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Learning Objectives

« Understandthe pinhole camera model for
monocularcamera

« Understandthe base principles behind camera
calibration, camera pose estimation, vision-based
object localization

« Understand basic image processing technigues
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Pinhole Camera

* A geometric model that describes how points are
projected onto the image
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Geometric Relationw
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Assume the optical centeris at the <
world origin, from geometry, we have
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Geometric Relation (cont’'d)

 |f the opticalcenteris NOT at the world origin

Rotation matrix Translation vector

Camera frame «—— World frame

—w' =02w+tT

» Full pinhole camera model

o Extrinsic parameters {Q, 1}
o Intrinsic parameters {¢,., ¢, 8,, 6. v}

A Gz (W11U + w120 + wi3w + Tp) + V(W21 + War¥ + Wasw + 7)) 15
W31U + W32V + W33W + T, y

y = Gy (W21U + Wav + wasw + Ty) L5, 8
W31U + W32V + W33W + T,
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Three Related Problems

 earning the extrinsic parameters (camera pose)
_earning intrinsic parameters (calibration)

nferring 3D world points: estimate the 3D position of
a pointw in the scene, given Ifs projections

{x},¥j}}—,in J= 2 calibrated cameras with known
poses
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Tractability

How many unknowns for | objects (points) projected
on asingle camera at J unknown locations and
posese

o 6 extrinsic parameters per camera poses, 5 intrinsic parameters per
camera, 3 unknowns per one world point > 6J+5+3|

o Knowns: J projections of | objects - 2I - ] equations
o Conceptually solvable if 6J+5+31 <21 -]

How to find | objects? - thisis called the data
association problem

More | than needed?¢ Noise?¢ - treat as an
optimization problem
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(X,y)

. . (u,v,w)
Applications
* Depth from structuredlight
« Camera + Projector > J =2

o Projectors are essentially the same as cameras geometrically
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More on Structured Light
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Homogeneous Coordinates

« Unifies the computation of geometric
fransformations: rotation, franslation, affine
fransformation, scaling, projection

-rom 2D (x,y) fo 3D homogeneous coordinates
o Any scalar Arepresents the same 2D point

T
Y
1

« Similar for 3D points (u,v,w)

X = A

I)_\S < :I
1 |
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Camera Model in Homogeneous

Coordinates

* Pinhole projection

w v
Pyv Ayl =10 &y 0, 0 w
y = L 494, 1 0 O 1 0
w \ 1
|
| | 40]
« Rotation and franslation
u'] [wir wiz wiz 7| [u]
u’ w1l wiz wiz| |u T V' |_ |w21 wo2 wez Tyl |v
v | = W21 Woo W3 V| 4| Ty w' W31 W32 W33 Tz w
w’ W31 W32 w33z |w Tz 1] 0 0 0 1 _1_
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Camera Model in Homogeneous

Coordinates
e Combined model

. & ~ 5 0 _w11 Wi2 W13 T:c— k|
Ayl = Ox ¢ 5x 0 W1 W22 W23 Ty (%
i 0 0 0 1_ _1_
e Orin matrix form
N Q _
Ax = [A 0] loT ﬂw AX=A[Q T|W

Linear form compared to

r = P (W11 + w12V + w1zw + 7o) + Y (wa1u + w2V + wosw + 7)) +0
W31U + W32V 4 W33W + T, p’

T Gy (W21U + Warv + wasw + Ty) s 8
o W31U + W32V + W33W + T $13




Learning Extrinsic Parameters

Everything in the red circles are known

w11 Wi2 W13
W21 W22 W23
w31 W32 W33

let %' = A~1%, we have

_CU;; Wil W12 Wiz Tx ZZ
Ni |yi| = |war waa waz Ty wz.
1 W31 W32 W33 T 17’
Observing that from the last equation

Ai = W31U; + W320; + w3sw; + T,



Learning Extrinsic Parameters

Given | points and their projections, we have a set
of linear equations of the form Ab =0

o Solutions can be found via singular value decomposition A = ULVTand
setting b to be the last column of V

o Jdince the solution can be of arbitrary scale, need to normalize to get

desired Q
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Learning Intrinsic Parameters

* |f known extrinsic parameters

« Can solve using similar approach as before or
solving a least squares problem by defining

h - [gbw,f}/, 5:137 ¢ya 5y]T

W11 UFW12V; W13 Wi+ T, W21 UiFW22 Vi HW23 Wi +T, 1 0 0
A, = W31 Ui+W32VitW33Wi+T 2 W31 Ui+W32 VW33 Wi+T 2
(A 0 0 W21 U222 Vw23 Wi+Ty 1
w31 UiF+w32 VW33 Wi+T 2
And solve ;

h = argmin Z(Aih —x;)" (Ash —x;)
o i=1



Finding World Coordinates

e Now, we assume the infrinsic and exitrinsic
coordinates are both known

* Finding the world coordinates corresponding to
solving a collection of equations (in least squares)

u
/ / /
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All Unknown?

Assume data associationis done

Typically infrinsic parameters are determinedin a
calibration step using known images (e.q.,
chessboard)

o Inthis case, the world coordinates are known, jointly solve for intrinsic and
extrinsic parameters

Now with intrinsic parameters, jointly solve for

extrinsic and world coordinates
o Gist of simulfaneous localization and mapping (SLAM)
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Camera Calibration

« A few images from different orientations of a
known image with w =0

— u’L
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A yi] = /l[r’1 r’2 7] [vi] since w =0 For jth orientation
-1 1
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ming Y, [[m; — ]2
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L Zhengyou Zhang, A Flexible New Technique for Camera Calibration, IEEE Transactions on Pattern Analysis and Machine Intelligence® 19
22(11):1330-1334, 2000



Practical Matters

Numericalissues

o Even in cases where closed-form solutions exist,
it is still beneficial to find solution via optimization
due to measurement noises

o Stable solutions are non-trivial
o Be aware of computation complexity

Combining IMU

o Recall IMUs can provide estimation of device
pose 2 may combine with camera data

CMQOS camera: today’s digital
cameras are predominantly
based on CMOS sensors

o Rolling shutter effects: a stillimage or a frame of

a video is captured by scanning across the https://www.youtube.com/wa
scene rapidly, either vertically or horizontally. tch?v=EaB9EHeDLSk
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Image Processing

* |n discussing the camera calibration process, we
assume that cornersin the chessboardimages can
be detected

« Now we discuss some basic image processing

operations

o Per-pixel transformation: whitening, histogram equalization, local filtering
o Edges, corners, and interest points
o SIFT descriptors
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luminance (Y) and 3 chrominance

Digital Color Coding

CMYK (used in printing)
RGB 8-bit each (r,g,b)
YUV breaks RGB into four parts:

component (Cr, Cg, Cb)

(©)

Cr+Cg+Cb-=1
RGB to YCbCr YCbCr to RGB
Y =0.299R + 0.587G + 0.114B | R =Y + 1.402Cr
Cb=0.564(B-Y) B=Y+1.772Cb

Cr=0.713(R-Y)

G =Y —-0.344Cb — 0.714Cr

Mapping for SDTV BT.601
L4 [ 0.2126 0.7152 0.0722 R
Ul =1-0.09991 -0.33609  0.436 G
V] | 0615  —0.55861 —0.05639| | B
R] 1 0 1.28033 | [Y”
G| = |1 021482 —-0.38059( |U
B 1 2.12798 0 V

Mapping for HDTV BT.709

Y
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Per-pixel Transformation

« Forsimplicity, we consider gray-scale images

- 2D array of pixel data as P, where p; is the element
at the ith of | rows and the j’h of J columns

« Whitening
DD iy
o IJ
o >ict Yy (pij — w* vy = L 1

—_—

1J o

« Histogram equalization (K levels)

1 T
histogram hi = > 0lpiy — K] B
i=1 j=1 E
:
i Zfﬂ hy S
CDF k=17

Transformation %ij = Kc¢p,,
()



Linear Filter

« Images as 2D digital signal -- convoluting an image with a filter

of window MxN

Z sz m,j— nfmn

—Mn=—N
« Gaussian blur f|ITer
o o can be thought of as scale
1 m +n
fm,n) = 2102 eXp 202
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Effects of Gaussian blur filter with different o’s
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Linear Filters

 First derivative filters and edge filters

o Prewitt operators 10 —1] 11
1 0 —1] —1 -1
o Sobel operators (1 0 —1] 1 2
1 0 -1 -1 -2
o Laplacian filters 0 -1 0
F=|[-1 4 -1
0 -1 0

@)

©)

2mo?

Laplacian of Gaussian filter
« Convolution of a Laplacian and Gaussian filter
Gabor filter

« ¢ forscale, the phase ¢, orientation w, and wavelength of the sine
wave A.

1

o - A

202

m? + n2] . [27r(cos[w]m + sin[w]n)

+¢
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Original image Prewitt (vertical) Prewitt (horizontal)
1 1 1 1 0 -1
0 0 0 1 0 -1
-1 -1 -1 1 0 -1

Laplacian Laplacian of Gaussian Difference of Gaussians

0 -1 0
-1 4 -1
0 -1 0
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Edges, Corners, and Interest Points

 Canny edge detection

1.
2.

(Blured)

Convoluted with a pair of orthogonal derivative filters such as Prewitt
filters to create images H and V in the horizontal and vertical directions,
respectively

For pixel (i,j), the orientation 6;; and magnifude a;; of the gradient are

computed as
e 0;; = arctan|v;;/hi;]

R — [ h2 2

Orientation quantized into {0°, 45°, 90°, 135°}

Non-local maximum suppression: magnitude of a pixel set to zero if if
either of the neighboring two pixels perpendicular to the gradient have
higher values

Two thresholds: 1) pixels above the high threshold and 2) pixels above the
low threshold but connect to existing edges are part of the edge
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Canny edge detection. a) Original image. b) Result of verfical Prewitt filter. c) Results
of horizontal Prewitt filter. d) Quantized orientation map. e) Gradient amplitude map.
f) Amplitudes affer non-maximal suppression. g) Thresholding at two levels: the white
pixels are above the higher threshold. The red pixels are above the lower threshold but
below the higher one. h) Final edge map after hysteresis thresholding contains all of
the white pixels from (g) and those red pixels that connect to them.
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Harris Corner Detector

* Find pointsin the image where the image intfensity Is
varying in both directions

o hmn Vi AQre the response to a horizontal and vertical derivative filter,
respectively

o Wmn Weights - smaller away from the center of window (2D+1)x(2D+1)
o Compute the image structure tensor (2-by-2 matrix) as follows:
i+D  j+D
h? Romn
D D I

v
m=i—D n=j—D e mn

o Compute the singular values (k between 0.04 1o 0.195)
Cij = A Aoy — K,()\% -+ )\g) = det[Sij] — K- trace[Sij]

If c; is greater than a threshold - corner

Intuition: if singular values are both small > no change; if one singular
value is large and the other is small > edge; otherwise, corner

o Rotation invariant
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Scale Free Features

 Harris corner detectoris sensitive 1o the scale of the
iImage

i

=

[ e 3]
http://docs.opencv.org/master/da/df5/tutorial py sift intro.html#gsc.tab=0




SIFT Deteca)tcn;

Scale invariant feature transform (SIFT)
detector

1. The intensity image is filtered with a
difference of Gaussian kernel at a
series of Kincreasingly coarse scales

2. Local extrema are identified in the
IXJXK volume as points who is either
greater or smaller than all 26
neighbors in 3x3x3 block (voxel)

3. Apply quadratic approximation at
each extrema point - finding the
peak or tfrough at sub-pixel level

Apply Harris corner detector

The amplitude and orientation of
local gradient in the regions
surrounding interest points

6. A histogram is computed for the
region and the peak of the histogram
Is assigned as the orientatfion of the
orientation

/. Each interest point marked with an
arrow with the orientation and its
scale (SIFT descriptor)

s

Scale, o

c)

d)

h)

(c) corner
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Further Reading

 Chapter 13, 14, Simon J.D. Prince, Computer vision:
models, learning and inference, Cambridge

University Press (electronic version available from
the author’'s web site)
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