
I/O Multiplexing and Posix
Threads

COSC 6397 Rong Zheng 1

Possible Mechanisms for Creating

1. Processes
Concurrent Service

– Kernel automatically interleaves multiple logical flows.
– Each flow has its own private address space.

2. I/O multiplexing with select()2. I/O multiplexing with select()
– User manually interleaves multiple logical flows.
– Each flow shares the same address space.

P l f hi h f d i– Popular for high-performance server designs.

3. Threads
– Kernel automatically interleaves multiple logical flows.e e auto at ca y te ea es u t p e og ca o s
– Each flow shares the same address space.

Process Thread Context SwitchProcess, Thread, Context Switch

• A process has its own memory addressA process has its own memory address
space

• Threads share the heap of their parent• Threads share the heap of their parent
process
C t t it h• Context switch
– Save all the process/thread states and/or

iregisters

Fork()Fork()
#include <unistd.h>
pid_t fork(void)

• Fork(): Clones calling processFork(): Clones calling process
– Returns: 0 in child, process ID of child in parent, -1 on

error
Stop current process and save its state– Stop current process and save its state

– Make copy of code, data, stack, and PCB
– Add new PCB to ready list

All descriptors open in the parent are shared with
the childthe child

I/O ModelsI/O Models

• Blocking I/OBlocking I/O
• Non-blocking I/O

I/O lti l i• I/O multiplexing
• Signal driven I/O
• Asynchronous I/O

Blocking I/O
• By default, accept(), recv(), etc block until there’s input

li i k lapplication

recvfrom
System call

No datagram ready

kernel

D d
Process
blocks

Wait for
data

Datagram ready
copy datagram

blocks
in a call to
recvfrom

Copy data
from kernel
to user

Process
Return OK

Copy complete

o use

datagram

nonblocking I/O
li i k lapplication

recvfrom
System call

No datagram ready

kernel

EWOULDBLOCK

Wait for

EWOULDBLOCK

recvfrom No datagram ready
System call

Wait for
data

EWOULDBLOCK

recvfrom datagram ready
System callProcess

repeatedly
ll f copy datagram

Copy data
from kernel

call recvfrom
wating for an
OK return
(polling)

Process
Return OK

application

from kernel
to user

(po g)

datagram

I/O multiplexing(select and poll)I/O multiplexing(select and poll)
application kernel

select No datagram ready

W i f

Process block
in a call to
select waiting

System call

Datagram ready

Wait for
data

Return readable

select waiting
for one of
possibly many
sockets to

System call
Datagram ready
copy datagramrecvfrom

Copy data

become readable

Process blocks

Process
d

Return OK
Copy complete

from kernel
to user

ocess b oc s
while data
copied
into application
b ff datagrambuffer

asynchronous I/Oy

application
S ll

kernel

aio_read
System call

No datagram ready

Wait forReturn

Datagram ready
d

Process
continues
executing

Wait for
data

C d t

Return

copy datagramexecuting Copy data
from kernel
to user

Signal
handler
Process
datagram

Delever signal
Copy complete

Specified in aio_read
datagram

Comparison of the I/O ModelsComparison of the I/O Models

bl ki bl ki
I/O signal-driven asynchronous

I/Oblocking nonblocking multiplexing I/O I/O

initiate check
check
check

check

bl

initiate

check
check
check
check

locked

ready notification

wait for
data

blocked

y
initiateblocked

initiateblocked copy data
from kernel

complete complete complete complete notification
from kernel
to user

1 t h h dl d diff tl h dl b h h1st phase handled differently,
2nd phase handled the same

handles both phases

When is I/O Multiplexing Useful?When is I/O Multiplexing Useful?

• A client is handling multiple descriptorsA client is handling multiple descriptors
(normally interactive input and a network
socket))

• A TCP server handles both a listening
socket and its connected sockets

• A server handles both TCP and UDP
sockets

• A server handles multiple services and
multiple protocolsp p

Concurrent Servers Using I/O
Multiplexing

• Maintain a pool of connected descriptors.Maintain a pool of connected descriptors.
• Repeat the following forever:

– Use the Unix select function to block until:Use the Unix select function to block until:
• (a) New connection request arrives on the listening

descriptor.
• (b) New data arrives on an existing connected descriptor• (b) New data arrives on an existing connected descriptor.

– If (a), add the new connection to the pool of
connections.

– If (b), read any available data from the connection
• Close connection on EOF and remove it from the pool.

The select FunctionThe select Function
• select() sleeps until one or more file descriptors in

the set readset ready for reading or one or more
descriptors in writeset ready for writing or in event of an
exception conditionexception condition
#include <sys/select.h>
#include <sys/time.h>
int select (int maxfdp1 fd set *readset fd setint select (int maxfdp1, fd_set *readset, fd_set

*writeset, fd_set *exceptset, const struct timeval *);

struct timeval{struct timeval{
long tv_sec; /* seconds */
long tv_usec; /* microseconds */

}
• select() returns the number of ready descriptors

}

Select() ArugmentsSelect() Arugments

• Value-result argumentsValue result arguments
readset

• Opaque bit vector (max FD_SETSIZE bits) that indicates
membership in a descriptor set.
• On Linux machines, FD_SETSIZE = 1024

• If bit k is 1, then descriptor k is a member of the descriptor set.
• When call select, should have readset indicate which descriptors to testWhen call select, should have readset indicate which descriptors to test

writeset
• writeset is similar but refers to descriptors ready for writing

fd 1maxfdp1
• Maximum descriptor in descriptor set plus 1.
• Tests descriptors 0, 1, 2, ..., maxfdp1 - 1 for set membership.

Macros for Manipulating Set
Descriptors

• void FD_ZERO(fd_set *fdset);

– Turn off all bits in fdset.

• void FD_SET(int fd, fd_set *fdset);

– Turn on bit fd in fdset.

• void FD_CLR(int fd, fd_set *fdset);

– Turn off bit fd in fdset.

• int FD_ISSET(int fd, *fdset);

– Is bit fd in fdset turned on?

Example of Descriptor sets
function

fd set rset;_

FD_ZERO(&rset);/*all bits off : initiate*/
FD_SET(1, &rset);/*turn on bit fd 1*/
FD_SET(4, &rset); /*turn on bit fd 4*/

/ /FD_SET(5, &rset); /*turn on bit fd 5*/

Condition that cause a socket
t b d f l tto be ready for select

Condition Readable? writable? Exception?

Data to read
read-half of the connection closed
new connection ready for listening socket

•
•
•

Space available for writing
write-half of the connection closed

•
•

Pending error • •

•

Pending error

TCP out-of-band data

TCP echo serverTCP echo server

• Rewrite the server as a single process thatRewrite the server as a single process that
uses select to handle any number of
clients instead of forking one child perclients, instead of forking one child per
client.

Data structure TCP server(1)Data structure TCP server(1)
Before first client has established a connection

Client[]

[0] 1 t
fd0 fd1 fd2 fd3

0 0 0 1[0]
[1]
[2]

-1
-1
1

rset: 0 0 0 1

Maxfd + 1 = 4[2] -1 Maxfd 1 4

-1[FD_SETSIZE -1] fd:0(stdin),1(stdout),2(stderr)
fd:3 => listening socket fdg

Data structure TCP server(2)Data structure TCP server(2)
After first client connection is established

Client[]

[0] 4 t
fd0 fd1 fd2 fd3

0 0 0 1
fd4
1[0]

[1]
[2]

4
-1
1

rset: 0 0 0 1

Maxfd + 1 = 5

1

[2] -1 Maxfd 1 5

-1[FD_SETSIZE -1] * fd3 => listening socket fd

*fd4 => client socket fd

TCP echo server using single
process

• See Page 2See Page 2
• Demo

POSIX ThreadPOSIX Thread

• Threads are “lightweight processes”Threads are lightweight processes
– Creation of threads are usually 10-100 faster

Threads within a process share the same– Threads within a process share the same
global memory sharing of information
among threads is easyamong threads is easy

• Further readings:• Further readings:
http://www.llnl.gov/computing/tutorials/pthreads/

ComparisonComparison
Time to execute 50,000 process/thread creations

sysuserrealsysuserreal

pthread_create()fork()
Platform

0.970.971.4940.272.2144.08IBM 1.5 GHz POWER4

6.792.767.4653.743.4961.94IBM 375 MHz POWER3

0.750.541.1342.753.3250.66IBM 1.9 GHz POWER5 p5-575

0.010.042.103.420.1223.61INTEL 1.4 GHz Itanium 2

0.300.531.708.973.1223.81INTEL 2.4 GHz Xeon

Real time – time between invocation and termination
User time – time spent in the user program
System time – time spent in the kernel as a result of user program

pthread create functionpthread_create function

Value-result
parameter:
thread Id

Attribute of the
thread; NULL if

default

#include <pthread.h>
int pthread_create(pthread_t *tid, const pthread_attr_t *attr,
void *(*func) (void *), void *arg);

0, successful;

The function and its argument
to execute; multiple arguments
are packaged into a structure

Nonzero, error

Thread TerminationThread Termination
#include <pthread.h>

• A thread can be joinable (default) or detached
O if hi h th d t it f j i bl th d’ ID

p
void pthread_exit(void *retval);

– One can specify which thread to wait for; a joinable thread’s ID
and exit status are retained until another thread calls
pthread_join

– Detached thread upon termination all its resources are release– Detached thread, upon termination, all its resources are release

Thread TerminationThread Termination

#include <pthread.h>
int pthread_join(pthread_t tid, void **status);

#include <pthread.h>
int pthread_detached(pthread_t tid);

Returns 0 if OK, positive EXXX value on error

_ _

pthread_join() subroutine blocks the calling thread until the
specified thread terminates

pthread self functionpthread_self function

• Returns thread ID of the calling threadReturns thread ID of the calling thread

#include <pthread.h>
pthread_t pthread_self(void);

MutexesMutexes

• Threads share global variablesThreads share global variables
– Execution of threads are usually non-

deterministicdeterministic
• Demo example01.c

#include <pthread.h>
#define NLOOP 5000
int counter; /* incremented by threads */

id *d it(id *)void *doit(void *);

int
main(int argc, char **argv)
{

pthread_t tidA, tidB;
pthread_create(&tidA, NULL, &doit, NULL);
pthread_create(&tidB, NULL, &doit, NULL);

/* 4wait for both threads to terminate */
pthread join(tidA NULL);pthread_join(tidA, NULL);
pthread_join(tidB, NULL);
printf("counter = %d\n", counter);
exit(0);

}

What will be the
output?

void *doit(void *vptr)
{

int i, val;
for (i = 0; i < NLOOP; i++) {for (i 0; i < NLOOP; i++) {

val = counter;
//printf("%d: %d\n", pthread_self(), val + 1);
counter = val + 1;

}

return(NULL);
}

gcc -lpthread -o example01 example01.c

Mutexes (cont’d)Mutexes (cont d)
#include <pthread.h>p
int ptread_mutex_lock(pthread_mutex_t *mptr);
int ptread_mutex_unlock(pthread_mutex_t *mptr);

int pthread mutex init (pthread mutex t * mutex pthread mutexattr t *

• Blocked if trying to lock a mutex locked by some other thread

int pthread_mutex_init (pthread_mutex_t * mutex , pthread_mutexattr_t *
attr);

pthread_mutex_t counter_mutex = PTHREAD_MUTEX_INITIALIZER;
…
for (i = 0; i < NLOOP; i++) {
th d t l k(& t t)pthread_mutex_lock(&counter_mutex);
counter = counter++;
pthread_mutex_unlock(&counter_mutex);
}

Condition VariablesCondition Variables
• Check whether a condition is met
• Allow threads to synchronize based upon the actual

value of data (as opposed to a binary value)
• Often used in conjunction with mutex
#include <pthread.h>
int ptread_cond_wait(pthread_cond_t *cptr, pthread_mutex_t
*mptr);
int ptread_cond_signal(pthread_mutex_t *cptr);

int pthread cond broadcast(pthread cond t *cond);int pthread_cond_broadcast(pthread_cond_t cond);
int pthread_cond_broadcast(pthread_cond_t *cond);

int pthread_condattr_init ((pthread_condattr_t *attr);

Main Thread
• Declare and initialize global data/variables which require synchronization (such as

"count")
• Declare and initialize a condition variable object• Declare and initialize a condition variable object
• Declare and initialize an associated mutex
• Create threads A and B to do work
Thread A

Do work up to the point where a certain
Thread B

Do work• Do work up to the point where a certain
condition must occur (such as "count"
must reach a specified value)

• Lock associated mutex and check
value of a global variable

• Do work
• Lock associated mutex
• Change the value of the global variable

that Thread-A is waiting upon.
• Check value of the global Thread-A waitvalue of a global variable

• Call pthread_cond_wait() to perform a
blocking wait for signal from Thread-B.
Note that a call to pthread_cond_wait()
automatically and atomically unlocks

Check value of the global Thread A wait
variable. If it fulfills the desired
condition, signal Thread-A.

• Unlock mutex.
• Continue

the associated mutex variable so that it
can be used by Thread-B.

• When signalled, wake up. Mutex is
automatically and atomically locked.
E li itl l k t• Explicitly unlock mutex

• Continue
Main Thread
Join / Continue

Condition VariablesCondition Variables
• Consider a web client that downloads multiple objects

int ndone /* n mber of hil (l ftt d 0) {int ndone; /* number of
terminated threads */
pthread_mutex_t
ndone_mutex =
PTHREAD MUTEX INITIALIZER;

while (nlefttoread > 0) {
while (nconn < maxnconn && nlefttoconn
> 0)
{ /* find a file to read */

PTHREAD_MUTEX_INITIALIZER;

void * do_get_read (void
*vptr) {

...
} /* See if one of the threads is done
*/
pthread_mutex_lock(&ndone_mutex);
if (ndone > 0) {...

pthread_mutex_lock(&ndone_m
utex);

ndone++;

if (ndone 0) {
for (i = 0; i < nfiles; i++) {

if (file[i].f_flags & F_DONE) {
pthread_join(file[i].f_tid,

(void **) &fptr);
pthread_mutex_unlock(&ndone
_mutex);

return(fptr); /*
terminate thread */

/* update file[i] for terminated thread
*/

...
}

COSC 6397 Rong Zheng 34

} }
}

pthread_mutex_unlock(&ndone_mutex);
}

A Web Client AssignmentA Web Client Assignment

• The problem statement:The problem statement:
– A web page typically contains multiple clients

Concurrent downloading can expedite user’s– Concurrent downloading can expedite user s
experience

• telnet host port as a testing tool

RoadmapRoadmap

• I/O multiplexingI/O multiplexing
• Socket options and why you cant bind to a

port immediatelyport immediately

TCP state diagramTCP state diagram

CLOSE

CLOSEFIN

ESTABsend FIN
CLOSE

send FIN
CLOSE

send ACK
rcv FIN

Active Close

Passive Close

CLOSE
WAIT

FIN
WAIT-1

snd FIN
CLOSEsnd ACK

rcv FIN

FIN ACK
ACK

CLOSING
snd FIN

rcv ACK of FIN

LAST-ACKFIN WAIT-2

rcv ACK of FIN

snd ACK
rcv FIN+ACK

TIME WAIT CLOSED

snd ACK
rcv FIN Timeout=240sec

COSC 6397 Rong Zheng 37

Socket OptionsSocket Options
• Set and get socket options [see handout]g p []

– e.g., SO_REUSEADDR allows reuse of address and port
– e.g., SO_KEEPALIVE allows TCP to automatically send

keep_alive probe to its peer

#include <sys/types.h>
#include <sys/socket.h>

int getsockopt(int s, int level, int optname, void
*optval, socklen_t *optlen);

int setsockopt(int s, int level, int optname, const void
*optval, socklen_t optlen);

