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Learning Objectives
• Understand the pinhole camera model for 

monocular camera
• Understand the base principles behind camera 

calibration, camera pose estimation, vision-based 
object localization

• Understand basic image processing techniques
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Pinhole Camera
• A geometric model that describes how points are 

projected onto the image
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Geometric Relation
Assume the optical center is at the 
world origin, from geometry, we have

𝑥 = #$
%

, 𝑦 = #'
%

If considering the spacing of 
photoperceptor
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Geometric Relation (cont’d)
• If the optical center is NOT at the world origin

𝑤2 = 𝜴𝑤 + 𝝉
• Full pinhole camera model

o Extrinsic parameters {Ω, 𝜏}
o Intrinsic parameters {𝜙,, 𝜙-, 𝛿,, 𝛿-, 𝛾}
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where �
x

and �
y

are the o↵sets in pixels from the top-left corner of the image to
the position where the w axis strikes the image plane. Another way to think about
this is that the vector [�

x

, �
y

]T is the position of the principal point in pixels.
If the image plane is exactly centered on the w-axis, these o↵set parameters

should be half the image size: for a 640 ⇥ 480 VGA image �
x

and �
y

would be
320 and 240, respectively. However, in practice it is di�cult and superfluous to
manufacture cameras with the imaging sensor perfectly centered, and so we treat
the o↵set parameters as variable quantities.

We also introduce a skew term � which moderates the projected position x
as a function of the height v in the world. This parameter has no clear physical
interpretation, but can help explain the projection of points into the image in
practice. The resulting camera model is
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14.1.4 Position and orientation of camera

Finally, we must account for the fact that the camera is not always conveniently
centered at the origin of the world coordinate system with the optical axis exactly
aligned with the w-axis. In general, we may want to define an arbitrary world
coordinate system that may be common to more than one camera. To this end,
we express the world points w in the coordinate system of the camera before they
are passed through the projection model, using the coordinate transformation:
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or

w0 = ⌦w + ⌧ , (14.7)

where w0 is the transformed point, ⌦ is a 3 ⇥ 3 rotation matrix, and ⌧ is a 3 ⇥ 1
translation vector.

14.1.5 Full pinhole camera model

We are now in a position to describe the full camera model, by combining equations
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14.5 and 14.6. A 3D point w = [u, v, w]T is projected to a 2D point x = [x, y]T by
the relations
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There are two sets of parameters in this model. The intrinsic or camera parameters
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, �
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} describe the camera itself, and the extrinsic parameters {⌦, ⌧}
describe the position and orientation of the camera in the world. For reasons that
will become clear in section 14.3.1, we will store the intrinsic parameters in the
intrinsic matrix ⇤ where
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We can now abbreviate the full projection model (equations 14.8) by just writing

x = pinhole[w,⇤,⌦, ⌧ ]. (14.10)

Finally, we must account for the fact that the estimated position of a feature
in the image may di↵er from our predictions. There are a number of reasons for
this, including noise in the sensor, sampling issues, and the fact that the detected
position in the image may change at di↵erent viewpoints. We model these factors
with additive noise that is normally distributed with a spherical covariance to give
the final relation

Pr(x|w,⇤,⌦, ⌧ ) = Normx

⇥
pinhole[w,⇤,⌦, ⌧ ],�2I

⇤
, (14.11)

where �2 is the variance of the noise.
Note that the pinhole camera is a generative model. We are describing the

likelihood Pr(x|w,⇤,⌦, ⌧ ) of observing a 2D image point x given a 3D world
point w and the parameters {⇤,⌦, ⌧}.

14.1.6 Radial distortion

In the previous section, we introduced the pinhole camera model. However, it has
probably not escaped your attention that real-world cameras are rarely based on
the pinhole: they have a lens (or possibly a system of several lenses) that collects
light from a larger area and re-focuses it on the image plane. In practice, this leads
to a number of deviations from the pinhole model. For example, some parts of
the image may be out of focus, which essentially means that the assumption that a
point in the world w maps to a single point in the image x is no longer valid. There
are more complex mathematical models for cameras that deal e↵ectively with this
situation, but they are not discussed here.

Copyright c�2011,2012 by Simon Prince; published by Cambridge University Press 2012.
For personal use only, not for distribution.

World frameCamera frame



Three Related Problems
• Learning the extrinsic parameters (camera pose)
• Learning intrinsic parameters (calibration)
• Inferring 3D world points: estimate the 3D position of 

a point w in the scene, given its projections 
{𝑥;, 𝑦;};<=

> in J≥ 2 calibrated cameras with known 
poses
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Tractability
• How many unknowns for I objects (points) projected 

on a single camera at J unknown locations and 
poses?
o 6 extrinsic parameters per camera poses, 5 intrinsic parameters per 

camera, 3 unknowns per one world point à 6J+5+3I
o Knowns: J projections of I objects à 2𝐼 A 𝐽 equations
o Conceptually solvable if 6J+5+3I ≤ 2𝐼 A 𝐽

• How to find I objects? à this is called the data 
association problem

• More I than needed? Noise? à treat as an 
optimization problem
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Applications
• Depth from structured light 
• Camera + Projector à J = 2 

o Projectors are essentially the same as cameras geometrically
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More on Structured Light
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Figure 14.13 Projector to camera correspondence with structured light pat-
terns. a) To establish the vertical position in the projector image, we present
a sequence of horizontally striped patterns. Each height in the projected im-
age receives a unique sequence of black and white values, so we can determine
the height (e.g. red line) by measuring this sequence. b-c) Two examples of
these horizontally striped patterns. d-e) Two examples of vertically striped
patterns that are part of a sequence designed to estimate the horizontal po-
sition in the projector pattern. Adapted from Scharstein & Szeliski (2003).
c�2003 IEEE.

that a projector sends outgoing light along these rays, whereas the camera captures
incoming light along them.

Consider a system that comprises a single camera and a projector that are
displaced relative to one another but that point at the same object (figure 14.12).
For simplicity, we will assume that the system is calibrated (i.e., the intrinsic

Problem 14.7
matrices and the relative positions of the camera and projector are known). It is
now easy to estimate the depth of the scene: we illuminate the scene using the
projector one pixel at a time, and find the corresponding pixel in the camera by
observing which part of the image gets brighter. We now have two corresponding
points and can compute the depth using the method of section 14.6. In practice,
this technique is very time consuming as a separate image must be captured for
each pixel in the projector. Scharstein & Szeliski (2003) used a more practical
technique using structured light in which a series of horizontal and vertical stripe
patterns is projected onto the scene that allow the mapping between pixels in the
projector and those in the camera to be computed.

To understand how this works, consider a projector image in which the top
Problem 14.8
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Homogeneous Coordinates
• Unifies the computation of geometric 

transformations: rotation, translation, affine 
transformation, scaling, projection

• From 2D (x,y) to 3D homogeneous coordinates
o Any scalar 𝜆	represents the same 2D point

• Similar for 3D points (u,v,w) 
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14.3 Homogeneous coordinates

To get good initial estimates of the geometric quantities in the preceding opti-
mization problems, we play a simple trick: we change the representation of both
the 2D image points and 3D world points so that the projection equations become
linear. After this change, it is possible to find solutions for the unknown quanti-
ties in closed form. However, it should be emphasized that these solutions do not
directly address the original optimization criteria: they minimize more abstract
objective functions based on algebraic error whose solutions are not guaranteed to
be the same as those for the original problem. However, they are generally close
enough to provide a good starting point for a nonlinear optimization of the true
cost function.

We convert the original Cartesian representation of the 2D image points x to
Problem 14.4
Problem 14.5
Problem 14.6

a 3D homogeneous coordinate x̃ so that

x̃ = �

2

4
x
y
1

3

5 , (14.16)

where � is an arbitrary scaling factor. This is a redundant representation in that
any scalar multiple � represents the same 2D point. For example, the homogeneous
vectors x̃ = [2, 4, 2]T and x̃ = [3, 6, 3]T both represent the Cartesian 2D point
x = [1, 2]T , where scaling factors � = 2 and � = 3 have been used, respectively.

Converting between homogeneous and Cartesian coordinates is easy. To move
to homogeneous coordinates, we choose � = 1 and simply append a 1 to the original
2D Cartesian coordinate. To recover the Cartesian coordinates, we divide the first
two entries of the homogeneous 3-vector by the third, so that if we observe the
homogeneous vector x̃ = [x̃, ỹ, z̃]T , then we can recover the Cartesian coordinate
x = [x, y]T as

x =
x̃

z̃

y =
ỹ

z̃
. (14.17)

Further insight into the relationship between the two representations is given in
figure 14.11.

It is similarly possible to represent the 3D world point w as a homogenous 4D
vector w̃ so that

w̃ = �

2

664

u
v
w
1

3

775 , (14.18)

where � is again an arbitrary scaling factor. Once more, the conversion from
Cartesian to homogeneous coordinates can be achieved by appending a 1 to the
original 3D vector w. The conversion from homogeneous to Cartesian coordinates
is achieved by dividing each of the first three entries by the last.
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Camera Model in Homogeneous 
Coordinates

• Pinhole projection

• Rotation and translation

12

372 14 The pinhole camera

14.3.1 Camera model in homogeneous coordinates

It is hard to see the point of converting the 2D image points to homogeneous
3-vectors and converting the 3D world point to homogeneous 4-vectors until we
re-examine the pinhole projection equations,
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, (14.19)

where we have temporarily assumed that the world point w = [u, v, w]T is in the
same coordinate system as the camera.

In homogeneous coordinates, these relationships can be expressed as a set of
linear equations
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To convince ourselves of this, let us write these relations explicitly:
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We solve for x and y by converting back to Cartesian coordinates: we divide the
first two relations by the third to yield the original pinhole model (equation 14.19).

Let us summarize what has happened: the original mapping from 3D Cartesian
world points to 2D Cartesian image points is nonlinear (due to the division by w).
However, the mapping from 4D homogeneous world points to 3D homogeneous im-
age points is linear. In the homogeneous representation, the nonlinear component
of the projection process (division by w) has been side-stepped: this operation still
occurs, but it is in the final conversion back to 2D Cartesian coordinates, and thus
does not trouble the homogeneous camera equations.

To complete the model, we add the extrinsic parameters {⌦, ⌧} that relate the
world coordinate system and the camera coordinate system, so that
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or in matrix form

�x̃ =
⇥
⇤ 0

⇤ ⌦ ⌧
0T 1
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w̃, (14.23)
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are the o↵sets in pixels from the top-left corner of the image to
the position where the w axis strikes the image plane. Another way to think about
this is that the vector [�
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]T is the position of the principal point in pixels.
If the image plane is exactly centered on the w-axis, these o↵set parameters
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320 and 240, respectively. However, in practice it is di�cult and superfluous to
manufacture cameras with the imaging sensor perfectly centered, and so we treat
the o↵set parameters as variable quantities.

We also introduce a skew term � which moderates the projected position x
as a function of the height v in the world. This parameter has no clear physical
interpretation, but can help explain the projection of points into the image in
practice. The resulting camera model is
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14.1.4 Position and orientation of camera

Finally, we must account for the fact that the camera is not always conveniently
centered at the origin of the world coordinate system with the optical axis exactly
aligned with the w-axis. In general, we may want to define an arbitrary world
coordinate system that may be common to more than one camera. To this end,
we express the world points w in the coordinate system of the camera before they
are passed through the projection model, using the coordinate transformation:
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or

w0 = ⌦w + ⌧ , (14.7)

where w0 is the transformed point, ⌦ is a 3 ⇥ 3 rotation matrix, and ⌧ is a 3 ⇥ 1
translation vector.

14.1.5 Full pinhole camera model

We are now in a position to describe the full camera model, by combining equations
Problem 14.1
Problem 14.2
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We solve for x and y by converting back to Cartesian coordinates: we divide the
first two relations by the third to yield the original pinhole model (equation 14.19).

Let us summarize what has happened: the original mapping from 3D Cartesian
world points to 2D Cartesian image points is nonlinear (due to the division by w).
However, the mapping from 4D homogeneous world points to 3D homogeneous im-
age points is linear. In the homogeneous representation, the nonlinear component
of the projection process (division by w) has been side-stepped: this operation still
occurs, but it is in the final conversion back to 2D Cartesian coordinates, and thus
does not trouble the homogeneous camera equations.

To complete the model, we add the extrinsic parameters {⌦, ⌧} that relate the
world coordinate system and the camera coordinate system, so that
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or in matrix form
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or in matrix form

�x̃ =
⇥
⇤ 0

⇤ ⌦ ⌧
0T 1

�
w̃, (14.23)
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14.3.1 Camera model in homogeneous coordinates

It is hard to see the point of converting the 2D image points to homogeneous
3-vectors and converting the 3D world point to homogeneous 4-vectors until we
re-examine the pinhole projection equations,
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w
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, (14.19)

where we have temporarily assumed that the world point w = [u, v, w]T is in the
same coordinate system as the camera.

In homogeneous coordinates, these relationships can be expressed as a set of
linear equations
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To convince ourselves of this, let us write these relations explicitly:

�x = �
x

u+ �v + �
x

w

�y = �
y

v + �
y

w

� = w. (14.21)

We solve for x and y by converting back to Cartesian coordinates: we divide the
first two relations by the third to yield the original pinhole model (equation 14.19).

Let us summarize what has happened: the original mapping from 3D Cartesian
world points to 2D Cartesian image points is nonlinear (due to the division by w).
However, the mapping from 4D homogeneous world points to 3D homogeneous im-
age points is linear. In the homogeneous representation, the nonlinear component
of the projection process (division by w) has been side-stepped: this operation still
occurs, but it is in the final conversion back to 2D Cartesian coordinates, and thus
does not trouble the homogeneous camera equations.

To complete the model, we add the extrinsic parameters {⌦, ⌧} that relate the
world coordinate system and the camera coordinate system, so that
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or in matrix form

�x̃ =
⇥
⇤ 0

⇤ ⌦ ⌧
0T 1

�
w̃, (14.23)
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or in matrix form

�x̃ =
⇥
⇤ 0

⇤ ⌦ ⌧
0T 1

�
w̃, (14.23)
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where 0 = [0, 0, 0]T . The same relations can be simplified to

�x̃ = ⇤
⇥
⌦ ⌧

⇤
w̃. (14.24)

In the next three sections, we revisit the three geometric problems introduced in
section 14.2. In each case, we will use algorithms based on homogeneous coordinates
to compute good initial estimates of the variable of interest. These estimates can
then be improved using nonlinear optimization.

14.4 Learning extrinsic parameters

Given a known object, with I distinct 3D points {w
i

}I
i=1, their corresponding

Algorithm 14.1
projections in the image {x

i

}I
i=1 and known intrinsic parameters ⇤, estimate the

geometric relationship between the camera and the object determined by the rota-
tion ⌦ and the translation ⌧ ,

⌦̂, ⌧̂ = argmax
⌦,⌧
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. (14.25)

This is a non-convex problem, so we make progress by expressing it in homoge-
neous coordinates. The relationship between the ith homogeneous world point w̃
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and the ith corresponding homogeneous image point x̃
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We would like to discard the e↵ect of the (known) intrinsic parameters ⇤. To
this end, we pre-multiply both sides of the equation by the inverse of the intrinsic
matrix ⇤ to yield
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The transformed coordinates x̃0 = ⇤�1x̃ are known as normalized image coordi-
nates: they are the coordinates that would have resulted if we had used a normal-
ized camera. In e↵ect, pre-multiplying by ⇤�1 compensates for the idiosyncrasies
of this particular camera.

We now note that the last of these three equations allows us to solve for the
constant �

i

, so that

�
i

= !31ui

+ !32vi + !33wi

+ ⌧
z

, (14.28)
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14.5 and 14.6. A 3D point w = [u, v, w]T is projected to a 2D point x = [x, y]T by
the relations

x =
�
x

(!11u+ !12v + !13w + ⌧
x

) + �(!21u+ !22v + !23w + ⌧
y

)

!31u+ !32v + !33w + ⌧
z

+ �
x

y =
�
y

(!21u+ !22v + !23w + ⌧
y

)

!31u+ !32v + !33w + ⌧
z

+ �
y

. (14.8)

There are two sets of parameters in this model. The intrinsic or camera parameters
{�

x

,�
y

, �, �
x

, �
y

} describe the camera itself, and the extrinsic parameters {⌦, ⌧}
describe the position and orientation of the camera in the world. For reasons that
will become clear in section 14.3.1, we will store the intrinsic parameters in the
intrinsic matrix ⇤ where

⇤ =

2

4
�
x

� �
x

0 �
y

�
y

0 0 1

3

5 . (14.9)

We can now abbreviate the full projection model (equations 14.8) by just writing

x = pinhole[w,⇤,⌦, ⌧ ]. (14.10)

Finally, we must account for the fact that the estimated position of a feature
in the image may di↵er from our predictions. There are a number of reasons for
this, including noise in the sensor, sampling issues, and the fact that the detected
position in the image may change at di↵erent viewpoints. We model these factors
with additive noise that is normally distributed with a spherical covariance to give
the final relation

Pr(x|w,⇤,⌦, ⌧ ) = Normx

⇥
pinhole[w,⇤,⌦, ⌧ ],�2I

⇤
, (14.11)

where �2 is the variance of the noise.
Note that the pinhole camera is a generative model. We are describing the

likelihood Pr(x|w,⇤,⌦, ⌧ ) of observing a 2D image point x given a 3D world
point w and the parameters {⇤,⌦, ⌧}.

14.1.6 Radial distortion

In the previous section, we introduced the pinhole camera model. However, it has
probably not escaped your attention that real-world cameras are rarely based on
the pinhole: they have a lens (or possibly a system of several lenses) that collects
light from a larger area and re-focuses it on the image plane. In practice, this leads
to a number of deviations from the pinhole model. For example, some parts of
the image may be out of focus, which essentially means that the assumption that a
point in the world w maps to a single point in the image x is no longer valid. There
are more complex mathematical models for cameras that deal e↵ectively with this
situation, but they are not discussed here.
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where 0 = [0, 0, 0]T . The same relations can be simplified to
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w̃. (14.24)

In the next three sections, we revisit the three geometric problems introduced in
section 14.2. In each case, we will use algorithms based on homogeneous coordinates
to compute good initial estimates of the variable of interest. These estimates can
then be improved using nonlinear optimization.
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We would like to discard the e↵ect of the (known) intrinsic parameters ⇤. To
this end, we pre-multiply both sides of the equation by the inverse of the intrinsic
matrix ⇤ to yield
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The transformed coordinates x̃0 = ⇤�1x̃ are known as normalized image coordi-
nates: they are the coordinates that would have resulted if we had used a normal-
ized camera. In e↵ect, pre-multiplying by ⇤�1 compensates for the idiosyncrasies
of this particular camera.

We now note that the last of these three equations allows us to solve for the
constant �
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, so that
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+ ⌧
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, (14.28)

Copyright c�2011,2012 by Simon Prince; published by Cambridge University Press 2012.
For personal use only, not for distribution.

14.4 Learning extrinsic parameters 373

where 0 = [0, 0, 0]T . The same relations can be simplified to

�x̃ = ⇤
⇥
⌦ ⌧

⇤
w̃. (14.24)

In the next three sections, we revisit the three geometric problems introduced in
section 14.2. In each case, we will use algorithms based on homogeneous coordinates
to compute good initial estimates of the variable of interest. These estimates can
then be improved using nonlinear optimization.

14.4 Learning extrinsic parameters

Given a known object, with I distinct 3D points {w
i

}I
i=1, their corresponding

Algorithm 14.1
projections in the image {x

i

}I
i=1 and known intrinsic parameters ⇤, estimate the

geometric relationship between the camera and the object determined by the rota-
tion ⌦ and the translation ⌧ ,

⌦̂, ⌧̂ = argmax
⌦,⌧

"
IX

i=1

log [Pr(x
i

|w
i

,⇤,⌦, ⌧ )]

#
. (14.25)

This is a non-convex problem, so we make progress by expressing it in homoge-
neous coordinates. The relationship between the ith homogeneous world point w̃

i

and the ith corresponding homogeneous image point x̃
i

is

�
i

2

4
x
i

y
i

1

3

5 =

2

4
�
x

� �
x

0 �
y

�
y

0 0 1

3

5

2

4
!11 !12 !13 ⌧

x

!21 !22 !23 ⌧
y

!31 !32 !33 ⌧
z

3

5

2

664

u
i

v
i

w
i

1

3

775 . (14.26)

We would like to discard the e↵ect of the (known) intrinsic parameters ⇤. To
this end, we pre-multiply both sides of the equation by the inverse of the intrinsic
matrix ⇤ to yield

�
i

2

4
x0
i

y0
i

1

3

5 =

2

4
!11 !12 !13 ⌧

x

!21 !22 !23 ⌧
y

!31 !32 !33 ⌧
z

3

5

2

664

u
i

v
i

w
i

1

3

775 . (14.27)

The transformed coordinates x̃0 = ⇤�1x̃ are known as normalized image coordi-
nates: they are the coordinates that would have resulted if we had used a normal-
ized camera. In e↵ect, pre-multiplying by ⇤�1 compensates for the idiosyncrasies
of this particular camera.

We now note that the last of these three equations allows us to solve for the
constant �

i

, so that

�
i

= !31ui

+ !32vi + !33wi

+ ⌧
z

, (14.28)

Copyright c�2011,2012 by Simon Prince; published by Cambridge University Press 2012.
For personal use only, not for distribution.

14.4 Learning extrinsic parameters 373

where 0 = [0, 0, 0]T . The same relations can be simplified to

�x̃ = ⇤
⇥
⌦ ⌧

⇤
w̃. (14.24)

In the next three sections, we revisit the three geometric problems introduced in
section 14.2. In each case, we will use algorithms based on homogeneous coordinates
to compute good initial estimates of the variable of interest. These estimates can
then be improved using nonlinear optimization.

14.4 Learning extrinsic parameters

Given a known object, with I distinct 3D points {w
i

}I
i=1, their corresponding

Algorithm 14.1
projections in the image {x

i

}I
i=1 and known intrinsic parameters ⇤, estimate the

geometric relationship between the camera and the object determined by the rota-
tion ⌦ and the translation ⌧ ,

⌦̂, ⌧̂ = argmax
⌦,⌧

"
IX

i=1

log [Pr(x
i

|w
i

,⇤,⌦, ⌧ )]

#
. (14.25)

This is a non-convex problem, so we make progress by expressing it in homoge-
neous coordinates. The relationship between the ith homogeneous world point w̃

i

and the ith corresponding homogeneous image point x̃
i

is

�
i

2

4
x
i

y
i

1

3

5 =

2

4
�
x

� �
x

0 �
y

�
y

0 0 1

3

5

2

4
!11 !12 !13 ⌧

x

!21 !22 !23 ⌧
y

!31 !32 !33 ⌧
z

3

5

2

664

u
i

v
i

w
i

1

3

775 . (14.26)

We would like to discard the e↵ect of the (known) intrinsic parameters ⇤. To
this end, we pre-multiply both sides of the equation by the inverse of the intrinsic
matrix ⇤ to yield

�
i

2

4
x0
i

y0
i

1

3

5 =

2

4
!11 !12 !13 ⌧

x

!21 !22 !23 ⌧
y

!31 !32 !33 ⌧
z

3

5

2

664

u
i

v
i

w
i

1

3

775 . (14.27)

The transformed coordinates x̃0 = ⇤�1x̃ are known as normalized image coordi-
nates: they are the coordinates that would have resulted if we had used a normal-
ized camera. In e↵ect, pre-multiplying by ⇤�1 compensates for the idiosyncrasies
of this particular camera.

We now note that the last of these three equations allows us to solve for the
constant �

i

, so that

�
i

= !31ui

+ !32vi + !33wi

+ ⌧
z

, (14.28)

Copyright c�2011,2012 by Simon Prince; published by Cambridge University Press 2012.
For personal use only, not for distribution.



Learning Extrinsic Parameters
• Given I points and their projections, we have a set 

of linear equations of the form Ab = 0
o Solutions can be found via singular value decomposition A = ULVT and 

setting b to be the last column of V
o Since the solution can be of arbitrary scale, need to normalize to get 

desired Ω

15

374 14 The pinhole camera

and we can now substitute this back into the first two equations to get the relations
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These are two linear equations with respect to the unknown quantities ⌦ and ⌧ .
We can take the two equations provided by each of the I pairs of points in the
world w and the image x to form the system of equations
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(14.30)
This problem is now in the standard form Ab = 0 of a minimum direction problem.
We seek the value of b that minimizes |Ab|2 subject to the constraint |b| = 1 (to
avoid the uninteresting solution b = 0). The solution can be found by computing
the singular value decomposition A = ULVT and setting b̂ to be the last column
of V (see appendix C.7.2).

The estimates of ⌦ and ⌧ that we extract from b have had an arbitrary scale
imposed on them, and we must find the correct scaling factor. This is possible
because the rotation ⌦ has a pre-defined scale (its rows and columns must all
have norm one). In practice, we first find the closest true rotation matrix to ⌦
which also forces our estimate to be a valid orthogonal matrix. This is an instance
of the orthogonal Procrustes problem (appendix C.7.3). The solution is found by
computing the singular value decomposition ⌦ = ULVT and setting ⌦̂ = UVT .
Now, we re-scale the translation ⌧ . The scaling factor can be estimated by taking
the average ratio of the nine entries of our initial estimate of ⌦ to the final one ⌦̂
so that

⌧̂ =
3X

m=1

3X

n=1

⌦̂
mn

⌦
mn

⌧ . (14.31)

Finally, we must check that the sign of ⌧
z

is positive, indicating that the object
is in front of the camera. If this is not the case then be multiply both ⌧̂ and !̂ by
minus one.
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where 0 = [0, 0, 0]T . The same relations can be simplified to
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In the next three sections, we revisit the three geometric problems introduced in
section 14.2. In each case, we will use algorithms based on homogeneous coordinates
to compute good initial estimates of the variable of interest. These estimates can
then be improved using nonlinear optimization.
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We would like to discard the e↵ect of the (known) intrinsic parameters ⇤. To
this end, we pre-multiply both sides of the equation by the inverse of the intrinsic
matrix ⇤ to yield
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The transformed coordinates x̃0 = ⇤�1x̃ are known as normalized image coordi-
nates: they are the coordinates that would have resulted if we had used a normal-
ized camera. In e↵ect, pre-multiplying by ⇤�1 compensates for the idiosyncrasies
of this particular camera.

We now note that the last of these three equations allows us to solve for the
constant �

i

, so that

�
i

= !31ui

+ !32vi + !33wi

+ ⌧
z

, (14.28)
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which results in a least squares problem (see section 4.4.1).
Now we note that the projection function pinhole[•, •, •, •] (equation 14.8) is
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which we recognize as a least squares problem that can be solved in closed form
(appendix C.7.1).

We have described this alternating approach for pedagogical reasons; it is simple
to understand and implement. However, we emphasize that this is not really a
practical method as the convergence will be very slow. A better approach would
be to perform a couple of iterations of this method and then optimize both the
intrinsic and extrinsic parameters simultaneously using a nonlinear optimization
technique such as the Gauss Newton method (appendix B.2.3) with the original
criterion (equation 14.32). This optimization must be done while ensuring that the
extrinsic parameter ⌦ remains a valid rotation matrix (see appendix B.4).

14.6 Inferring 3D world points

Finally, we consider the multi-view reconstruction problem. Given J calibrated
Algorithm 14.3

cameras in known positions (i.e., cameras with known ⇤,⌦, ⌧ ), viewing the same
3D point w and knowing the corresponding projections in the images {x

j

}J
j=1,

establish the position of the point in the world.
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This cannot be solved in closed form and so we move to homogeneous coordi-
nates where we can solve for a good initial estimate in closed form. The relationship
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This cannot be solved in closed form and so we move to homogeneous coordi-
nates where we can solve for a good initial estimate in closed form. The relationship
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This cannot be solved in closed form and so we move to homogeneous coordi-
nates where we can solve for a good initial estimate in closed form. The relationship
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Finding World Coordinates
• Now, we assume the intrinsic and extrinsic 

coordinates are both known

• Finding the world coordinates corresponding to 
solving a collection of equations (in least squares)
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14.4 Learning extrinsic parameters 373

where 0 = [0, 0, 0]T . The same relations can be simplified to

�x̃ = ⇤
⇥
⌦ ⌧

⇤
w̃. (14.24)

In the next three sections, we revisit the three geometric problems introduced in
section 14.2. In each case, we will use algorithms based on homogeneous coordinates
to compute good initial estimates of the variable of interest. These estimates can
then be improved using nonlinear optimization.

14.4 Learning extrinsic parameters

Given a known object, with I distinct 3D points {w
i

}I
i=1, their corresponding

Algorithm 14.1
projections in the image {x

i

}I
i=1 and known intrinsic parameters ⇤, estimate the

geometric relationship between the camera and the object determined by the rota-
tion ⌦ and the translation ⌧ ,
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This is a non-convex problem, so we make progress by expressing it in homoge-
neous coordinates. The relationship between the ith homogeneous world point w̃

i

and the ith corresponding homogeneous image point x̃
i

is

�
i

2

4
x
i

y
i

1

3

5 =

2

4
�
x

� �
x

0 �
y

�
y

0 0 1

3

5

2

4
!11 !12 !13 ⌧

x

!21 !22 !23 ⌧
y

!31 !32 !33 ⌧
z

3

5

2

664

u
i

v
i

w
i

1

3

775 . (14.26)

We would like to discard the e↵ect of the (known) intrinsic parameters ⇤. To
this end, we pre-multiply both sides of the equation by the inverse of the intrinsic
matrix ⇤ to yield
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The transformed coordinates x̃0 = ⇤�1x̃ are known as normalized image coordi-
nates: they are the coordinates that would have resulted if we had used a normal-
ized camera. In e↵ect, pre-multiplying by ⇤�1 compensates for the idiosyncrasies
of this particular camera.

We now note that the last of these three equations allows us to solve for the
constant �

i

, so that

�
i

= !31ui

+ !32vi + !33wi

+ ⌧
z

, (14.28)
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where we have appended the index j to the intrinsic and extrinsic parameters to
denote the fact that they belong to the jth camera. Pre-multiplying both sides by
the intrinsic matrix ⇤�1

j

to convert to normalized image coordinates gives
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where x0
j

and y0
j

denote the normalized image coordinates in the jth camera.
We use the third equation to establish that �
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.
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These equations can be re-arranged to provide two linear constraints on the three
unknown quantities in w = [u, v, w]T :
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With multiple cameras, we can build a larger system of equations and solve for w
in a least squares sense (appendix C.7.1). This typically provides a good starting
point for the subsequent nonlinear optimization of the criterion in equation 14.38.

This calibrated reconstruction algorithm is the basis for methods that construct
3D models. However, there are several parts missing from the argument.

• The method requires us to have found the points {x
j

}J
j=1 that correspond

to the same world point w in each of the J images. This process is called
correspondence and is discussed in chapters 15 and 16.

• The method requires the intrinsic and extrinsic parameters. Of course, these
could be computed from a calibration target using the method of section 14.5.
However, it is still possible to perform reconstruction when the system is un-
calibrated; this is known as projective reconstruction as the result is ambigu-
ous up to a 3D projective transformation. Furthermore, if a single camera
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All Unknown?
• Assume data association is done

• Typically intrinsic parameters are determined in a 
calibration step using known images (e.g., 
chessboard)
o In this case, the world coordinates are known, jointly solve for intrinsic and 

extrinsic parameters

• Now with intrinsic parameters, jointly solve for 
extrinsic and world coordinates
o Gist of simultaneous localization and mapping (SLAM)

18



Camera Calibration
• A few images from different orientations of a 

known image with w = 0

19
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The transformed coordinates x̃0 = ⇤�1x̃ are known as normalized image coordi-
nates: they are the coordinates that would have resulted if we had used a normal-
ized camera. In e↵ect, pre-multiplying by ⇤�1 compensates for the idiosyncrasies
of this particular camera.
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Detecting 
corners

𝜆𝑖
𝑥𝑖
𝑦𝑖
1
= 𝜦[𝒓𝟏

𝒋 	𝒓𝟐
𝒋 	𝝉]

𝑢𝑖
𝑣𝑖
1

since w = 0 

H= [h1, h2, h3]

Determine H Estimate 𝜦

For jth orientation

6 Conclusion

In this paper, we have developed a flexible new technique to easily calibrate a camera. The technique
only requires the camera to observe a planar pattern from a few (at least two) different orientations.
We can move either the camera or the planar pattern. The motion does not need to be known. Radial
lens distortion is modeled. The proposed procedure consists of a closed-form solution, followed by a
nonlinear refinement based on maximum likelihood criterion. Both computer simulation and real data
have been used to test the proposed technique, and very good results have been obtained. Compared
with classical techniques which use expensive equipment such as two or three orthogonal planes, the
proposed technique gains considerable flexibility.
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A Estimation of the Homography Between the Model Plane and its Im-
age

There are many ways to estimate the homography between the model plane and its image. Here,
we present a technique based on maximum likelihood criterion. Let Mi and mi be the model and
image points, respectively. Ideally, they should satisfy (2). In practice, they don’t because of noise
in the extracted image points. Let’s assume that mi is corrupted by Gaussian noise with mean 0 and
covariance matrix Λmi . Then, the maximum likelihood estimation of H is obtained by minimizing
the following functional ∑

i

(mi − m̂i)
TΛ−1

mi
(mi − m̂i) ,

where m̂i =
1

h̄T
3 Mi

[
h̄T
1 Mi

h̄T
2 Mi

]
with h̄i, the ith row of H.

In practice, we simply assume Λmi = σ2I for all i. This is reasonable if points are extracted indepen-
dently with the same procedure. In this case, the above problem becomes a nonlinear least-squares
one, i.e., minH

∑
i ∥mi − m̂i∥2. The nonlinear minimization is conducted with the Levenberg-

Marquardt Algorithm as implemented in Minpack [18]. This requires an initial guess, which can
be obtained as follows.

Let x = [h̄T
1 , h̄

T
2 , h̄

T
3 ]

T . Then equation (2) can be rewritten as
[
M̃T 0T −uM̃T

0T M̃T −vM̃T

]
x = 0 .

When we are given n points, we have n above equations, which can be written in matrix equation as
Lx = 0, where L is a 2n× 9 matrix. As x is defined up to a scale factor, the solution is well known
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Practical Matters
• Numerical issues

o Even in cases where closed-form solutions exist, 
it is still beneficial to find solution via optimization 
due to measurement noises

o Stable solutions are non-trivial
o Be aware of computation complexity

• Combining IMU 
o Recall IMUs can provide estimation of device 

pose à may combine with camera data

• CMOS camera: today’s digital 
cameras are predominantly 
based on CMOS sensors
o Rolling shutter effects: a still image or a frame of 

a video is captured by scanning across the 
scene rapidly, either vertically or horizontally.
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https://www.youtube.com/wa
tch?v=EaB9EHeDLSk



Image Processing
• In discussing the camera calibration process, we 

assume that corners in the chessboard images can 
be detected

• Now we discuss some basic image processing 
operations 
o Per-pixel transformation: whitening, histogram equalization,  local filtering
o Edges, corners, and interest points 
o SIFT descriptors 
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Digital Color Coding
• CMYK (used in printing)
• RGB 8-bit each (r,g,b)
• YUV breaks RGB into four parts: 

luminance (Y) and 3 chrominance 
component (Cr, Cg, Cb)
o Cr + Cg + Cb = 1

22

YUV Color Model
• Used worldwide by color TV broadcasts

– Lots of variations: YCbCr, YPbPr, YDbDr, YIQ

• Breaks RGB representation into 4 parts
– 1 luminance (grayscale) component (Y)

– 3 chrominance (color) components (Cr, Cg, Cb)– 3 chrominance (color) components (Cr, Cg, Cb)
• Sum to a constant, so only need Cr, Cb (calculate Cg)

• Calculate YCbCr from RGB and RGB from YCbCr

RGB to YCbCr YCbCr to RGB

!"#"$%&''!!!! ("$%)*+"""" ("$%,,-####

./"#"$%)0-1#### 2 !3

.4"#"$%+,51!!!! 2 !3

R = Y + 1.402Cr

B = Y + 1.772Cb

G = Y – 0.344Cb – 0.714Cr

Mapping for SDTV BT.601

Mapping for HDTV BT.709



Per-pixel Transformation
• For simplicity, we consider gray-scale images
• 2D array of pixel data as P, where pij is the element 

at the ith of I rows and the jth of J columns
• Whitening

• Histogram equalization (K levels)
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Figure 13.1 Whitening and histogram equalization. a) A number of faces
which have been captured with widely varying contrasts and mean levels
b) After whitening the images have the same mean and variance. c) After
histogram equalization the distribution of gray values is approximately uni-
form. Both of these transformations reduce the amount of variation due to
contrast and intensity changes.

µ =

P
I

i=1

P
J

j=1 pij

IJ

�2 =

P
I

i=1

P
J

j=1(pij � µ)2

IJ
. (13.1)

These statistics are used to transform each pixel value separately so that,

x
ij

=
p
ij

� µ

�
. (13.2)

For color images, this operation may be carried out by computing the statistics
µ and �2 from all three channels or by separately transforming each of the RGB
channels based on their own statistics.

Note that even this simple transform has the potential to hamper subsequent
inference about the scene: depending on the task, the absolute intensities may or
may not contain critical information. Even the simplest preprocessing methods
must be applied with care.

13.1.2 Histogram equalization

The goal of histogram equalization (figure 13.1c) is to modify the statistics of the
intensity values so that all of their moments take predefined values. To this end, a
nonlinear transformation is applied that forces the distribution of pixel intensities
to be flat.

We first compute the histogram of the original intensities h where the kth of K
entries is given by
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Figure 13.2 Histogram equalization.
The abscissa indicates the pixel inten-
sity. The ordinate indicates the pro-
portion of intensities that were less
than or equal to this value. This plot
can be used as a look up table for
histogram equalizing the intensities.
For a given intensity value on the ab-
scissa, we choose the new intensity to
be the maximum output intensity K
times the value on the ordinate. After
this transformation, the intensities are
equally distributed. In the example
image, many of the pixels are bright.
Histogram equalization spreads these
bright values out over a larger inten-
sity range, and so has the e↵ect of in-
creasing the contrast in the brighter
regions.

h
k

=
IX

i=1

JX

j=1

�[p
ij

� k], (13.3)

where the operation �[•] returns one if the argument is zero and zero otherwise.
We then cumulatively sum this histogram and normalize by the total number of
pixels to compute the cumulative proportion c of pixels that are less than or equal
to each intensity level:

c
k

=

P
k

l=1 hl

IJ
. (13.4)

Finally, we use the cumulative histogram as a look up table to compute the trans-
formed value so that

x
ij

= Kc
p

ij

. (13.5)

For example, in figure 13.2 the value 90 will be mapped to K ⇥ 0.29 where K
is the maximum intensity (usually 255). The result is a continuous number rather

Problem 13.1
than a discretized pixel intensity, but is in the same range as the original data. The
result can be rounded to the nearest integer if subsequent processing demands.

13.1.3 Linear filtering

After filtering an image, the new pixel value x
ij

consists of a weighted sum of the
intensities of pixels in the surrounding area of the original image P. The weights
are stored in a filter kernel F, which has entries f

m,n

, where m 2 {�M . . .M} and
n 2 {�N . . .N}.

More formally, when we apply a filter, we convolve the P with the filter F,
where two-dimensional convolution is defined as
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Linear Filter
• Images as 2D digital signal -- convoluting an image with a filter 

of window MxN

• Gaussian blur filter
o 𝜎 can be thought of as scale
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Figure 13.3 Image blurring. a) Original image. b) Result of convolving
with a Gaussian filter (filter shown in bottom right of image). Each pixel
in this image is a weighted sum of the surrounding pixels in the original
image, where the weights are given by the filter. The result is that the
image is slightly blurred. c-e) Convolving with a filter of increasing standard
deviation causes the resulting image to be increasingly blurred.

x
ij

=
MX

m=�M

NX

n=�N

p
i�m,j�n

f
m,n

. (13.6)

Notice that by convention, the filter is flipped in both directions so the top left of
the filter f�M,�N

weights the pixel p
i+M,j+N

to the right and below the current
Problem 13.2

point in P. Many filters used in vision are symmetric in such a way that this
flipping makes no practical di↵erence.

Without further modification, this formulation will run into problems near the
borders of the image: it needs to access points that are outside the image. One
way to deal with this is to use zero padding in which it is assumed that the value
of P is 0 outside the defined image region.

We now consider a number of common types of filter.

Gaussian (blurring) filter

To blur an image, we convolve it with a 2D Gaussian,

f(m,n) =
1

2⇡�2
exp


�m2 + n2

2�2

�
. (13.7)

Each pixel in the resulting image is a weighted sum of the surrounding pixels, where
the weights depend on the Gaussian profile: nearer pixels contribute relatively more

Problem 13.4
to the final output. This process blurs the image, where the degree of blurring is
dependent on the standard deviation � of the Gaussian filter (figure 13.3). This is
a simple method to reduce noise in images taken at very low light levels.
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Linear Filters
• First derivative filters and edge filters

o Prewitt operators 

o Sobel operators 

o Laplacian filters

o Laplacian of Gaussian filter
• Convolution of a Laplacian and Gaussian filter

o Gabor filter
• 𝜎 for scale, the phase 𝜙, orientation	𝜔, and wavelength of the sine 

wave 𝜆. 
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First derivative filters and edge filters

A second use for image filtering is to locate places in the image where the intensity
changes abruptly. Consider taking the first derivative of the image along the rows.
We could approximate this operation by simply computing the di↵erence between
two o↵set pixels along the row. This operation can be accomplished by filtering
with the operator F = [�1 0 1]. This filter gives zero response when the image is
flat in the horizontal direction: it is hence invariant to constant additive luminance

Problem 13.5
Problem 13.6changes. It gives a negative response when the image pixel values are increasing

as we move in the horizontal direction and a positive response when they are
decreasing (recall that convolution flips the filter by 180o). As such, it is selective
for edges in the image.

The response to the filter F = [�1 0 1] is noisy because of its limited spatial
extent. Consequently, slightly more sophisticated filters are used to find edges in
practice. Examples include the Prewitt operators (figures 13.4a-b)

F
x
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2

4
1 0 �1
1 0 �1
1 0 �1

3

5 , F
y
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2

4
1 1 1
0 0 0
�1 �1 �1

3

5 , (13.8)

and the Sobel operators

F
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4
1 0 �1
2 0 �2
1 0 �1

3

5 , F
y

=

2

4
1 2 1
0 0 0
�1 �2 �1

3

5 , (13.9)

where, in each case, the filter F
x

is a filter selective for edges in the horizontal
direction and F

y

is a filter selective for edges in the vertical direction.

Laplacian filters

The Laplacian filter is the discrete two dimensional approximation to the Laplacian
operator r2, and is given by

F =

2

4
0 �1 0
�1 4 �1
0 �1 0

3

5 . (13.10)

Applying the discretized filter F to an image results in a response of high mag-
nitude where the image is changing, regardless of the direction of that change
(figure 13.4c): the response is zero in regions that are flat and significant where
edges occur in the image. It is hence invariant to constant additive changes in
luminance, and useful for identifying interesting regions of the image.

Laplacian of Gaussian filters

In practice, the Laplacian operator produces noisy results. A superior approach
is to first smooth the image with a Gaussian filter and then apply the Laplacian.
Due to the associative property of convolution, we can equivalently convolve the
Laplacian filter by a Gaussian and apply the resulting Laplacian of Gaussian filter
to the image (figure 13.4d). This Laplacian of Gaussian has the advantage that it
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edges occur in the image. It is hence invariant to constant additive changes in
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In practice, the Laplacian operator produces noisy results. A superior approach
is to first smooth the image with a Gaussian filter and then apply the Laplacian.
Due to the associative property of convolution, we can equivalently convolve the
Laplacian filter by a Gaussian and apply the resulting Laplacian of Gaussian filter
to the image (figure 13.4d). This Laplacian of Gaussian has the advantage that it

Copyright c�2011,2012 by Simon Prince; published by Cambridge University Press 2012.
For personal use only, not for distribution.

13.1 Per-pixel transformations 329

First derivative filters and edge filters

A second use for image filtering is to locate places in the image where the intensity
changes abruptly. Consider taking the first derivative of the image along the rows.
We could approximate this operation by simply computing the di↵erence between
two o↵set pixels along the row. This operation can be accomplished by filtering
with the operator F = [�1 0 1]. This filter gives zero response when the image is
flat in the horizontal direction: it is hence invariant to constant additive luminance

Problem 13.5
Problem 13.6changes. It gives a negative response when the image pixel values are increasing

as we move in the horizontal direction and a positive response when they are
decreasing (recall that convolution flips the filter by 180o). As such, it is selective
for edges in the image.

The response to the filter F = [�1 0 1] is noisy because of its limited spatial
extent. Consequently, slightly more sophisticated filters are used to find edges in
practice. Examples include the Prewitt operators (figures 13.4a-b)

F
x

=

2

4
1 0 �1
1 0 �1
1 0 �1

3

5 , F
y

=

2

4
1 1 1
0 0 0
�1 �1 �1

3

5 , (13.8)

and the Sobel operators

F
x

=

2

4
1 0 �1
2 0 �2
1 0 �1

3

5 , F
y

=

2

4
1 2 1
0 0 0
�1 �2 �1

3

5 , (13.9)

where, in each case, the filter F
x

is a filter selective for edges in the horizontal
direction and F

y

is a filter selective for edges in the vertical direction.

Laplacian filters

The Laplacian filter is the discrete two dimensional approximation to the Laplacian
operator r2, and is given by

F =

2

4
0 �1 0
�1 4 �1
0 �1 0

3

5 . (13.10)

Applying the discretized filter F to an image results in a response of high mag-
nitude where the image is changing, regardless of the direction of that change
(figure 13.4c): the response is zero in regions that are flat and significant where
edges occur in the image. It is hence invariant to constant additive changes in
luminance, and useful for identifying interesting regions of the image.

Laplacian of Gaussian filters
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can be tuned to be selective for changes at di↵erent scales, depending on the scale
of the Gaussian component.

Di↵erence of Gaussians

The Laplacian of Gaussian filter is very well approximated by the di↵erence of
Gaussians filter (compare figures 13.4d and 13.4e). As the name implies, this filter
is created by taking the di↵erence of two Gaussians at nearby scales. The same
result can be achieved by filtering the image with the two Gaussians separately
and taking the di↵erence between the results. Again, this filter responds strongly
in regions of the image that are changing at a predetermined scale.

Gabor filters

Gabor filters are selective for both scale and orientation. The 2D Gabor function
is the product of a 2D Gaussian with a 2D sinusoid. It is parameterized by the
covariance of the Gaussian and the phase �, orientation !, and wavelength � of
the sine wave. If the Gaussian component is spherical, it is defined by
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where � controls the scale of the spherical Gaussian. It is typical to make the
wavelength proportional to the scale � of the Gaussian so a constant number of
cycles is visible.

The Gabor filter is selective for elements within the image at a certain frequency
and orientation band, and with a certain phase (figure 13.5). It is invariant to con-
stant additive changes in luminance when the sinusoidal component is asymmetric.
This is also nearly true for symmetric Gabor functions, as long as several cycles
of the sinusoid are visible. A response that is independent of phase can easily be
generated by squaring and summing the responses of two Gabor features with the
same frequency, orientation, and scale, but with phases that are ⇡/2 radians apart.
The resulting quantity is termed the Gabor energy and is somewhat invariant to
small displacements of the image.

Filtering with Gabor functions is motivated by mammalian visual perception:
this is one of the first processing operations applied to visual data in the brain.
Moreover, it is known from psychological studies that certain tasks (e.g., face de-
tection) are predominantly dependent on information at intermediate frequencies.
This may be because high-frequency filters see only a small image region and are
hence noisy and relatively uninformative, and low-frequency filters act over a large
region and respond disproportionately to slow changes due to lighting.

Haar-like filters

Haar-like filters consist of adjacent rectangular regions that are balanced so that the
average filter value is zero, and they are invariant to constant luminance changes.
Depending on the configuration of these regions, they may be similar to derivative
or Gabor filters (figure 13.6).
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Figure 13.4 Image filtering with first and second derivative operators. The
original image is shown in figure 13.3a. a) Convolving with the vertical
Prewitt filter produces a response that is proportional to the size and polarity
of edges in the vertical direction. b) The horizontal Prewitt filter produces a
response to edges in the horizontal direction. c) The Laplacian filter gives a
significant response where the image changes rapidly regardless of direction.
d) The Laplacian of Gaussian filter produces similar results but the output
is smoothed and hence less noisy. e) The di↵erence of Gaussians filter is a
common approximation to the Laplacian of Gaussian.
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Edges, Corners, and Interest Points
• Canny edge detection 

1. (Blured)
2. Convoluted with a pair of orthogonal derivative filters such as Prewitt 

filters to create images H and V in the horizontal and vertical directions, 
respectively 

3. For pixel (i,j), the orientation 𝜃^; and magnitude 𝑎^; of the gradient are 
computed as

4. Orientation quantized into {0o, 45o, 90o, 135o}
5. Non-local maximum suppression: magnitude of a pixel set to zero if if 

either of the neighboring two pixels perpendicular to the gradient have 
higher values 

6. Two thresholds: 1) pixels above the high threshold and 2) pixels above the 
low threshold but connect to existing edges are part of the edge 
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Figure 13.11 Canny edge detection. a) Original image. b) Result of vertical
Prewitt filter. c) Results of horizontal Prewitt filter. d) Quantized orien-
tation map. e) Gradient amplitude map. f) Amplitudes after non-maximal
suppression. g) Thresholding at two levels: the white pixels are above the
higher threshold. The red pixels are above the lower threshold but below
the higher one. h) Final edge map after hysteresis thresholding contains all
of the white pixels from (g) and those red pixels that connect to them.
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A simple approach would be to assign an edge to position (i, j) if the amplitude
there exceeds a critical value. This is termed thresholding. Unfortunately, it pro-
duces poor results: the amplitude map takes high values on the edge, but also at
adjacent positions. The Canny edge detector eliminates these unwanted responses
using a method known as non-maximum suppression.

In non-maximum suppression the gradient orientation is quantized into one of
four angles {0o, 45o, 90o, 135o}, where angles 180o apart are treated as equivalent.
The pixels associated with each angle are now treated separately. For each pixel
the amplitude is set to zero if either of the neighboring two pixels perpendicular
to the gradient have higher values. For example, for a pixel where the gradient
orientation is vertical (the image is changing in the horizontal direction), the pixels
to the left and right are examined and the amplitude is set to zero if either of these
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Figure 13.11 Canny edge detection. a) Original image. b) Result of vertical
Prewitt filter. c) Results of horizontal Prewitt filter. d) Quantized orien-
tation map. e) Gradient amplitude map. f) Amplitudes after non-maximal
suppression. g) Thresholding at two levels: the white pixels are above the
higher threshold. The red pixels are above the lower threshold but below
the higher one. h) Final edge map after hysteresis thresholding contains all
of the white pixels from (g) and those red pixels that connect to them.
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A simple approach would be to assign an edge to position (i, j) if the amplitude
there exceeds a critical value. This is termed thresholding. Unfortunately, it pro-
duces poor results: the amplitude map takes high values on the edge, but also at
adjacent positions. The Canny edge detector eliminates these unwanted responses
using a method known as non-maximum suppression.

In non-maximum suppression the gradient orientation is quantized into one of
four angles {0o, 45o, 90o, 135o}, where angles 180o apart are treated as equivalent.
The pixels associated with each angle are now treated separately. For each pixel
the amplitude is set to zero if either of the neighboring two pixels perpendicular
to the gradient have higher values. For example, for a pixel where the gradient
orientation is vertical (the image is changing in the horizontal direction), the pixels
to the left and right are examined and the amplitude is set to zero if either of these

Copyright c�2011,2012 by Simon Prince; published by Cambridge University Press 2012.
For personal use only, not for distribution.

Canny edge detection. a) Original image. b) Result of vertical Prewitt filter. c) Results 
of horizontal Prewitt filter. d) Quantized orientation map. e) Gradient amplitude map. 
f) Amplitudes after non-maximal suppression. g) Thresholding at two levels: the white 
pixels are above the higher threshold. The red pixels are above the lower threshold but 
below the higher one. h) Final edge map after hysteresis thresholding contains all of 
the white pixels from (g) and those red pixels that connect to them. 



Harris Corner Detector 
• Find points in the image where the image intensity is 

varying in both directions
o hmn, vmn are the response to a horizontal and vertical derivative filter, 

respectively
o wmn weights à smaller away from the center of window (2D+1)x(2D+1)
o Compute the image structure tensor (2-by-2 matrix) as follows:

o Compute the singular values (𝜅 between 0.04 to 0.15)

o If cij is greater than a threshold à corner
o Intuition: if singular values are both small à no change; if one singular 

value is large and the other is small à edge; otherwise, corner
o Rotation invariant
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13.2.2 Harris corner detector

The Harris corner detector (figure 13.12) considers the local gradients in the hori-
zontal and vertical directions around each point. The goal is to find points in the
image where the image intensity is varying in both directions (a corner) rather than
in one direction (an edge), or neither (a flat region). The Harris corner detector
bases this decision on the image structure tensor

S
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=
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j+DX
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mn

v
mn

h
mn
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mn

v2
mn

�
, (13.14)

where S
ij

is the image structure tensor at position (i, j), which is computed over a
square region of size (2D+1)⇥ (2D+1) around the current position. The term h

mn

denotes the response of a horizontal derivative filter (such as the Sobel) at position
(m,n) and the term v

mn

denotes the response of a vertical derivative filter. The
term w

mn

is a weight that diminishes the contribution of positions that are far
from the central pixel (i, j).

To identify whether a corner is present, the Harris corner detector considers
the singular values �1,�2 of the image structure tensor. If both singular values are
small, then the region around the point is smooth and this position is not chosen.
If one singular value is large but the other small, then the image is changing in one
direction but not the other, and point lies on or near an edge. However, if both
singular values are large, then this image is changing rapidly in both directions in
this region and the position is deemed to be a corner.

In fact the Harris detector does not directly compute the singular values, but
evaluates a criterion which accomplishes the same thing more e�ciently:

c
ij

= �1�2 � (�2
1 + �2

2) = det[S
ij

]�  · trace[S
ij

], (13.15)

where  is a constant (values between 0.04 and 0.15 are sensible). If the value of c
ij

is greater than a predetermined threshold, then a corner may be assigned. There is
usually an additional non-maximal suppression stage similar to that in the Canny
edge detector to ensure that only peaks in the function c

ij

are retained.

13.2.3 SIFT detector

The scale invariant feature transform (SIFT) detector is a second method for iden-
tifying interest points. Unlike the Harris corner detector, it associates a scale and
orientation to each of the resulting interest points. To find the interest points a
number of operations are performed in turn.

The intensity image is filtered with a di↵erence of Gaussian kernel at a series of
K increasingly coarse scales (figure 13.13). Then the filtered images are stacked to
make a 3D volume of size I ⇥ J ⇥K where I and J are the vertical and horizontal
size of the image. Extrema are identified within this volume: these are positions
where the 26 3D voxel neighbors (from a 3⇥3⇥3 block) are either all greater than
or all less than the current value.
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13.2.3 SIFT detector

The scale invariant feature transform (SIFT) detector is a second method for iden-
tifying interest points. Unlike the Harris corner detector, it associates a scale and
orientation to each of the resulting interest points. To find the interest points a
number of operations are performed in turn.

The intensity image is filtered with a di↵erence of Gaussian kernel at a series of
K increasingly coarse scales (figure 13.13). Then the filtered images are stacked to
make a 3D volume of size I ⇥ J ⇥K where I and J are the vertical and horizontal
size of the image. Extrema are identified within this volume: these are positions
where the 26 3D voxel neighbors (from a 3⇥3⇥3 block) are either all greater than
or all less than the current value.
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Scale Free Features
• Harris corner detector is sensitive to the scale of the 

image
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http://docs.opencv.org/master/da/df5/tutorial_py_sift_intro.html#gsc.tab=0



SIFT Detector
Scale invariant feature transform (SIFT) 
detector 
1. The intensity image is filtered with a 

difference of Gaussian kernel at a 
series of K increasingly coarse scales

2. Local extrema are identified in the 
IxJxK volume as points who is either 
greater or smaller than all 26 
neighbors in 3x3x3 block (voxel)

3. Apply quadratic approximation at 
each extrema point à finding the 
peak or trough at sub-pixel level

4. Apply Harris corner detector
5. The amplitude and orientation of 

local gradient in the regions 
surrounding interest points

6. A histogram is computed for the 
region and the peak of the histogram 
is assigned as the orientation of the 
orientation

7. Each interest point marked with an 
arrow with the orientation and its 
scale (SIFT descriptor)
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Figure 13.13 The SIFT detector. a) Original image. b-h) The image is
filtered with di↵erence of Gaussian kernels at a range of increasing scales.
i) The resulting images are stacked to create a 3D volume. Points that are
local extrema in the filtered image volume (i.e., are either greater than or
less than all 26 3D neighbors) are considered to be candidates for interest
points.

Figure 13.14 Refinement of SIFT detector candidates. a) Positions of ex-
trema in the filtered image volume (figure 13.13i). Note that the scale is
not shown. These are considered candidates to be interest points. b) Re-
maining candidates after eliminating those in smooth regions. c) Remaining
candidate points after removing those on edges using the image structure
tensor.

These extrema are localized to sub-voxel accuracy, by applying a local quadratic
approximation and returning the position of the peak or trough. The quadratic
approximation is made by taking a Taylor expansion about the current point. This
provides a position estimate that has sub-pixel resolution and an estimate of the
scale that is more accurate than the resolution of the scale sampling. Finally, the
image structure tensor S

ij

(equation 13.14) is computed at the location and scale
of each point. Candidate points in smooth regions and on edges are removed by
considering the singular values of S

ij

as in the Harris corner detector (figure 13.14).
This procedure returns a set of interest points that are localized to sub-pixel
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Figure 13.15 Results of SIFT detec-
tor. Each final interest point is in-
dicated using an arrow. The length
of the arrow indicates the scale with
which the interest point is identified
and the angle of the arrow indicates
the associated orientation. Notice
that there are some positions in the
image where the orientation was not
unique and here two interest points
are used, one associated with each ori-
entation. An example of this is on the
right shirt collar. Subsequent descrip-
tors that characterize the structure of
the image around the interest points
are computed relative to this scale and
orientation and hence inherit some in-
variance to these factors.

accuracy and associated accurately with a particular scale. Finally, a unique ori-
entation is also assigned to each interest point. To this end, the amplitude and
orientation of the local gradients are computed (equations 13.13) in a region sur-
rounding the interest point whose size is proportional to the identified scale. An
orientation histogram is then computed over this region with 36 bins covering all
360o of orientation. The contribution to the histogram depends on the gradient
amplitude and is weighted by a Gaussian profile centered at the location of the
interest point, so that nearby regions contribute more. The orientation of the in-
terest point is assigned to be the peak of this histogram. If there is a second peak
within 80% of the maximum, we may choose to compute descriptors at two orienta-
tions at this point. The final detected points are hence associated with a particular
orientation and scale (figure 13.15).

13.3 Descriptors

In this section, we consider descriptors. These are compact representations that
summarize the contents of an image region.

13.3.1 Histograms

The simplest approach to aggregating information over a large image region is to
compute a histogram of the responses in this area. For example, we might collate
RGB pixel intensities, filter responses, local binary patterns, or textons into a
histogram depending on the application. The histogram entries can be treated as
discrete and modeled with a categorical distribution, or treated as a continuous
vector quantity.
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Further Reading
• Chapter 13, 14, Simon J.D. Prince, Computer vision: 

models, learning and inference, Cambridge 
University Press (electronic version available from 
the author’s web site)
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