Mobile System Concerns in the Cloud Age

Lin Zhong

Rice Efficient Computing Group (recg.org)

Rice University

- Input
- Output
- Wireless connectivity

Omni directional transmission a key bottleneck

Ongoing project with Ashutosh Sabharwal

ISLPED'10 and MobiCom'10

Two ways to realize directionality

- Passive directional antennas
 - 8 and 5dBi antennas

- Low cost
- fixed beam patterns
- MobiCom'10
- Digital beamforming
 - Flexible beam patterns
 - High cost

Passive directional antennas

Microstrip antenna (5dBi peak gain)

Challenges

- Multipath effect
 - Hard to find the best transmit direction
- Mobility and rotation
 - Destroys the already found best direction
 - Rotation is most challenging

Questions we try to answer

- 1) How do smartphone-like mobile device rotate during wireless access?
- 2) How do directional antennas behave with indoor and non-line-of-sight (NLOS) propagations?
- 3) How can a device dynamically select the best antenna?

Orientation estimation using Euler Angles

- θ and φ based on tri-axis accelerometer
- ψ based on tri-axis compass and θ and φ

User study

- Collecting accelerometer/compass data
- 11 users with G1 android phone
- One week of continuous measurement for each user

- Data is made open access
 - http://www.ruf.rice.edu/~mobile/downloads.htm

Device rotates slowly

Slower than 120°/s for 90% of the time

Questions we try to answer

- 1) How do smartphone-like mobile device rotate during wireless access?
- 2) How do directional antennas behave with indoor and non-line-of-sight (NLOS) propagations?
- 3) How can a device dynamically select the best antenna?

Measurement setup

First measurement

RSSI measured at both ends

Directional antennas outperform omni in big@haelreg@psocity holds

NLOS ind. / 5dBi antenna

Second measurement

RSSI measured at AP

Directional outperforms omni for ~56%paripeitwintervals > 1 second

RSS is predictable

Less than 0.1 dB error for short intervals

Multi antenna design (MiDAS)

- Only one RF chain
 - One active antenna at a time
- Directional antennas used only for Data transmission and Ack reception

Questions we try to answer

- 1) How do smartphone-like mobile device rotate during wireless access?
- 2) How do directional antennas behave with indoor and non-line-of-sight (NLOS) propagations?
- 3) How can a device dynamically select the best antenna?

Packet-based antenna selection

Works for legacy networks

- Antenna assessment based on ACK packet
 - Uses channel reciprocity

- One antenna assessment per packet
 - Antenna assessment is expensive

Heuristic antenna selection

- Best mode: Uses the previously selected right antenna
- Safe mode: Uses omni antenna when RSS changes rapidly

Symbol-based antenna selection

- Needs change to the PHY layer
- Data packet-based assessment
 - Does not depend on channel reciprocity
- Assess all antennas per packet

Trace based evaluation

- Rotation traces replayed on the motor
- RSSI traces collected for all antennas
- Algorithms evaluated on traces offline

Both Bestilohe methods work well for short average intervals

- Poisson traffic
- Three directional antennas and one omni
- 5dBi directional antennas
- NLOS indoor environment

Good performance in all environments

- Poisson traffic with 10ms average interval
- Three directional antennas and one omni
- 5dBi directional antennas

Two directional antennas are enough

- Poisson traffic with 10ms average interval
- 5dBi directional antennas
- NLOS indoor environment

More focused beam is not necessarily better

- Poisson traffic with 10ms average interval
- Three directional antennas and one omni
- NLOS indoor environment

MiDAS handles mobility too

- MiDAS client rotating according to the traces
- Omni AP moves around randomly

Adding Rate Adaptation & Power Control

Why?

Realize the gain of MiDAS in terms of goodput and power saving

How?

- SNR-triggered rate adaptation
 - Uses goodput-rate table of the wireless card
- Pick the highest rate possible, given SNR
- Reduce the transmit power as much as possible not to hurt the chosen rate more than a threshold

Gordypertsgaving for wet the respondent in the second of t

Simulated for 802.11a with 8 rates

Real-time experiment

WARP goodput-rate table

Gordypertsgaving forwat pakings promente ict insins

Conclusions

- Characterizations
 - Smartphones rotate relatively slow
 - The channel of directional antennas is reciprocal and predictable in short intervals
- MiDAS
 - Effectively employs directional antennas on smartphones to increase link gain by ~3dB

Beamforming

- A group of omni-directional antennas
- Multiple RF chains
- Baseband signal is weighted, and multiplexed to different RF chains and antennas

Power constraint

Circuit power increasingly small

Data collected from JSSC and ISSCC

Form factor constraint

Mobility Constraint

 Beamsteering gain under CSI estimation (per 10ms)

Mobility Constraint (Contd.)

 Beamsteering gain under CSI estimation (per 100ms)

Mobility Constraint (Contd.)

- Key conclusions
 - Beamsteering gain is more stable indoor
 - Static client can always accurately track the channel
 - CSI estimation per 10ms guarantees near-perfect tracking of the channel
- Typical frame length
 - UMTS/LTE: 10ms
 - 802.11: tens of ms

Key tradeoffs

- Circuit and transmit power
- Device efficiency and network capacity

Tradeoff by Beamsteering

- Single-link scenario
- Two-link scenario

Single-link Scenario

An uplink channel between a MC and a BS

Single-link Scenario (Contd.)

Key conclusions

- Beamsteering can be more power efficient than omni-directional transmission
- The larger the uplink capacity, the larger the optimal beamsteering size
- Optimal beamsteering size $N_{opt} = \sqrt{(1 + \alpha)P_0/P_{Circuit}}$

Two-link Scenario

 Two uplink channels between two MCs and two BSs

Two-link Scenario (Contd.)

- Key conclusions
 - Capacity is determined by inter-link interference
 - Beamsteering can be more power efficient than omni-directional transmission
 - With the same power, beamsteering achieves higher network capacity
 - Beamsteering can achieve network unattainable by omni-directional transmission
 - The optimal beamsteering sizes need to be jointly decided

BeamAdapt

- Optimal use of beamsteering on mobile devices
 - Optimal tradeoff between power efficiency and network capacity
- Theoretical formulation
- System design
- Evaluation

Theoretical Formulation

Minimum power consumption to achieve certain network capacity

Minimize

$$P_{Network} = \sum P_i(P_{TX,i}, N_i)$$

s.t.

$$SINR_i(\mathbf{P}_{TX}, \mathbf{N}) \ge \rho_i, 1 \le N_i \le N_{i,max}, \forall 1 \le i \le M$$

Difficult to Solve

- No closed-form formulation of the beamsteering gain $G = G(N, \theta)$
- Non-convex
- Integer constraint of N
 - NP-hard mixed-integer-programming (MIP) problem
- High complexity of brute-force search

$$- O\left(\prod_{i=1}^{M} (N_{i,max})\right)$$

WINDOW TO THE CLOUD

Mobile browsers are slow

What does the browser show?

How does the browser work?

• Where is the bottleneck?

What does the browser show?

How does the browser work?

IR operations: Parsing, Style, Scripting, Layout, Painting

Where is the bottleneck?

- Existing work on PC browsers
 - Layout
 - Style formatting
 - Scripting

^{1.} C. Stockwell, "IE8 Performance," http://blogs.msdn.com/b/ie/archive/2008/08/26/ie8-performance.aspx, 2008.

^{2.} L. A. Meyerovich and R. Bodik, "Fast and parallel webpage layout," in *Proc. Int. Conf. World Wide Web (WWW) Raleigh, North Carolina, USA: ACM, 2010.*3. K. Zhang, L. Wang, A. Pan, and B. B. Zhu, "Smart caching for web browsers," in *Proc. Int. Conf. World Wide Web (WWW) Raleigh, North Carolina, USA: ACM, 2010.*

Is it true for mobile browsers?

Layout, Style, Scripting

Performance characterization

- Metric: browser delay
 - Starting point: when the user presses the "GO" button of the browser to open an URL.
 - End point: when the browser's page loading progress bar indicates 100%.

Performance characterization

Dependency timeline characterization

What-if analysis

What-if analysis

Experimental setup

- Platform:
 - HTC Dream (G1): 528MHz
 - Nexus One (N1): 1GHz
- Operating System
 - Android 2.1 (Eclair)

- Benchmark Webpages:
 - Top 10 mobile websites
 - Top 10 visited non-mobile webpages from LiveLab

Experimental setup

- We used three network conditions:
 - Emulated enterprise Ethernet (no traffic control)
 - Typical 3G network (T-mobile)
 - Emulated adverse network
 - First-hop RTT: 400ms
 - Bandwidth (downlink/uplink): 500Kbps/100Kbps

Logging information

- Time stamp for browser operations
 - Overhead: <1%</p>

- Tcpdump
 - Overhead: <2% (CPU); <0.4% (MEM)</p>

Results

two take-away messages

IR operations do not matter much!

Parsing, Style, Scripting, Layout, Painting

IR operations do not matter much

IR operations do not matter much

IR operations do not matter much

Combined: Parsing, Layout, Style, Scripting, Painting, Glue

Resource loading is the bottleneck!

Resource loading is the bottleneck

Resource loading is the bottleneck

Resource loading is the bottleneck

Network RTT

Network Bandwidth

Browser loading procedure

Processing power

Network RTT matters

Network bandwidth doesn't matter

Bandwidth: Downlink/Uplink (Kbps)

 Up to 25 concurrent requests for top mobile/non-mobile webpages

Constrains on concurrent TCP connections

Mobile Browser	Connections/hostname	Maximum connections
Android	4	4
iPhone 4.3	6	35
Blackberry 9700	4	16
Opera Mobile	4	4
Opera Mini	10	60

Average number of resources

Top 10 Mobile Website Top10 Non-mobile Webpage

Average number of network round trips

Top 10 Mobile Website Top10 Non-mobile Webpage

Time spent by G1 and N1 for those three cases

Total time spent in the three cases on average when opening a mobile webpage

Other uncategorized processing

 The OS moves the data from network stack to browser after receiving data packets

Computation for secure connection (HTTPS)

Performance characterization results

IR operations do not matter much

Resource loading is the bottleneck

- Network RTT (X)
- Network bandwidth
- Browser loading procedure (X)
- Processing power (X)

How to improve mobile browser's performance?

Reduce RTT

- Cloudlet
- Data staging

Reduce # of Round Trips

- Web Pre-fetching
- Resource batching
- Data URI scheme
- Speculative resource loading

^{1.}M. Satyanarayanan, P. Bahl, R. Caceres, and N. Davies, "The Case for VM-Based Cloudlets in Mobile Computing," *IEEE Pervasive Computing, vol. 8, pp. 14-23, 2009.*

^{2.}J. Flinn, S. Sinnamohideen, N. Tolia, and M. Satyanaryanan, "Data Staging on Untrusted Surrogates," in *Proceedings of the 2nd USENIX Conference on File and Storage Technologies San Francisco, CA: USENIX Association, 2003.*

^{3.}V. N. Padmanabhan and J. C. Mogul, "Using predictive prefetching to improve World Wide Web latency," SIGCOMM Comput. Commun. Rev., vol. 26, pp. 22-36, 1996.

^{4.}Skyfire: http://www.skyfire.com/.

^{5.}L. Masinter, "The "data" URL scheme, http://tools.ietf.org/html/rfc2397, 1998.

On-going work

Speculative mobile browser design

Fully understand the impact of hardware

OS and network service acceleration

http://www.owlnet.rice.edu/~zw3/projects_Tempo.html

Today's smartphone

Application processor

Heterogeneous multiprocessor

Turducken-like systems

Heterogeneous body-area network

Smartphone 2020

- Resource disparity
 - ISA disparity

- Resource limitation on "small" processors
 - Virtual machine and coherent memory difficult

- Separation of hardware vendors, application developers, and users
 - Developer blind of external computing resources and runtime context

Established programming model and OS

Existing solutions

Virtual machine

Single ISA

mPlatform etc.

CPU+GPU systems

Offloading systems (active disk, Hydra etc.)

Turducken-like cohort systems

Complete transparency

No transparency

Prohibitively expensive

High burden on application developers

Reflex: Transparent programming of heterogeneous mobile systems

http://reflex.recg.rice.edu/

Inspired by the heterogeneous distributed nervous system

Enough transparency

Complete transparency

No transparency

mPlatform etc.

- Ease of programming
- Execution efficiency

 Light weight virtualization of sensor data acquisition, timer, and memory management

Distributed runtime for transparent message passing

 Automatic code partition through a collaboration between runtime and compiler

- Identify a small coherent memory segment
 - Maintain by message passing through the runtime

Key ideas runtime Reflex runtime μ-controller Reflex runtime Cloud **Application** runtime μ-controller processor processor runtime μ-controller

• Type safety for dynamic process migration

Reflex Prototype (board integration)

- Programmable accelerometer (TI MSP430)
- Wired sensor through UART port

Rice Orbit Sensor

Nokia N810

Serial connection

Fall detection with N810

The secret: we do not fall very often

Coded as part of Smartphone program

```
class SenseletFall : public SenseletBase {
public:
  SenseletFall () { _avg_energy = 0; };
  void OnCreate() { RegisterSensorData(ACCEL, 50); };
  void OnData(uint8 t *readings, uint16 t len) {
    uint16_t energy = readings[0]*readings[0] + \
                      readings[1]*readings[1] + \
                      readings[2]*readings[2];
    //do a simple low-pass filtering
    avg energy = avg energy / 2 + energy / 2;
    // detect fall accident with the filtered energy
    if (_avg_energy > THRESHOLD) {
      theMainBody.FallAlert(); //RMI
  void OnDestroy() { UnRegisterSensorData(ACCEL); };
private:
  uint16_t _avg_energy;
};
```

Thanks!

http://www.recg.org

