peak to peak \rightarrow one step

Low-pass Filter (LPF)

 A low-pass filter is a filter that passes signals with a frequency lower than a certain cutoff frequency f_c and attenuates signals with frequencies higher than the cutoff frequency

Two Types of Digital LPFs

- Finite impulse response filter (FIR)
 - $\circ \quad y_n = \sum_{k=0}^P a_k x_{n-k}$
 - Transfer function $H(z) = \sum_{k=0}^{P} a_k z^{-k}$
 - No feedback
 - Roughly linear phase
- Infinite impulse response filter (IIR)

$$\circ \ \sum_{l=0}^{Q} a_{l} y_{n-l} = \sum_{k=0}^{P} b_{k} x_{n-k}$$

- Transfer function $H(z) = \frac{\sum_{l=0}^{P} b_l z^{-l}}{\sum_{k=0}^{Q} a_k z^{-k}}$
- With feedback
- Can match a particular freq response with relatively fewer parameters than FIR (more computationally efficient)

Commonly Used LPFs

- Exponential moving average (EMA)
 - \circ y(n) = (1-a)x(n)+ay(n-1)
 - Bigger a \rightarrow more history; smaller a \rightarrow more current
 - Approximately, $a \approx \exp(-2\pi f_c/f_s)$, f_c cut-off freq, f_s sampling freq

Commonly Used LPFs

Cut-off Frequency?

Informed guess

Step frequency 1 – 3 Hz for walking

Step frequency. Normal gait. Men.			Step frequency. Normal gait. Women.		
Age years	N	Mean steps/s	Age years	N	Mean steps/s
10-14	12	2.14	10-14	12	1.97
15-19	15	2.02	15-19	15	2.09
20-29	15	1.98	20-29	15	2.08
30-39	15	2.00	30-39	15	2.13
40-49	15	2.01	40-49	15	2.16
50-59	15	1.96	50-59	15	2.03
60-69	15	1.95	60-69	15	2.06
70-79	14	1.91	70-79	15	2.03

Frequency domain analysis (Libby'09)

 $\circ~$ Perform DFT and find the frequency $f_c,$ where the x% of total energy fall below f_c

Linear Acceleration

- Goal: to remove the (constant) gravity component from acceleration measurements due to motion
- Idea A: gravity is constant
 - o apply a high-pass filter
 - Or, apply a low-pass filter and then subtract the resulting signal from the raw signal
 - Cutoff frequency?
 - 0.1Hz would be reasonable for walking. At 50Hz sampling frequency, this is equivalent to a weight $a = \exp(-2\pi f_c/f_s) = 0.9875$

Linear Acceleration (Cont'd)

- Idea B:
 - Determine the tilt angle
 - Subtract the gravity components
 - A rather complex method but it demonstrates how to use gyro to determine device orientation changes during motion
- Recall Gyro measures Corilios force due to rotation, or angular velocity
 - In the device frame
 - $\circ <\omega_{\rm x}({\rm t}), \, \omega_{\rm y}({\rm t}), \, \omega_{\rm z}({\rm t})>$ represents the angular velocity around x, y, z axis at time t
 - Then, the angular changes are $\Delta_x = \omega_x(t)dt$, $\Delta_y = \omega_y(t)dt$, $\Delta_z = \omega_z(t)dt$

$$\circ \quad \Delta = \sqrt{\Delta_x^2 + \Delta_y^2 + \Delta_z^2}, \ \overline{\Delta_x} = \Delta_x / \Delta, \ \overline{\Delta_y} = \Delta_y / \Delta, \ \overline{\Delta_z} = \Delta_z / \Delta,$$

Linear Acceleration (Cont'd)

- Derive rotation matrix
- If initial orientation is known \rightarrow new orientation
 - Can optionally combine the orientation from gyro and the orientation estimated from accelerometer and compass (see below)
- Finally, given the orientation, we can subtract the gravity from accelerometer data

Complimentary filter for device orientation

http://www.codeproject.com/Articles/729759/Android-Sensor-Fusion-Tutorial

• 30

Complementary Filters

Further Reading

- Greg Milette, Adam Stroud, "Professional Android Sensor Programming", 2012
- Gregory G. Slabaugh, "Computing Euler angles from a rotation matrix"
- A.R. Jime' nez, F. Seco, C. Prieto and J. Guevara, A Comparison of Pedestrian Dead-Reckoning Algorithms using a Low-Cost MEMS IMU