
Khuong Vu, Graduate student

Computer Science department

Introduction to Android Programming

1

Content

 Get started

 Set up environment

 Running app on simulator

 GUI

 Layouts

 Event handling

 Life cycle

 Networking

 Sensor programming

 Gyroscope and Accelerometer

 GPS and location

 Google map

 Camera

2

Get started

 Installing the Software and Documentation

 Java 6

 Eclipse

 Android SDK base

 Eclipse ADT Plugin

 Updated SDK components

 AVD (Android Virtual Device)

3

Android SDK

 Download and run installer from

http://developer.android.com/sdk/

 Install in C:\android-sdk (different if you run Linux)

 Sets up basic SDK, but omits many components

 Detailed instructions

 http://developer.android.com/sdk/installing/index.html

 Postponed step

 After installing Eclipse plugin, we will run the Android

SDK Manager to get important missing components

 Easiest to do from Eclipse.

4

http://developer.android.com/sdk/
http://developer.android.com/sdk/installing/index.html

Eclipse ADT Plugin

 Overview

 ADT (Android Development Tools) provides many useful

features accessible directly in Eclipse

 Integration between Eclipse & Android command-line tools

 Drag-and-drop GUI builder

 Many development and debugging aids

 Detailed installation instructions

 http://developer.android.com/sdk/installing/installing-

adt.html

 More details

 http://developer.android.com/sdk/eclipse-adt.html

5

http://developer.android.com/sdk/installing/installing-adt.html
http://developer.android.com/sdk/installing/installing-adt.html
http://developer.android.com/sdk/installing/installing-adt.html
http://developer.android.com/sdk/eclipse-adt.html
http://developer.android.com/sdk/eclipse-adt.html
http://developer.android.com/sdk/eclipse-adt.html

Eclipse ADT Plugin

 Steps

 Start Eclipse

 Help  Install New Software …

 Click “Add” in upper-right

 In Add Repository, for Name enter “ADT Plugin” and for

Location enter https://dl-

ssl.google.com/android/eclipse/

6

https://dl-ssl.google.com/android/eclipse/
https://dl-ssl.google.com/android/eclipse/
https://dl-ssl.google.com/android/eclipse/

Emulator (AVD)

7

 The Android SDK includes a virtual
mobile device (AVD) emulator that
runs on your computer

 Lets you prototype, develop and test
Android applications without using a
physical device

 Easier to manage with AVD Manager
with eclipse

 Limitations:

 No support for Bluetooth

 No support for USB connections

 No support for sensors

Emulator (AVD)

8

 Networking support

 Each instance of the

emulator runs behind a

virtual router/firewall

service

 Need to use proxy to

access internet

 Windowpreference

androidlaunch

 Default emulator options: -

dns-server 8.8.8.8,8.8.4.4

Emulator (AVD)

9

 Camera support:

 Emulator can simulate phone

camera using webcam

 AVD manager Hardware

New Configures

camera….

HelloWorld: first app

 Create an app

 Source code file

 AndroidManifest.xml

 res/layout/…

 Deploy on simulator

 Set up a AVD (Android Virtual Device)

 Deploy app on virtual device

 Deploy on a physical device

10

Content

 Get started

 Set up environment

 Running app on simulator

 GUI

 Layouts

 Event handling

 Life cycle

 Networking

 Sensor programming

 Gyroscope and Accelerometer

 GPS and location

 Google map

 Camera

11

Basic elements

 An Activity is an application component that provides a screen

with which users can interact

 View objects: usually UI widgets such as buttons or text fields

 ViewGroup : invisible view containers that define how the child

views are laid out

12

http://developer.android.com/reference/android/app/Activity.html
http://developer.android.com/guide/topics/ui/controls/text.html
http://developer.android.com/guide/topics/ui/controls/button.html
http://developer.android.com/guide/topics/ui/controls/text.html
http://developer.android.com/guide/topics/ui/controls/text.html
http://developer.android.com/guide/topics/ui/controls/text.html
http://developer.android.com/guide/topics/ui/controls/text.html

Layouts

 Organizing how controls is shown on screen

 Very similar to Java

 LinearLayout

 GridLayout

 TableLayout

 …

 In this talk: LinearLayout

 Illustrate how to design layouts for Android apps

13

Layouts Strategies

 XML-based

 Declare layout in res/layouts/some_layout.xml
 Set various XML properties

 Use visual editor in Eclipse

 Load with setContentView(R.layout.some_layout)

 Java-based

 Instantiate layout, set properties, insert sub-layouts
 LinearLayout window = new LinearLayout(this);

 window.setVariousAttributes(…);

 window.addView(widgetOrLayout);

 Load with setContentView(window)

 This tutorial

 Uses XML-based approach. However, attributes can be adapted for Java-
based approach

14

Common XML Layout Attributes

 Size

 android:layout_height, android:layout_width

 match_parent: fill the parent space (minus padding)

 wrap_content: use natural size (plus padding)

 An explicit size with a number and a dimension.

 android:layout_weight: A number that gives proportional sizes. See example.

 Alignment

 android:layout_gravity: How the View is aligned within containing View.

 android:gravity: How the text or components inside the View are aligned.

 Possible values: top, bottom, left, right, center_vertical, center_horizontal,

center (i.e., center both ways), fill_vertical, fill_horizontal, fill (i.e., fill

both directions), clip_vertical, clip_horizontal

15

Common XML Layout Attributes

 ID

 android:id
 Used if the Java code needs a reference to View

 Used in RelativeLayout so XML can refer to earlier ids

 Colors

 android:background (color or image, for any Layout)

 android:textColor (e.g., for TextView or Button)

 Common color value formats• "#rrggbb", "#aarrggbb",
"@color/color_name"

 Click handler

 android:onClick
 Should be a public method in main Activity that takes a View (the thing clicked) as

argument and returns void

16

Layouts

 LinearLayout

 Put components in a single row or

single column

 By nesting, can have rows within columns,

etc.

 Most important XML

attributes

 android:orientation:"horizontal" (a

row) or "vertical" (a column)

 android:gravity: How the Views

inside are aligned.

17

Content

 Get started

 Set up environment

 Running app on simulator

 GUI

 Layouts

 Event handling

 Life cycle

 Networking

 Sensor programming

 Gyroscope and Accelerometer

 GPS and location

 Google map

 Camera

18

Event handling

 Let us build an example:

Change color of a

TextView when Button or

RadioButton is pressed.

Different colors

depending on which

pressed

19

Event handling

 Approaches

 Java-based

 Use an external class that implements View.OnClickListener

 Import android.view.View.OnClickListener, then say “implements

OnClickListener”

 Use an inner class that implements View.OnClickListener

 XML-based

 Have the layout file (main.xml) specify the handler method via the

android:onClick attribute.

20

Content

 Get started

 Set up environment

 Running app on simulator

 GUI

 Layouts

 Event handling

 Lifecycle

 Networking

 Sensor programming

 Gyroscope and Accelerometer

 GPS and location

 Google map

 Camera

21

Activity lifecycle

 During the life of an activity, the system calls a core set of

lifecycle methods in a sequence similar to a step pyramid

22

Content

 Get started

 Set up environment

 Running app on simulator

 GUI

 Layouts

 Event handling

 Lifecycle

 Networking

 Sensor programming

 Gyroscope and Accelerometer

 GPS and location

 Google map

 Camera

23

Many ways to communicate with a server

 Socket class

 Lets you do general-purpose network programming: Same as with
desktop Java programming

 HttpURLConnection

 Simplifies connections to HTTP servers: Same as with desktop Java
programming

 HttpClient

 Simplest way to download entire content of a URL: Not standard
in Java SE, but standard in Android

 JSONObject (JavaScript Object Notation)

 Simplifies creation and parsing of JSON data: Not standard in
Java SE, but standard in Android

24

Steps for talking to Server with socket

1. Create a Socket object

Socket client = new Socket("hostname", portNumber);

2. Create output stream to send data to the Socket

// Last arg of true means autoflush -- flush stream

// when println is called

PrintWriter out = new

 PrintWriter(client.getOutputStream(), true);

3. Create input stream to read response from server

BufferedReader in =

 new BufferedReader (new

 InputStreamReader(client.getInputStream()));

25

Steps for talking to Server with socket

4. Do I/O with the input and output Streams

 For the output stream, PrintWriter, use print, println, and printf

 For input stream, BufferedReader, call read to get a single char or

an array of characters, or call readLine to get a whole line

5. Close the socket when done

client.close();

26

Requesting Internet Permission

 Apps that use internet must say so

 User will be notified that app wants internet permission, and can
deny it. Apps that do not request permission will be denied access by
the Android OS

 AndroidManifest.xml

<?xml version="1.0" encoding="utf-8"?>

<manifest xmlns:android="http://…" …>

<uses-sdk android:minSdkVersion="…" />

<uses-permission
android:name=“android.permission.INTERNET”/>

…

</manifest>

27

Example: Time Server

 http://www.nist.gov/pml/div

688/grp40/its.cfm

 Approach

 Make a Socket connection to

time-b.nist.gov on port 13

 Create a BufferedReader (no

PrintWriter needed)

 Read first line of result and

ignore it

 Read second line of result and

print it out

28

http://www.nist.gov/pml/div688/grp40/its.cfm
http://www.nist.gov/pml/div688/grp40/its.cfm
http://www.nist.gov/pml/div688/grp40/its.cfm
http://www.nist.gov/pml/div688/grp40/its.cfm

Content

 Get started

 Set up environment

 Running app on simulator

 GUI

 Layouts

 Event handling

 Lifecycle

 Networking

 Sensor programming

 Gyroscope and Accelerometer

 GPS and location

 Google map

 Camera

29

Android Sensors Overview

 Android Sensors:

 MIC

 Camera

 Temperature

 Location (GPS or Network)

 Orientation

 Accelerometer

 Proximity

 Pressure

 Light

 Sensor Coordinate System

30

Accelerometer

31

 An acceleration sensor determines the acceleration that is applied

to a device (Ad) by measuring the forces that are applied to the

sensor itself (Fs)

 Ad = - ∑Fs / mass

 3 force components: x, y and z

 Good sensor to use if you are monitoring device motion

 About 10 times less power than the other motion sensors

 Have to implement low-pass and high-pass filters to eliminate

gravitational forces and reduce noise.

Gyroscope

32

 The gyroscope measures the rate or rotation in rad/s around a

device's x, y, and z axis.

 Coordinate system is the same as the one used for the

acceleration sensor

 Rotation is positive in the counter-clockwise direction

 In practice, gyroscope noise and drift will introduce errors that

need to be compensated for

Async Callbacks

Android’s sensors are
controlled by external services
and only send events when
they choose to

An app must register a
callback to be notified of a
sensor event

Each sensor has a related
XXXListener interface that
your callback must implement

 E.g. LocationListener

SensorManager Your App

Sensor Event

Sensor Event

Sensor Event

Register Callback

33

Getting the Relevant System Service

 The non-media (e.g. not camera) sensors are managed by a variety of

XXXXManager classes:

 LocationManager (GPS)

 SensorManager (accelerometer, gyro, proximity, light, temp)

 The first step in registering is to obtain a reference to the relevant

manager

 Every Activity has a getSystemService() method that can be used to

obtain a reference to the needed manager

public class MyActivity … {

 private SensorManager sensorManager_;

 public void onCreate(){

 …

 sensorManager = (SensorManager) getSystemService(SENSOR_SERVICE);

 }

} 34

Registering for Sensor Updates

35

 The SensorManager handles registrations for

 Accelerometer, Temp, Light, Gyro

 In order for an object to receive updates from GPS, it must implement the

SensorEventListener interface

 Once the SensorManager is obtained, you must obtain a reference to the specific

sensor you are interested in updates from

 The arguments passed into the registerListener method determine the sensor that you

are connected to and the rate at which it will send you updates

 public class MyActivity … implements SensorListener{

 private Sensor accelerometer;

 private SensorManager sensorManager;

 public void connectToAccelerometer() {

 sensorManager_ = (SensorManager)getSystemService(SENSOR_MANAGER);

 accelerometer = sensorManager.getDefaultSensor(Sensor.TYPE_ACCELEROMETER);

 sensorManager.registerListener(this, accelerometer,

 SensorManager.SENSOR_DELAY_NORMAL);

}

The SensorEventListener Interface

36

 Because there is one interface for multiple types of sensors, listening to multiple

sensors requires switching on the type of event (or creating separate listener objects)

 Simple approach:

public class MyActivity … implements SensorListener{

 // Called when a registered sensor changes value

 @Override

 public void onSensorChanged(SensorEvent sensorEvent) {

 if (sensorEvent.sensor.getType() == Sensor.TYPE_ACCELEROMETER) {

 float xaccel = sensorEvent.values[0];

 float yaccel = sensorEvent.values[1];

 float zaccel = sensorEvent.values[2];

 }

 }

 // Called when a registered sensor's accuracy changes

 @Override

 public void onAccuracyChanged(Sensor arg0, int arg1) {

 // TODO Auto-generated method stub

 }

}

The SensorEventListener Interface

37

 Another (better) approach for multiple sensors :

public class MyActivity … {

 private class AccelListener implements SensorListener {

 public void onSensorChanged(SensorEvent sensorEvent) {…}

 public void onAccuracyChanged(Sensor arg0, int arg1) {}

}

 private class LightListener implements SensorListener {

 public void onSensorChanged(SensorEvent sensorEvent) {…}

 public void onAccuracyChanged(Sensor arg0, int arg1) {}

}

private SensorListener accelListener_ = new AccelListener();

private SensorListener lightListener_ = new LightListener();

…

public void onResume(){

 …

 sensorManager_.registerListener(accelListener, accelerometer,

 SensorManager.SENSOR_DELAY_GAME);

 sensorManager_.registerListener(lightListener, lightsensor,

 SensorManager.SENSOR_DELAY_NORMAL);

}

public void onPause(){
 sensorManager_.unregisterListener(accelListener_);

 sensorManager_.unregisterListener(lightListener_);

}

Content

 Get started

 Set up environment

 Running app on simulator

 GUI

 Layouts

 Event handling

 Lifecycle

 Networking

 Sensor programming

 Gyroscope and Accelerometer

 GPS and locations

 Google map

 Camera

38

Overview of location services

39

 The Network Location Provider provides good location data

without using GPS

 Determining user location is challenging

 Multitude of location sources: GPS, Cell-ID, and Wi-Fi can

each provide a clue to users location with trade-offs in accuracy,

speed, and battery-efficiency.

 User movement

 Varying accuracy

Overview of location services

40

 The phone’s location can be determined from multiple providers

 GPS

 Network

 GPS location updates consume significantly more power than network

location updates but are more accurate

 GPS: 25 seconds * 140mA = 1mAh

 Network: 2 seconds * 180mA = 0.1mAh

 The provider argument determines which method will be used to get a

location for you

 You can also register for the PASSIVE_PROVIDER which only updates

you if another app is actively using GPS / Network location

Registering for Location Updates

41

 The LocationManager handles registrations for GPS and network location updates

 In order for an object to receive updates from GPS, it must implement the

LocationListener interface

 Once the LocationManager is obtained, an object registers for updates by calling

requestLocationUpdates

 The arguments passed into the requestLocationUpdates method determine the

granularity of location changes that will generate an event

 send updates that are at least X meters apart

 send updates at least this far apart in time

 Send updates that have this minimum accuracy

public class MyActivity … implements LocationListener{

 private LocationManager locationManager_;

 public void onCreate(){

 …

 locationManager = (LocationManager) getSystemService(LOCATION_SERVICE);

 locationManager.requestLocationUpdates(LocationManager.GPS_PROVIDER, 10,

 Criteria.ACCURACY_FINE, this);

 }

}

Can use NETWORK_PROVIDER`

The LocationListener Interface

42

 public class MyActivity … implements LocationListener{

 …
 // Called when your GPS location changes

 @Override

 public void onLocationChanged(Location location) {

 }

 // Called when a provider gets turned off by the user in the settings

 @Override

 public void onProviderDisabled(String provider) {

 }

 // Called when a provider is turned on by the user in the settings

 @Override

 public void onProviderEnabled(String provider) {

 }

 // Signals a state change in the GPS (e.g. you head through a tunnel and

 // it loses its fix on your position)

 @Override

 public void onStatusChanged(String provider, int status, Bundle extras) {

 }

}

Content

 Get started

 Set up environment

 Running app on simulator

 GUI

 Layouts

 Event handling

 Lifecycle

 Networking

 Sensor programming

 Gyroscope and Accelerometer

 GPS and locations

 Google map

 Camera

43

Google MapView

44

 Location services provide your location, how to show it on map?

 Create map: MapView

 Mark your location on map: Overlay

Steps to create a Google MapView app

45

1. Declare Maps library in AndroidManifest.xml file

<uses-library android:name="com.google.android.maps"/>

2. Obtain permission

<uses-permission android:name="android.permission.INTERNET/>

3. You may want to give the map some more space by getting rid

of the title bar with the "NoTitleBar" theme

<activity android:name = “.HelloGoogleMaps” android:label =

“@string/app_name”

android:theme = “@android:style/Theme.NoTitleBar” >

Steps to create a Google MapView app

46

4. Open the res/layout/main.xml file and add a single

MapView as the root node

<?xml version="1.0" encoding="utf-8"?>

<com.google.android.maps.MapView

xmlns:android="http://schemas.android.com/apk/res/andro

id" android:id="@+id/mapview"

android:layout_width="fill_parent"

android:layout_height="fill_parent" android:clickable="true"

android:apiKey="Your Maps API Key goes here" />

Need to obtain an APT key

Steps to create a Google MapView app

47

5. Obtain an API key

 Use Keytool of Java Development Kit (JDK) to obtain a MD5

certificate: keytool -list -alias androiddebugkey \ -keystore

<path_to_debug_keystore>.keystore \ -storepass android -keypass

android

 Sign up for the Android Maps API: Paste the MD5 certificate in

https://developers.google.com/android/maps-api-signup to obtain

the API key

6. In the source code file: extends MapActivity instead of Activity

public class HelloGoogleMaps extends MapActivity

7. override isRouteDisplayed() method

https://developers.google.com/android/maps-api-signup
https://developers.google.com/android/maps-api-signup
https://developers.google.com/android/maps-api-signup
https://developers.google.com/android/maps-api-signup
https://developers.google.com/android/maps-api-signup
https://developers.google.com/android/maps-api-signup
https://developers.google.com/android/maps-api-signup

Steps to create a Google MapView app

48

9. Finally:

@Override

public void onCreate(Bundle savedInstanceState) {

super.onCreate(savedInstanceState);

setContentView(R.layout.main);

MapView mapView = (MapView) findViewById(R.id.mapview);

mapView.setBuiltInZoomControls(true);

}

Steps to create an OverLay

49

 Idea:

 Each marker is a layer

 Create a list of layers, add or remove layer for each marker

addition/deletion

 More details: take a look at the demo…

Content

 Get started

 Set up environment

 Running app on simulator

 GUI

 Layouts

 Event handling

 Lifecycle

 Networking

 Sensor programming

 Gyroscope and Accelerometer

 GPS and locations

 Google map

 Camera

50

Using the camera API

51

 There are 2 main ways to take pictures with Android

 Intent

 Camera APIs  our focus

 Steps

 Permission

 Access to the camera

 Control camera settings: Camera.Parameters

 Use the Camera Preview: SurfaceView

 Take picture: callback functions

 A demo

And more…

52

 Programming Jobs: Android vs. iPhone

Caveat: Indeed.com shows rough trends only

• Job postings with both words anywhere in posting 15

• Biased by the job sites it samples

And more…

53

 Google Search Trends: Android vs. iPhone Programming

Caveat: Indeed.com shows rough trends only

• Job postings with both words anywhere in posting

15 • Biased by the job sites it samples

Caveat: search volume shows rough trends only

For example, one of Android or iPhone might have clearer

documentation, and require less searching

And more…

54

 Advertising Revenue: Android (53%) vs. iPhone (27%)

 Caveats: advertising does not equate to market volume,

And more…

55

 Market Presence

Caveat: based on survey, not sales data
Raw data at http://www.comscore.com/Press_Events/Press_Releases/2011/7/comScore_Reports_May_2011_U.S._Mobile_Subscriber_Market_Share

56

Thank you

