
Nachos 5.0j Tutorial

Rong Zheng∗, Ala Shaabana and Qiang Xu
Dept. of Computing and Software

McMaster University
Hamilton, ON, Canada

{rzheng,shaabaa,xuq22}@mcmaster.ca

March 3, 2015

Contents

1 Introduction 4

2 Installation and Execution of Nachos 5.0j 4
2.1 System requirements . . . . . . . . . . . . . . . . . . . . . . . . . 4
2.2 Nachos Installation . . . . . . . . . . . . . . . . . . . . . . . . . . 4

2.2.1 Windows Installation . . . . . . . . . . . . . . . . . . . . . 4
2.2.2 Linux Installation . . . . . . . . . . . . . . . . . . . . . . 8
2.2.3 Mac OS X Installation . . . . . . . . . . . . . . . . . . . . 11

2.3 Cross-compiler Installation . . . . . . . . . . . . . . . . . . . . . 11
2.3.1 Linux Installation . . . . . . . . . . . . . . . . . . . . . . 12
2.3.2 Mac OSX Installation . . . . . . . . . . . . . . . . . . . . 14
2.3.3 Windows Installation . . . . . . . . . . . . . . . . . . . . . 16

2.4 Organization of Nachos 5.0j sources . . . . . . . . . . . . . . . . . 18
2.4.1 nachos.machine . . . . . . . . . . . . . . . . . . . . . . 18
2.4.2 Others . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

2.5 Execution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
2.5.1 Nachos configure file . . . . . . . . . . . . . . . . . . . . . 21
2.5.2 Makefile . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
2.5.3 Command line options . . . . . . . . . . . . . . . . . . . . 22

2.6 Using Eclipse with Nachos . . . . . . . . . . . . . . . . . . . . . . 24

3 Nachos Machine 30
3.1 Boot process . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
3.2 Processor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
3.3 Interrupt management . . . . . . . . . . . . . . . . . . . . . . . . 31

∗Contact author

1



3.4 Timer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
3.5 Serial console . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
3.6 Network link . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
3.7 Exercise . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

4 Threads and Scheduling 37
4.1 KThread and Nachos thread life cycles . . . . . . . . . . . . . . . 37
4.2 Scheduler . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
4.3 Exercise . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

5 User Level Process 43
5.1 Developing and compiling user programs . . . . . . . . . . . . . . 43
5.2 Loading COFF binaries . . . . . . . . . . . . . . . . . . . . . . . 45
5.3 User threads . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
5.4 System calls and exception handling . . . . . . . . . . . . . . . . 46
5.5 Exercise . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

6 Nachos Memory Management 52
6.1 Memory allocation . . . . . . . . . . . . . . . . . . . . . . . . . . 52
6.2 Address translation . . . . . . . . . . . . . . . . . . . . . . . . . . 53

6.2.1 Software-managed TLB . . . . . . . . . . . . . . . . . . . 54
6.2.2 Per-process page table . . . . . . . . . . . . . . . . . . . . 55

6.3 Exercise . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

A Common Object File Format (COFF) 56
A.1 COFF header . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56
A.2 Section table . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

B Q&As – Questions Raised During Nachos Projects 57
B.1 Virtual memory . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

2



Disclaimer

This document synthesizes and extends relevant materials from the web on
Nachos 5.0j, in particular, Narten’s “A roadmap through nachos, Hettena and
Cox’s guide to Nachos 5.0j and Nachos C++ roadmaps by Qiao. The goal is to
provide a one-stop place for Nacho 5.0j for students and instructors. In addition
to discussing the internals of Nachos, we also provide code tracing examples and
exercises.

How to Use this Document

Full understanding of this document requires knowledge in Operating Systems.
Therefore, we suggest you read relevant sections of this document as you progress
along with the course materials and project assignments. Suggested readings
will be specified in class lectures and individual project description.
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1 Introduction

Nachos is an instructional software that allows students to study and modify a
real operating system. It was originally developed in C++ by researchers at the
University of California, Berkeley and was later port to Java.

Nachos simulates a machine that roughly approximates the MIPS archi-
tecture with registers, memory and a CPU. It also simulates the general low-
level facilities of typical machines, including interrupts, virtual memory and
interrupt-driven device I/O. Similar to a real OS, Nachos supports two types of
processes, namely, kernel processes and user level processes.

To use Nachos 5.0j, one is expected to be proficient with Java programming.
Knowledge in generic types, exception handling, abstract class/interface will be
helpful in understanding and implementing new modules in Nachos. Interested
users can refer to online Java tutorials and Java API documentation.

2 Installation and Execution of Nachos 5.0j

We will now cover the Nachos installation and execution procedure. For com-
plete installation, one needs to install both Nachos and a suitable cross-compiler
on the target platform. Note that if one does not wish to go through the in-
stallation procedure, a Virtual Machine containing a 32-bit version of Kubuntu
with Nachos and the MIPS cross-compiler installed can be downloaded here
(username/passwd as 3sh3/3sh3 in lower case). In this case, you will need a
virtual machine manager (VMM), also known as a hypervisor. Virtualbox is a
free VMM one can use to run the virtual machine. For more information about
Virtual Machines can be found here.

If one opts to install Nachos by oneself, keep in mind that the MIPS cross-
compiler does not work properly on 64-bit Linux systems and Mac OSX based
on our experience. MIPS cross compilers for 32-bit platforms can be found here.

2.1 System requirements

Nachos 5.0j requires Java SE Java Development Kit 1.5 or later. To find out
your version of Java, run java -version in the command prompt. The most
up-to-date version of JDK and the JRE can be found here.

Next, we discuss the procedure of installing Nachos on Windows, Linux, and
Mac OSX.

2.2 Nachos Installation

2.2.1 Windows Installation

1. Install Cygwin. Cygwin is a Windows program that emulates Unix com-
mands and processes. In order to install and run Nachos, we must do it in
this environment. Be sure to download the 32-bit version of Cygwin since
the Windows MIPS cross-compiler is 32-bit only.
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2. During Cygwin installation, you will be prompted to select custom pack-
ages to install or skip. Search for make and gcc and include them for
installation, see Figures minipage1 and minipage2 for clarification. Once
the installation is finished, make sure to run Cygwin before proceeding to
the next steps in order for it to initialize its folders properly.

Figure 1: Add Make to your installation

Figure 2: Add gcc to your installation

3. Download Nachos here and save it to a directory that is easily accessible.
Since you are using Cygwin, it is recommended that you save it to your
Cygwin home directory (See the address bar in Figure figure3).
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Figure 3: Your empty user directory on Cygwin

4. Extract Nachos by running tar -zxvf nachos.tar.gz in the direc-
tory it was saved.

5. Now we must add the JDK to the Cygwin path. Navigate to your home
directory in Cygwin and look for .bash profile and open it with the
text editor of your choice.

6. At the bottom of the file, add the path to your jdk bin folder to the path
variable, like in Figure minipage4.
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Figure 4: Add jdk/bin to your path variable

7. Run javac in Cygwin. If you get a “command not found” error, then
double-check your path.

8. We can now compile. Navigate to the Proj1 directory and run make.

9. Once you have compiled proj1, you are now ready to run it. Run ../bin/nachos,
your output should look something like Figure minipage5 if everything
was installed correctly.

10. You can add Nachos to your path by including the nachos/bin directory
inside of the path export line in .bash profile following the same pro-
cedure in Step 6.
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Figure 5: Nachos output in Proj1

11. Nachos is now ready to go! To install the cross-compiler on Cygwin, please
proceed to Section subsection2.3.

2.2.2 Linux Installation

The Linux installation is largely similar to the Cygwin installation, with the
main difference being the bash script editing.

1. Download and unzip Nachos into a directory of your choice using tar
-zxvf nachos-java.tar.gz.

2. Ensure that you have Java 1.5 or above installed by running java -version.
If you do not have Java installed, you can download it from the Oracle
website here.

3. Once you have Java working, then navigate to nachos/proj1 and run make.

4. To make things easier for ourselves, we will add the nachos executable to
our PATH variable so that it is easier to run. Open ∼/.bashrc in your
favourite text editor.
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5. Add the absolute path to the bin folder inside Nachos to the path variable
by appending the line export PATH=$PATH:path to nachos bin to
the end of the file, similarly to Figure minipage6.

Figure 6: .bashrc contents in Kubuntu

6. We can now try running Nachos. Navigate to the proj1 folder inside
Nachos, and run nachos. You should have an output similar to Figure
minipage7.
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Figure 7: Proj1 run in Kubuntu
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NOTE: If you encounter the error “Unsupported major.minor version error”,
you must remove the other Java version and all references to it using the fol-
lowing commands:

1. Update your repository first: sudo apt-get update

2. Remove all Oracle and/or Java related files: sudo
apt-cache search java | awk ’print($1)’ | grep
-E -e ’ˆ(ia32-)?(sun|oracle)-java’ -e ’ˆopenjdk-’
-e ’ˆicedtea’ -e ’ˆ(default|gcj)-j(re|dk)’ -e
’ĝcj-(.*)-j(re|dk)’ -e ’java-common’ | xargs sudo
apt-get -y remove

3. sudo apt-get -y autoremove

4. Purge all config files: dpkg -l | grep ˆrc | awk ’print($2)’ |
xargs sudo apt-get -y purge

5. Remove Java config and cache directory: sudo bash -c ’ls -d
/home/*/.java’ | xargs sudo rm -rf

6. Remove manually installed Java Virtual Machines (JVM): sudo rm -rf
/usr/lib/jvm/*

2.2.3 Mac OS X Installation

Mac OS X installation is similar to the steps for Linux with the only difference
that the path variable should be modified in the file .bash profile in your
home directory.

2.3 Cross-compiler Installation

Nachos simulates a machine with a processor that roughly approximates the
MIPS architecture. The simulated MIPS processor can execute arbitrary user
programs. Nachos has two modes of execution, one of which is the MIPS simu-
lator. The second mode corresponds to the Nachos “kernel”. In MIPS simulator
mode, a MIPS cross compiler is required to compile user programs written in C
into COFF binary to be executed in Nachos. One can find many user programs
in nachos/test directory, which is the default directory to store them.

An instructional machine with MIPS compiler pre-installed will be provided;
if you are not using an instructional machine, you must download and install
the appropriate cross-compiler from here. Before you start downloading, you
need to check the architecture of your system.MAKE SURE you download the
correct one as this is crucial. This can be accomplished by typing the command
(In Linux and Mac OSX): uname -a. Figure minipage8 and minipage8 show
the output of uname -a on Linux and Mac OSX respectively.
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Figure 8: Architecture information in Ubuntu

Figure 9: Architecture information in Mac OSX
The work flow of running user programs in Nachos is depicted in Figure mini-

page10.

Implementation note: Since a user program is written in C, one can in fact
compile using GCC with minor modifications. To do so, one needs to replace
the #include statements with proper header files (e.g, replacing #include
"stdio.h" with #include <stdio.h>).

Nachos
(MIPS Simulator Mode)

MIPS 
Cross Compiler

make
…

User program
XXX.c

int main()
…

Executable COFF
XXX.coff

Figure 10: The relationship between MIPS and Nachos

2.3.1 Linux Installation

We highly recommend to use 32-bit Linux to install MIPS compiler. The instal-
lation is straightforward. Let us take 32-bit Ubuntu 12.04 LTS as an example
to illustrate the detailed procedure of MIPS compiler installation.

1. Download an architecture compatible MIPS package from the link. Here,
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you need to select mips-x86.linux-xgcc.tar.gz.

2. Extract the files: tar -xzvf mips-x86.linux-xgcc.tar.gz. The
location of this folder will be used in the following step. You can go to
this folder and get the absolute path of this folder:
cd mips-x86.linux-xgcc/
pwd

3. Set environment variable ARCHDIR. The configuration of environment
variable depends on the local OS and shell version. Typically, you need to
edit file .bashrc in your HOME directory. This is a hidden file which is
not visible. To see this file, you need to use the command ls -a. Open
the file with your preferred editor and add two new lines:
export ARCHDIR=Your mips cp dir
export PATH=$ARCHDIR:Your nachos bin dir:$PATH
Then save and quit the editor. Note that, to make this configuration
effective, you need to restart your TERMINAL(Not Machine).

Figure 11: The configuration of environmental variables

4. To this end, the configuration of MIPS is finished. Now we need to test
it works. Navigate to nachos/test, and run make clean. Then run
make. Proceed to the next step if there are no errors produced here. If
you run into errors such as “unrecognized flag” then check your ARCHDIR
and where you appended it to the PATH variable.
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Figure 12: Test configuration of MIPS compiler

5. Navigate to nachos/proj2 and compile it with make, then run nachos
-d ac -x halt.coff. This allows us to run nachos with a user pro-
gram (halt.c, translated using the MIPS compiler to halt.coff) as input.
Your output should look something like Figure minipage13.

Figure 13: Test the compiled COFF file

2.3.2 Mac OSX Installation

The installation of MIPS compiler in Mac OSX are almost identical. The dif-
ferences are listed as follows:

1. The environment variable configuration file in Mac OSX system is .bash profile
rather than .bashrc.
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2. You should download a different MIPS installation package.

There is a good chance that you will see an error as shown in Figure mini-
page14.

Figure 14: A common error when running MIPS on Mac OSX
This error occurs because you do not have libmpc lib installed. To install

this library, follow the following steps:

Step 1 Install the Xcode Command Lines. If you have Xcode installed, use
the Download tab in Xcode Preferences to install the Command Line Tools. If
you do not have Xcode installed, you can download the Command Line Tools
for free from the Apple Developer website.

Figure 15: Install command line tools in Xcode

Step 2 Install GNU Multiprecision library (aka libmpc). We recommend
that you use the brew package manager to compile and install libmpc. Home-
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brew offers a very clean and simple way to install command line tools and
libraries on a Mac. To install it. It should be as simple as running:
ruby -e "$(curl -fsSL https://raw.github.com/mxcl/homebrew/go/install)"
To check whether Homebrew is installed successfully, you can run command:
brew doctor. If it is installed successfully, you will see something like Fig-
ure minipage16.

Figure 16: Check whether Homebrew is installed successfully

Step 3 Install libmpc. Use command brew install libmpc. And to
make sure that the library is correctly installed, you can run command: ls
/usr/local/lib/libmpc.3.dylib.

Step 4 Go to nachos/test to make again. The compilation should be
successful as shown Figure minipage17.

Figure 17: Run MIPS compiler

2.3.3 Windows Installation

We do NOT recommend to use Windows as developing environment for Nachos.
We’ve encountered many errors while executing MIPS in Windows (Typically in
Cygwin). That being said, the basic steps of configuration of MIPS in Cygwin
is described as follows. Please use with caution.
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1. Run tar -zxvf your mips tar to extract the folder. It is recom-
mended to keep your MIPS folder in the same directory as the Nachos
directory for ease of access.

2. Now we must add the MIPS directory to the PATH variable the same
way we added the JDK. To do so, first define an ARCHDIR variable
that contains the path to the extracted MIPS folder, and then append
this variable to the PATH variable. MAKE SURE that ARCHDIR is
appended to the path variable before anything else (Figure minipage18).
Note that if the folder is placed in your Cygwin home directory, you can
use the $HOME variable in .bash profile.

Figure 18: Adding ARCHDIR to the PATH variable

3. Navigate to nachos/test, and run make. If you run into errors such
as “unrecognized flag” then check ARCHDIR and if the path variable has
been set properly.
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Tips

1. Nachos accepts COFF binary files produced by any MIPS compiler be it
installed on Linux, Windows or Mac OSX. Therefore, you can compile
your user program on the instructional machine and copy to your test
directory for execution.

2. Errors in compiling user programs typically come from incompatibility be-
tween the compiler and the machine. For example, you may have installed
64-bit MIPS compiler in a 32-bit machine. Make sure you have the right
MIPS compiler for your local environment.

2.4 Organization of Nachos 5.0j sources

The Nachos API Javadoc can be found HERE. Alternatively, you can produce
your own Javadoc by following the instruction in command line or through
eclipse. This documentation is very important for you to understand the code
structure of Nachos. Nachos 5.0j is composed of 7 main packages as summarized
in Table table1.

Table 1: The packages in Nachos

Packages
nachos.ag Provides classes that can be used to automatically grade

Nachos projects.
nachos.machine Provides classes that implement the Nachos simulated ma-

chine. The key components of Nachos machine are imple-
mented here.

nachos.network Provides classes that allow Nachos processes to communi-
cate over the network.

nachos.security Provides classes that can be used to protect the host system
from malicious Nachos kernels.

nachos.threads Provides classes that support a multithreaded kernel. The
logic of thread scheduling will be implemented here.

nachos.userprog Provides classes that allow Nachos to load and execute
single-threaded user programs in separate address spaces.

nachos.vm Provides classes that allow Nachos processes to be demand
paged, and to use a hardware TLB for address translation.

2.4.1 nachos.machine

Among these packages, nachos.machine is the most important one. The
classes in this package implement the simulated machine, important abstract
classes and data structures. The main entry point of the Nachos is also contained
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in this package, more specifically, in nachos.machine.Machine. Next, we
will describe some important classes in nachos.machine. For a complete
reference of the package, interested reader can check the Nachos Javadoc.

Table 2: Main classes in nachos.machine

Class Summary
ArrayFile A read-only OpenFile backed by a byte array.
Coff A COFF (common object file format) loader. This

class combining with CoffSection define the in-
ternal structures of user program in Nachos.

CoffSection A CoffSection manages a single section within a
COFF executable.

Config Provides routines to access the Nachos configuration.
To understand how Nachos parse configure file, going
through this class is a good idea.

Kernel An OS kernel. This class is the superclass of
nachos.threads.ThreadedKernel.

Lib Provides miscellaneous library routines.
Machine The master class of the simulated machine. It also

contains the main entry of Nachos.
OpenFile A file that supports reading, writing, and seeking.
StubFileSystem This class implements a file system that redirects all

requests to the host operating system’s file system.
TCB A TCB simulates the low-level details necessary to

create, context-switch, and destroy Nachos threads.
TranslationEntry A single translation between a virtual page and a

physical page. Note that TLB entries are of type
TranslationEntry, the same class used for page
table entries.

2.4.2 Others

Since nachos.machine implements the simulated Nachos machine, it should
remain intact. Modification to Nachos is mostly limited to other packages.
For example, the thread related projects will only involve changes to package
nachos.threads.

According to the project requirement, you only need to focus on the specific
packages. In the programming assignment, we will deal with nachos.threads,
nachos.userprog, and nachos.vm. See Table table3– table5 for the classes
in each package.
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Table 3: The class description in nachos.threads

Class Summary
Alarm Uses the hardware timer to provide preemption, and

to allow threads to sleep until a certain time.
Communicator A communicator allows threads to synchronously ex-

change 32-bit messages.
Condition An implementation of condition variables built upon

semaphores.
Condition2 An implementation of condition variables that dis-

ables interrupt()s for synchronization.
ElevatorController A controller for all the elevators in an elevator bank.
KThread A KThread is a thread that can be used to execute

Nachos kernel code.
Lock A Lock is a synchronization primitive that has two

states, busy and free.
LotteryScheduler A scheduler that chooses threads using a lottery.
PriorityScheduler A scheduler that chooses threads based on their pri-

orities.
Rider A single rider.
RoundRobinScheduler A round-robin scheduler tracks waiting threads in

FIFO queues, implemented with linked lists.
Scheduler Coordinates a group of thread queues of the same

kind.
Semaphore A Semaphore is a synchronization primitive with an

unsigned value.
SynchList A synchronized queue.
ThreadedKernel A multi-threaded OS kernel.
ThreadQueue Schedules access to some sort of resource with limited

access constraints.

Table 4: The class description of nachos.userprog

Class Summary
SynchConsole Provides a simple, synchronized interface to the ma-

chine’s console.
UserKernel A kernel that can support multiple user processes.
UserProcess Encapsulates the state of a user process that is not

contained in its user thread (or threads).
UThread A UThread is KThread that can execute user pro-

gram code inside a user process, in addition to Na-
chos kernel code.
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Table 5: The class description of nachos.vm

Class Summary
VMKernel A kernel that can support multiple demand-paging

user processes.

2.5 Execution

The typical work flow of Nachos projects is given in Figure minipage19. Most of
Nachos projects require modification of Java codes. For the purpose of testing,
you may either write and use Java classes derived from the AutoGrader class,
or run user programs compiled as COFF binary.

Java 
programming 

in Nachos 

Update 
configure file 
nachos.conf

Write your 
own 

userprogram.c
(Optional)

Change 
Makefile in 
nachos/test
(Optional)

Compile .c 
to .coff

(Optional)
Run Nachos
nachos -args

Write your 
own class 

derived from 
AutoGrader
(Optional)

Change 
Makefile in 

nachos
(Optional)

Compile 
Nachos 
project

Figure 19: The workflow for Nachos projects

2.5.1 Nachos configure file

When Nachos starts, it reads the default configure file nachos.conf from the
current directory (You can explicitly specify a different configure file by nachos
-[]). It contains a list of key-value pairs, in the format “key = value” with one
pair per line. One can modify the configure file to change the default sched-
uler, default shell program, to change the amount of memory the simulator
provides, or to reduce network reliability. An exmaple configure file is given
in Figure minipage20. In different projects, the students may be required to
change the settings in nachos.conf. For example, for thread related projects,
Kernel.kernel should be set to nachos.threads.ThreadedKernel. The
detailed options in the configure file are discussed in Table table6.
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Figure 20: An example configure file

2.5.2 Makefile

The Makefile of Nachos allows compiling Nachos in command line. If you are
using Eclipse or Netbeans as IDE, you will not make use of Makefile. Two
Makefiles are relevant to your project. The first one is under a project directory,
e.g, nachos/proj1 and the second one is in the root directory of Nachos.

The Makefile under the project directory is usually very simple. An example
is given below:

1 DIR = XXX XXX
2 include ../Makefile

In first line, variable DIRS specifies the packages to be compiled. The second
line includes the main Makefile for Nachos. Generally, writing Makefile is rather
complicated. A full description of Make and Makefile can be found here. For-
tunately, the main Nachos Makefile has been provided to you already under
the root Nachos directory. Generally, there is no need to modify this file UN-
LESS new classes shall be included in Nachos projects. For example, to use
customized AutoGrader-derived classes, you can modify the corresponding line
in the Makefile:

1 ag = AutoGrader BoatGrader BasicTestGrader.java ThreadGrader1.java

2.5.3 Command line options

To debug and test Nachos project, you can flexibly use Nachos command line
arguments. Running nachos -h gives the collection of Nachos command line

22

http://www.gnu.org/software/make/manual/make.html


Machine.stubFileSystem Specifies whether the machine should pro-
vide a stub file system. This option should
be enabled when reading and writing files
on a local disk (e.g., for user programs)

Machine.processor Specifies whether the machine should pro-
vide a MIPS processor.

Machine.console Specifies whether the machine should pro-
vide a console. This option should be set
true if users need to interact with Nachos
through a console (as required by some
user programs)

Machine.disk Specifies whether the machine should pro-
vide a simulated disk. False by default

ElevatorBank.allowElevatorGUI True by default.

NachosSecurityManager.fullySecure False by default. When we grade, this
will be true, to enable additional security
checks.

Kernel.kernel Specifies what kernel class to dyn-
mically load. The options are
nachos.threads.ThreadedKernel,
nachos.userprog.UserKernel,
nachos.vm.VMKernel, and
nachos.network.NetKernel.

Processor.usingTLB Specifies whether the MIPS processor pro-
vides a page table interface or a TLB in-
terface.

Processor.numPhysPages The number of pages of physical memory.
Each page is 1KB. The default number of
pages is 64.

ThreadedKernel.scheduler The type of CPU sched-
uler to use. Options include
nachos.threads.RoundRobinScheduler
and nachos.threads.PriorityScheduler

Table 6: Nachos configuration options

options summarized in Table table7.
Various debug options can also be specified in command line as summarized

in Table table8. One can specify new debug flags and corresponding outputs by
including them in the Java programs. For example, flag “a” is currently defined
in nachos/userprog/UserProcess.java as,

Lib.debug(dbgProcess, "pageTable is not initialized");
...
private static final char dbgProcess = ’a’;

It is highly advisable for you to make use of the debug options during devel-
opment.

23



Table 7: The detailed Nachos command arguments and their functions

-d Enable some debug flags(see Table table8), e.g. -d ti

-h Print this help message

-s Specify the seed for the random number generator

-x Specify a user program that UserKernel.run() should execute, instead of
the default Kernel.shellProgram, e.g. nachos -x halt.coff

– Specify an autograder class to use, instead of the default
nachos.ag.AutoGrader

-# Specify the argument string to pass to the autograder

-[] Specifiy a config file to use, instead of the default nachos.conf

Table 8: Nachos debug flags. To use multiple debug flags, clump them all
together. For example, to monitor COFF info and process info, run nachos
-d ac

c COFF loader info
i HW interrupt controller info
p processor info
m disassembly
M more disassembly
t thread info
a process info (formerly “address space”), hence a

2.6 Using Eclipse with Nachos

To set up Nachos in Eclipse, we must import the files correctly. This can be
a bit tricky as Eclipse has a few settings that need to be configured correctly.
Before you begin, ensure that your Nachos folder is inside of another
folder, such as 3SH3. If we import the Nachos folder itself then it
will not function correctly in Eclipse.

1. Select File > New > Java Project, and de-select the “use default
location” option on the screen, and enter the location of your directory
containing Nachos. See Figure minipage21 for clarification. Click Finish
to proceed.
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Figure 21: Path set to the parent directory of the Nachos folder

2. Your project directory should now look like Figure minipage22. Right-
click the project name and go to Run As.. > Run Configurations.

25



Figure 22: Eclipse Project Workspace Structure

3. Under run configurations, you will need to create a new configuration
for each assignment. Generally, you only need to change the command
line arguments (if they are required by the assignment) and which Na-
chos project directory the execution will start from. Double click Java
Application to create a new configuration.

4. Under the “main” tab, enter nachos.machine.Machine in the “main
class” text box, you can alternatively search for it as well. This will be
the main class invoked by Nachos. See Figure minipage23.
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Figure 23: Main tab

5. Now go to the “Arguments” tab, and click “other” in the “working direc-
tory” box. In the text box, navigate to proj1 and input it as the working
directory. You will change this directory as the assignments progress (i.e.
assignment2 will be proj2 and so on), see Figure minipage24. You can
also fill in command line arguments in the top text box if required by the
project.
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Figure 24: Arguments tab

6. Navigate to the “JRE” tab and ensure that the Runtime JRE is 1.5 or
higher.

7. Run the project, you should have an output similar to Figure minipage25.
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Figure 25: Running proj1 in Eclipse

Note: We strongly advise you to use an IDE like Eclipse as it makes debugging
and code tracing much simpler.
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3 Nachos Machine

Nachos simulates a real CPU and hardware devices, including interrupts and
memory management. The Java package nachos.machine provides these
functionalities.

3.1 Boot process

The entry point of Nachos is nachos.machine.Machine.main(). Upon
calling of this method, Nachos is booted. Similar to a real machine, devices
including the interrupt controller, timer, elevator controller, MIPS processor,
console, network link are initialized with proper parameters specified by the
config file. Unlike real machines, the current implementation does not simulate
hard disks. Rather, a file system (e.g., nachos.machine.stubFileSystem)
can be optionally initialized during the boot process. The file system reads and
writes from a test directory specified in the config file, which actually locates
on the hard disk of the system that Nachos runs on.

The Machine object then hands control to the particular AutoGrader in
use. The AutoGrader then creates a Nachos kernel, starting the operating
system. In the base AutoGrader class, autograder arguments are parsed and
the kernel is initialized. To extend the AutoGrader class, one simply override
the run() method.

A Nachos kernel is just a subclass of nachos.machine.Kernel. For in-
stance, the thread project uses nachos.threads.ThreadedKernel. UserKernel
extends nachos.threads.ThreadedKernel and supports multiple user pro-
cesses. More details on the Nachos kernel will be discussed in Section section4.

3.2 Processor

The Processor class simulates a MIPS processor that supports a subset of
the R3000 instruction set. Nachos processor lacks co-processor support.

Implementation note: Nachos can not handle floating point operations.

mainMemory is byte-addressable and organized into 1KB pages. The actual
number of pages used is controlled by the NumPhysPages in the config file.
readMem and writeMem take virtual memory addresses as inputs to read and
write the associated memory locations. Address translation is handled by the
translate() method that translates virtual memory addresses to physical
addresses Memory management will be detailed in Section section6.

The Processor class also allows a kernel to set an exception handler to be
called on any user mode exception.

The Processor class maintains 38 software-accessible CPU registers in-
cluding regPC and regSP for the program counter register and the stack
pointer register. After loading a binary user program (in COFF) to the memory,
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the PC register is initialized to point to the program entry points, and the SP
register points to the top of the stack.

3.3 Interrupt management

The nachos.machine.Interrupt class simulates interrupts by maintaining
an event queue together with a simulated clock. As the clock ticks, the event
queue is examined to find events scheduled to take place now.

The clock is maintained entirely in software and ticks only under the follow-
ing conditions:

• Every time interrupts are re-enabled (i.e. only when interrupts are dis-
abled and get enabled again), the clock advances 10 ticks. Nachos code
frequently disables and restores interrupts for mutual exclusion purposes
by making explicit calls to disable() and restore().

• Whenever the MIPS simulator executes one instruction, the clock advances
one tick.

Whenever the clock advances, the event queue is examined and any pending
interrupt events are serviced by invoking the device event handler associated
with the event. Note that this handler is not an interrupt handler (a.k.a. in-
terrupt service routine). Interrupt handlers are part of software, while device
event handlers are part of the hardware simulation. A device event handler will
invoke the software interrupt handler for the device, as we will see later. For this
reason, the Interrupt class disables interrupts before calling a device event
handler.

The Interrupt class accomplishes the above through three methods. These
methods are only accessible to hardware simulation devices. schedule() takes
a time and a device event handler as arguments, and schedules the specified
handler to be called at the specified time. tick() advances the time by 1
tick or 10 ticks, depending on whether Nachos is in user mode or kernel mode.
It is called by setStatus() whenever interrupts go from being disabled to
being enabled, and also by Processor.run() after each user instruction is
executed. checkIfDue() invokes event handlers for queued events until no
more events are due to occur. It is invoked by tick().

The Interrupt class also simulates the hardware interface to enable and dis-
able interrupts via the enable() and disable() methods. These methods
are useful in the thread project.

The remainder of the hardware devices present in Nachos depend on the
Interrupt device. No hardware devices in Nachos create threads, thus, the only
time the code in the device classes execute is due to a function call by the
running KThread or due to an interrupt handler executed by the Interrupt
object.
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3.4 Timer

Nachos provides an instance of a Timer to simulate a real-time clock, generating
interrupts at regular intervals. It is implemented using the event driven interrupt
mechanism described above. Machine.timer() returns a reference to this
timer.

Timer supports only two operations:

• getTime() returns the number of ticks since Nachos started.

• setInterruptHandler() sets the timer interrupt handler, which is in-
voked by the simulated timer approximately every Stats.TimerTicks
ticks.

The timer can be used to provide preemption. Note however that the timer
interrupts do not always occur at exactly the same intervals. Do not rely on
timer interrupts being equally spaced; instead, use getTime().

3.5 Serial console

Nachos provides three classes of I/O devices with read/write interfaces, of which
the simplest is the serial console. The serial console, specified by the SerialCon-
sole class, simulates the behavior of a serial port. It provides byte-wide read
and write primitives that never block. The machine’s serial console is returned
by Machine.console().

The read operation tests if a byte of data is ready to be returned. If so, it
returns the byte immediately, and otherwise it returns -1. When another byte
of data is received, a receive interrupt occurs. Only one byte can be queued
at a time, so it is not possible for two receive interrupts to occur without an
intervening read operation.

The write operation starts transmitting a byte of data and returns immedi-
ately. When the transmission is complete and another byte can be sent, a send
interrupt occurs. If two writes occur without an intervening send interrupt, the
actual data transmitted is undefined (so the kernel should always wait for a send
interrupt first).

Note that the receive interrupt handler and send interrupt handler are pro-
vided by the kernel, by calling setInterruptHandlers().

Implementation note: in a normal Nachos session, the serial console is im-
plemented by class StandardConsole, which uses stdin and stdout. It
schedules a read device event every Stats.ConsoleTime ticks to poll stdin
for another byte of data. If a byte is present, it stores it and invokes the receive
interrupt handler.
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3.6 Network link

Separate Nachos instances running on the same real-life machine can communi-
cate with each other over a network, using the NetworkLink class. An instance
of this class is returned by Machine.networkLink().

The network link’s interface is similar to the serial console’s interface, except
that instead of receiving and sending bytes at a time, the network link receives
and sends packets at a time. Packets are instances of the Packet class.

Each network link has a link address, a number that uniquely identifies the
link on the network. The link address is returned by getLinkAddress().

A packet consists of a header and some data bytes. The header specifies the
link address of the machine sending the packet (the source link address), the
link address of the machine to which the packet is being sent (the destination
link address), and the number of bytes of data contained in the packet. The
data bytes are not analyzed by the network hardware, while the header is.
When a link transmits a packet, it transmits it only to the link specified in the
destination link address field of the header. Note that the source address can
be forged.

The remainder of the interface to NetworkLink is equivalent to that of
SerialConsole. The kernel can check for a packet by calling receive(),
which returns null if no packet is available. Whenever a packet arrives, a receive
interrupt is generated. The kernel can send a packet by calling send(), but it
must wait for a send interrupt before attempting to send another packet.

3.7 Exercise

In this exercise, we trace KThread.selfTest() to study the boot process of
Nachos. This and the next exercise will help one prepare for the thread and
synchronization project. Besides manually going through the source codes, the
best way to trace Nachos code is to use break points and the debug mode in
Eclipse.

Let us start with the nacho.machine.Machine.Main method – the entry
point of the boot process. The config file used is in the Project 1 directory.

1 Machine.stubFileSystem = false
2 Machine.processor = false
3 Machine.console = false
4 Machine.disk = false
5 Machine.bank = false
6 Machine.networkLink = false
7 ElevatorBank.allowElevatorGUI = true
8 NachosSecurityManager.fullySecure = false
9 ThreadedKernel.scheduler = nachos.threads.RoundRobinScheduler

10 Kernel.kernel = nachos.threads.ThreadedKernel

The nacho.machine.Machine.Main method is given below:
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1 public static void main(final String[] args) {
2 ...
3 processArgs();
4

5 Config.load(configFileName);
6

7 ...
8 createDevices();
9

10 ...
11 autoGrader = (AutoGrader) Lib.constructObject(autoGraderClassName);
12

13 new TCB().start(new Runnable() {
14 public void run() {
15 autoGrader.start(privilege);
16 }
17 });
18 }

In Line 3, processArgs() processes all command lines arguments. Line 5
reads parameters specified in the configure file. In Line 8, devices are initialized
including interrupt, timer, and elevator bank, processor, console, file system and
network link as specified by the config file1. The number of pages in the main
memory is specified to create the processor.

Question:

1. Using the config file given above, what is the number of physical pages in
the main memory?

2. Why is not any processor object created in this example? How can Nachos
simulate a machine without any processor?

In Line 13 – 17 of the nacho.machine.Machine.Main method, a new
thread control block object TCB is created with a Runnable object, which if run
will create a new Java thread and execute the autoGrader’s start method
with a specific privilege.

1 public void nachos.ag.AutoGrader.start(Privilege privilege) {
2 Lib.assert(this.privilege == null, "start() called multiple times");
3 this.privilege = privilege;
4

5 String[] args = Machine.getCommandLineArguments();
6

7 extractArguments(args);

1In this example, only interrupt and timer objects are created.
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8

9 ...
10

11 init();
12

13 ...
14 kernel = (Kernel) Lib
15 .constructObject(Config.getString("Kernel.kernel"));
16 kernel.initialize(args);
17

18 run();
19 }

In AutoGrader.start, Line 7 extracts command line inputs specific to the
autograder (See Section section2). Further initialization codes can be included
by overriding init() called in Line 11. Finally, the specific kernel object is cre-
ated and initialized. Since in the config file we choose nachos.threads.ThreadedKernel,
its respective initialize method will be called. The method creates a
scheduler, the first thread, and an alarm, and enables interrupts. It creates
a file system if necessary. Up until the creation of the first thread (Line 16
of nachos.thread.ThreadedKernel.initialize), like any other single-
threaded Java program, Nachos code is executing on the initial Java thread
created automatically for it by Java. Afterwards, Nachos manages its own
thread for kernel or user processes. Threads are the basic unit of execution.
More detailed discussion on Nachos threads can be found in Section section4.

1 public void nachos.thread.ThreadedKernel.initialize(String[] args) {
2 // set scheduler
3 String schedulerName = Config.getString("ThreadedKernel.scheduler");
4 scheduler = (Scheduler) Lib.constructObject(schedulerName);
5

6 // set fileSystem
7 String fileSystemName = Config.getString("ThreadedKernel.fileSystem");
8 if (fileSystemName != null)
9 fileSystem = (FileSystem) Lib.constructObject(fileSystemName);

10 else if (Machine.stubFileSystem() != null)
11 fileSystem = Machine.stubFileSystem();
12 else
13 fileSystem = null;
14

15 // start threading
16 new KThread(null);
17

18 alarm = new Alarm();
19

20 Machine.interrupt().enable();
21 }
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Line 18 in AutoGrader.start runs the kernel selfTest, executes and
terminates the kernel. After kernel termination, the machine halts.

1 void run() {
2 kernel.selfTest();
3 kernel.run();
4 kernel.terminate();
5 }

Question: Provide a snapshot of the outputs from Nachos running the config
file in Project 1. Compare the results when running it multiple times. Are they
all the same? Why?
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4 Threads and Scheduling

Nachos provides a kernel threading package, allowing multiple tasks to run con-
currently (see nachos.threads.ThreadedKernel and nachos.threads.KThread).

4.1 KThread and Nachos thread life cycles

All Nachos threads are instances of nachos.threads.KThread (threads ca-
pable of running user-level MIPS code are a subclass of KThread, nachos.userprog.UThread).
A nachos.machine.TCB object tcb is contained by each KThread object
and provides low-level support for context switches, thread creation, thread
destruction, and thread yield.

Every KThread has a status member that tracks the state of the thread.
Certain KThread methods will fail (with a Lib.assert()) if called on threads
in the wrong state. The life cycle of KThread is illustrated in Figure figure26.

statusNew	
  

statusReady	
  

statusRunning	
  

statusBlocked	
  statusFinished	
  

ready() 
runNextThread() 
restoreState() 

sleep() 

ready() finish() 

Figure 26: Life cycle of KThread

• statusNew: A newly created, yet to be forked thread.

• statusReady: A thread waiting for access to the CPU. KThread.ready()
will add the thread to the ready queue and set the status to statusReady.

• statusRunning: The thread currently using the CPU. KThread.restoreState()
is responsible for setting status to statusRunning, and is called by KThread.runNextThread().

• statusBlocked: A thread which is asleep (as set by KThread.sleep()),
waiting on some resource besides the CPU.

• statusFinished: A thread scheduled for destruction. Use KThread.finish()
to set this status.
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Internally, Nachos implements threading using a Java thread for each TCB
object. The Java threads are synchronized by the TCBs such that exactly one is
running at any given time. This provides the illusion of context switches saving
state for the current thread and loading the saved state of the new thread. For
the understanding of KThread, we can focus on its public methods.

The life cycle of a KThread object starts when it is created. The first
KThread is created in the initalize method of ThreadKernel:

1 public void initialize(String[] args) {
2 ...
3 // start threading
4 new KThread(null);
5 ...
6 }

The constructor for KThread follows the following procedure the first time
it is called:

1. Create the ready queue (ThreadedKernel.scheduler.newThreadQueue()).

2. Allocate the CPU to the new KThread object being created (readyQueue.acquire(this)).

3. Set KThread.currentThread to the new KThread being made.

4. Set the TCB object of the new KThread to TCB.currentTCB(). In do-
ing so, the currently running Java thread is assigned to the new KThread
object being created.

5. Change the status of the new KThread from the default (statusNew)
to statusRunning. This bypasses the statusReady state.

6. Create an idle thread.

(a) Make another new KThread, with the target set to an infinite yield()
loop.

(b) Fork the idle thread off from the main thread.

After this procedure, there are two KThread objects, each with a TCB object
(one for the main thread, and one for the idle thread). The main thread is not
special - the scheduler treats it exactly like any other KThread. The main
thread can create other threads, it can die, it can block. The Nachos session
will not end until all KThreads finish, regardless of whether the main thread is
alive.

For the most part the idle thread is also a normal thread, which can be
context switched like any other. The only difference is it will never be added to
the ready queue (KThread.ready() has an explicit check for the idle thread).
Instead, if readyQueue.nextThread() returns null, the thread system will
switch to the idle thread.
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If the current thread exists, calling the constructor for KThread with a
Runnable object will simply create a new TCB object with the default status
statusNew. Note that the KThread object is not yet added to the ready
queue until its KThread.fork() method is called. KThread.fork() causes
the Java thread by the associated TCB object to begin execution and calls the
KThread.ready() method, which puts the KThread object in the ready
queue.

Note that KThread.fork() differs from Unix fork system calls, which re-
turns twice, once in the parent process and once in the child process. KThread.fork()
only serves to prepare the associated KThread for scheduling.

Other public KThread methods related to the thread life cycle include,
KThread.run(), KThread.sleep(), KThread.yield(), KThread.finish(),
KThread.join():

• KThread.run()

• KThread.yield() causes the current thread to relinquish it CPU, add
itself to the ready queue and switch to the next thread (or the idle thread)
in the ready queue based on the scheduler. Recall that in a time-shared
OS, context switches can happen either a thread finishes its execution, its
CPU slice is up, it is blocked on some resources, or it yields voluntarily.

• KThread.sleep() is called when the current thread has either finished
or been blocked. If the current thread is blocked (on a synchronization
primitive, i.e. a Semaphore, Lock, or Condition), eventually some
thread will wake this thread up, putting it back on the ready queue so that
it can be rescheduled. The logic of waking a thread has to be implemented
by the respective primitives.

• KThread.join() is used by a calling thread to wait for the callee thread
to finish before it can proceed. Consider the following example:

1 ...
2 KThread t1 = new KThread(new Runnable() {
3 public void run() {
4 do something;
5 }
6 }
7

8 KThread t2 = new KThread(new Runnable() {
9 public void run() {

10 do something else;
11 }
12 }
13

14 ...
15

16 t1.join();

39



17 t2.join();
18

19 System.out.println("Finished\n");
20

21 ...

The main thread is blocked and would not reach line 19 until both threads
finish. Since a current thread cannot join itself, in KThread.join(), this
thread (the callee) should be different from the current thread (the caller).
In the thread and synchronization project, you will be asked to complete
the implementation of KThread.join().

• KThread.finish() finishes the current thread and schedule it to be
destroyed when it is safe to do so.

4.2 Scheduler

A sub-class (specified in the nachos.conf) of the abstract base class nachos.threads.Scheduler
is responsible for scheduling threads for all limited resources, be it the CPU,
a synchronization construct like a lock, or even a thread join operation. For each
resource a nachos.threads.ThreadQueue is created by Scheduler.newThreadQueue().
The implementation of the resource (e.g. nachos.threads.Semaphore class)
is responsible for adding KThreads to the ThreadQueue (ThreadQueue.waitForAccess())
and requesting the ThreadQueue return the next thread (ThreadQueue.nextThread()).
Thus, all scheduling decisions reduce to the selection of the next thread by the
ThreadQueue objects. Recall the implementation of KThread.runNextThread():

1 private static void runNextThread() {
2 KThread nextThread = readyQueue.nextThread();
3 if (nextThread == null)
4 nextThread = idleThread;
5

6 nextThread.run();
7 }

Line 2 calls readyQueue.nextThread() to find the next thread in the
ready queue for CPU.

The nachos.threads.RoundRobinScheduler is the default, and im-
plements a fully functional (though naive) FIFO scheduler. In the Scheduling
project, you will be implementing a priority queue scheduling that deals with
priority inversion.

The scheduler object is created by the ThreadKernel.initialize():

1 public void initialize(String[] args) {
2 // set scheduler
3 String schedulerName = Config.getString("ThreadedKernel.scheduler");
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4 scheduler = (Scheduler) Lib.constructObject(schedulerName);
5 ...
6 }

Thus, by specifying the appropriate scheduler in the config file, one will initialize
the respective scheduler object.

Implement note:

• Only one type of scheduler can be used for all resources (though each has
its own ThreadQueue).

• In implementing a new scheduler, one may also have to implement its own
ThreadQueue class.

4.3 Exercise

In this exercise, we finish tracing KThread.selfTest() to study the thread
package and the default FIFO scheduler.

Recall that KThread.selfTest() is called by AutoGrader.run() dur-
ing the boot process.

1 public static void selfTest() {
2 Lib.debug(dbgThread, "Enter KThread.selfTest");
3

4 new KThread(new PingTest(1)).setName("forked thread").fork();
5 new PingTest(0).run();
6 }

By the time KThread.selfTest() is called in Line 4, the main kernel
and idle threads have been created.

Question: In Eclipse Debug mode, what are the values of the name and the
status fields of the currentThread object? What about the idleThread
object?

Now after executing Line 4, a new KThread object is created and is put to
the ready queue. In the debug mode, you should see that the size of waitQueue
of readyQueue increases by 1. In Line 5, a new runnable object PingTest(0)
is created and its run() method is executed. Since no KThread is created for
this object, it runs in the main thread. As closer look at the run() method of
PingTest, we find that it just yields the execution of the current thread and
put it to the ready queue (Line 7) (to make clear which thread is the current
thread, we made a slight change to the source code).
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1 private static class PingTest implements Runnable {
2 ...
3 public void run() {
4 for (int i = 0; i < 5; i++) {
5 System.out.println("*** thread " + which + " looped " + i
6 + " times" + " " + currentThread.name);
7 currentThread.yield();
8 }
9 }

10

11 ...
12 }

If we trace into KThread.runNextThread, we find that readyQueue.nextThread().
Since there is only one thread, the FIFO scheduler simply return that thread.
The first time currentThread.yield() is called, the main thread will yield
to the forked thread corresponding to PingTest(1), which in turn yields in
its run() method to the main thread. Thus, the two threads will take turns in
their execution until they finish.

Question:

1. Provide the output of the program with the modified source code.

2. Modify KThread.selfTest() to create 5 KThreads for PingTest and
trace the order of execution (you can name the threads accordingly to see
things more clearly).
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5 User Level Process

Till now, the execution of these kernel threads are similar to that of Java threads
except that they are scheduled by the Nachos scheduler. We have yet dealt with
simulation of MIPS instruction sets and user level processes. To allow multi-
programming, each user level process should have its own address space. The
physical memory needs to be allocated so that different processes do not overlap
in their usages. Though the execution of any MIPS instruction is only possible
when the memory address it refers to is eventually brought in the physical
memory, virtual memory provides an illusion of infinite large memory space for
each process. In this section, we discuss how user programs can be executed in
Nachos; and in next section, we discuss the implementation of Nachos memory
management.

5.1 Developing and compiling user programs

Nachos cross-compiler allows programmers to write C user programs and com-
pile to COFF binaries that can be executed on the Nachos MIPS simulator.
COFF stands for Common Object File Format and is an industry-standard bi-
nary format which the Nachos kernel understands. The cross-compiler itself is
platform-dependent (though the COFF binary is not) and therefore one needs
to make sure the correct one is used.

The following code is an example of C user program (nachos/test/cp.c).

1 #include "syscall.h"
2 #include "stdio.h"
3 #include "stdlib.h"
4

5 #define BUFSIZE 1024
6

7 char buf[BUFSIZE];
8

9 int main(int argc, char** argv)
10 {
11 int src, dst, amount;
12

13 if (argc!=3) {
14 printf("Usage: cp <src> <dst>\n");
15 return 1;
16 }
17

18 src = open(argv[1]);
19 if (src==-1) {
20 printf("Unable to open %s\n", argv[1]);
21 return 1;
22 }
23

24 creat(argv[2]);
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25 dst = open(argv[2]);
26 if (dst==-1) {
27 printf("Unable to create %s\n", argv[2]);
28 return 1;
29 }
30

31 while ((amount = read(src, buf, BUFSIZE))>0) {
32 write(dst, buf, amount);
33 }
34

35 close(src);
36 close(dst);
37

38 return 0;
39 }

The corresponding COFF binary is also located in the nachos/test directory.
This is the default directory for user programs. Alternatively, one can specify
the test directory by including a line fileSystem.testDirectory = ...
in the config file.

Question: Where and how does Nachos set the test directory? [hint: Check
nachos.machine.Machine.main()]

Inspecting the cp.c source code, we find that it follows the C syntax with
familiar functions such as printf, open, etc. However, a closer look at the test
directory and Makefile reveals that some of the functions are in fact implemented
by Nachos in the test directory. The function prototypes of system calls such as
creat, open, read, write, close, halt, etc., are defined in syscall.h
and their implementations are to be completed in the one of the Nachos projects.

There are multiple stages to building a Nachos-compatible MIPS binary (all
of which are handled by the test Makefile):

1. Source files (*.c) are compiled into object files (*.o) by mips-gcc.

2. start.s is preprocessed and assembled into start.o. This file contains the
assembly-language code to initialize a process. It also provides the system
call ”stub code” which allows system calls to be invoked. This makes use
of the special MIPS instruction syscall which traps to the Nachos kernel
to invoke a system call.

3. An object file is linked with libnachos.a to produce a Nachos-compatible
MIPS binary, which has the extension *.coff.

4. Note that if you create a new test file (*.c), you will need to append
your program name to the variable TARGETS in the Makefile inside test
directory
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One can run test programs by running “nachos -x PROGNAME.coff”. In
nachos.conf, the appropriate kernel and process need to be specified:

1 Machine.stubFileSystem = true
2 Machine.processor = true
3 Machine.console = true
4 ...
5 Kernel.processClassName = nachos.userprog.UserProcess
6 Kernel.kernel = nachos.userprog.UserKernel

subFileSystem is enabled to load the user program.

5.2 Loading COFF binaries

COFF (Common Object File Format) binaries contain a lot of information,
but very little of it is actually relevent to Nachos programs. Further, Nachos
provides a COFF loader class, nachos.machine.Coff, that abstracts away
most of the details. But a few details are still important. A COFF binary is
broken into one or more sections. A section is a contiguous chunk of virtual
memory, all the bytes of which have similar attributes (code vs. data, read-only
vs. read-write, initialized vs. uninitialized).

Nachos classes that are needed to handle user program are mostly reside in
nachos.userprog. To support multi-programming, UserKernel extends
ThreadedKernel. When kernel.run() is called in Autograder.run(),
Nachos creates a process and execute the shell program specified by the “-x”
argument or in the config file. This is done by first loading the program into the
process’ address space, at some start address specified by the section (Line 2).
A COFF binary also specifies an initial value for the PC register and the stack
pointer. Both values will be stored within the UserProcess object. Lastly,
a user thread (nachos.userprog.UThread) is created and put in the ready
queue (Line 5).

1 public boolean nachos.userprog.UserProcess.execute(String name, String[] args) {
2 if (!load(name, args))
3 return false;
4

5 new UThread(this).setName(name).fork();
6

7 return true;
8 }

5.3 User threads

nachos.userprog.UThread extends KThread with the main difference in
how the thread objects run. When the user thread runs on the CPU, the PC reg-
ister and the stack pointer will be initialized accordingly. The memory address
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of the command line arguments argc and argv will be stored in two argument
registers (See UThread.initRegisters()). Next, the process’ state will be
restored after the context switch. If a linear page table is used for memory man-
agement (more details see Section section6), an array of translation entries is
specified by calling Processor.setPageTable(). The page table provides
the mapping between virtual address to physical address. From here on, the pro-
cessor will fetch the instructions from the memory location indicated by the PC
register and execute the user program. Execeptions occur in a number of situa-
tions, namely, a system call, an invalid instruction, page faults, TLB miss, etc.
A complete list of exceptions can be found in Processor.exceptionNames.

A user thread may be context switched before it finishes. In this case, reg-
isters are stored in UThread.userRegisters, which will be restored if the
thread is scheduled again. Methods UThread.saveState() and UThread.restoreState()
deal with saving and loading states during context switches.

5.4 System calls and exception handling

User programs invoke system calls by executing the MIPS syscall instruction,
which causes the Nachos kernel exception handler to be invoked (with the cause
register set to Processor.exceptionSyscall). The kernel must first tell
the processor where the exception handler is by calling Machine.processor().setExceptionHandler().

The default Kernel exception handler, UserKernel.exceptionHandler(),
reads the value of the processor’s cause register, determines the current pro-
cess, and invokes handleException on the current process, passing the cause
of the exception as an argument. Again, for a syscall, this value will be
Processor.exceptionSyscall.

1 public void handleException(int cause) {
2 Processor processor = Machine.processor();
3

4 switch (cause) {
5 case Processor.exceptionSyscall:
6 int result = handleSyscall(processor.readRegister(Processor.regV0),
7 processor.readRegister(Processor.regA0),
8 processor.readRegister(Processor.regA1),
9 processor.readRegister(Processor.regA2),

10 processor.readRegister(Processor.regA3));
11 processor.writeRegister(Processor.regV0, result);
12 processor.advancePC();
13 break;
14

15 default:
16 Lib.debug(dbgProcess, "Unexpected exception: "
17 + Processor.exceptionNames[cause]);
18 Lib.assertNotReached("Unexpected exception");
19 }
20 }
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The syscall instruction indicates a system call is requested, but doesn’t in-
dicate which system call to perform. By convention, user programs place the
value indicating the particular system call desired into MIPS register r2 (the
first return register, v0) before executing the syscall instruction. Arguments
to the system call, when necessary, are passed in MIPS registers r4 through
r7 (i.e. the argument registers, a0 ... a3), following the standard C procedure
call convention. Function return values, including system call return values, are
expected to be in register r2 (v0) on return. Only the halt system call has been
implemented, you will be asked to complete the implementation of the method
UserProcess.handleSyscall for other system calls. Note that the reg-
isters do NOT store the values of the arguments, rather, the virtual memory
locations of these arguments. For example, consider a method that handles
open system call. From test/syscall.h, we have

1 int open(char *name);

Thus, there should only be one argument to the method, say, handleOpen(int
name). To get the actual string that stores the file name to be opened, one can
use the method UserProcess.readVirtualMemoryString(name, maxFileNameLength),
where maxFileNameLength is the (programmer defined maximum length of
file names).

Implementation Note: When accessing user memory from within the
exception handler (or within Nachos in general), user-level addresses can-
not be referenced directly. Recall that user-level processes execute in
their own private address spaces, which the kernel cannot reference di-
rectly. Use readVirtualMemory(), readVirtualMemoryString(), and
writeVirtualMemory() to make use of pointer arguments to syscalls.

5.5 Exercise

In this exercise, we study how user program is loaded into the process’ ad-
dress space. It will be helpful to the implementation of the multi-programming
project.

1 private boolean load(String name, String[] args) {
2 Lib.debug(dbgProcess, "UserProcess.load(\"" + name + "\")");
3

4 OpenFile executable = ThreadedKernel.fileSystem.open(name, false);
5 if (executable == null) {
6 Lib.debug(dbgProcess, "\topen failed");
7 return false;
8 }
9

10 try {
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11 coff = new Coff(executable);
12 } catch (EOFException e) {
13 executable.close();
14 Lib.debug(dbgProcess, "\tcoff load failed");
15 return false;
16 }
17

18 // make sure the sections are contiguous and start at page 0
19 numPages = 0;
20 for (int s = 0; s < coff.getNumSections(); s++) {
21 CoffSection section = coff.getSection(s);
22 if (section.getFirstVPN() != numPages) {
23 coff.close();
24 Lib.debug(dbgProcess, "\tfragmented executable");
25 return false;
26 }
27 numPages += section.getLength();
28 }
29

30 // make sure the argv array will fit in one page
31 byte[][] argv = new byte[args.length][];
32 int argsSize = 0;
33 for (int i = 0; i < args.length; i++) {
34 argv[i] = args[i].getBytes();
35 // 4 bytes for argv[] pointer; then string plus one for null byte
36 argsSize += 4 + argv[i].length + 1;
37 }
38 if (argsSize > pageSize) {
39 coff.close();
40 Lib.debug(dbgProcess, "\targuments too long");
41 return false;
42 }
43

44 // program counter initially points at the program entry point
45 initialPC = coff.getEntryPoint();
46

47 // next comes the stack; stack pointer initially points to top of it
48 numPages += stackPages;
49 initialSP = numPages * pageSize;
50

51 // and finally reserve 1 page for arguments
52 numPages++;
53

54 if (!loadSections())
55 return false;
56

57 // store arguments in last page
58 int entryOffset = (numPages - 1) * pageSize;
59 int stringOffset = entryOffset + args.length * 4;
60

48



61 this.argc = args.length;
62 this.argv = entryOffset;
63

64 for (int i = 0; i < argv.length; i++) {
65 byte[] stringOffsetBytes = Lib.bytesFromInt(stringOffset);
66 Lib.assert(writeVirtualMemory(entryOffset, stringOffsetBytes) == 4);
67 entryOffset += 4;
68 Lib.assert(writeVirtualMemory(stringOffset, argv[i]) == argv[i].length);
69 stringOffset += argv[i].length;
70 Lib.assert(writeVirtualMemory(stringOffset, new byte[] { 0 }) == 1);
71 stringOffset += 1;
72 }
73

74 return true;
75 }

Recall that UserProcess.load() load the executable with the specified
name into the user process. In Line 4 – 8, it first opens the executable from the
stubFileSystem. Note that ThreadedKernel.fileSystem.open does
not invoke any Nachos system calls, instead, it utilizes the file IO routines from
Java.

The Coff constructor takes one argument, an OpenFile referring to the
MIPS binary file. If there is any error parsing the headers of the specified
binary, an EOFException is thrown. Note that if this constructor succeeds, the
file belongs to the Coff object; it should not be closed or accessed anymore,
except through Coff operations.

There are four Coff methods that operate on the Coff object:

• getNumSections() returns the number of sections in this binary.

• getSection() takes a section number, between 0 and getNumSections()
- 1, and returns a CoffSection object representing the section. This
class is described below.

• getEntryPoint() returns the value with which to initialize the program
counter.

• close() releases any resources allocated by the loader. This includes
closing the file passed to the constructor.

The CoffSection class allows Nachos to access a single section within a
COFF executable. Note that while the MIPS cross-compiler generates a variety
of sections, the only important distinction to the Nachos kernel is that some
sections are read-only (i.e. the program should never write to any byte in the
section), while some sections are read-write (i.e. non-const data). There are
four methods for accessing COFF sections:

• getFirstVPN() returns the first virtual page number occupied by the
section.
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• getLength() returns the number of pages occupied by the section. This
section therefore occupies pages getFirstVPN() through getFirstVPN()
+ getLength() - 1. Sections should never overlap.

• isReadOnly() returns true if and only if the section is read-only (i.e. it
only contains code or constant data).

• loadPage() reads a page of the section into main memory. It takes two
arguments, the page within the section to load (in the range 0 through
getLength() - 1) and the physical page of memory to write.

Line 20 - 28 read each section of the COFF executable and ensures the
sections do not overlap. Line 31 – 38 extract the arguments of the user programs
and check if the argument array fits in one page. Line 44 sets the program
pointer to point at the program entry point. Line 49 sets the stack point to the
top of the stack. Line 54 – 55 load the COFF sections into memory.

Finally, the arguments are then stored at the last page in Line 57 – 72.

Questions:

1. What are the variables this.argc and this.argv?

2. In Line 64 – 72, how exactly are the arguments stored? [Hints: not all
arguments are of the same length.]

Next, we run the Nachos in debug mode with config file in nachos/proj22.
The shell program is halt.coff, which is compiled from halt.c.

1 #include "syscall.h"
2

3 int main()
4 {
5 halt();
6 /* not reached */
7 }

We can see from the source code halt.c that it does nothing but invokes
the system call halt(). Set an appropriate breakpoints in UserProcess and
answer the following questions.

2In Eclipse, you can set the working directory to nachos/proj2 in run/debug configuration.
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Questions

1. How many sections are there in halt.coff? What are they?

2. How many pages do the sections occupy?

3. How many page does the stack occupy?

4. What are the values of the initial PC and SP?

5. Change the shell program to test/matmult.coff. Answer the above ques-
tions when Dim = 20 and Dim = 2000.
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6 Nachos Memory Management

As discussed in Section section3, the processor provides registers and physical
memory, and supports virtual memory.

The physical memory is byte-addressable and organized into 1-kilobyte pages.
A reference to the main memory array is returned by getMemory(). Memory
corresponding to physical address m can be accessed in Nachos at Machine.processor().getMemory()[m].
The number of pages of physical memory is returned by getNumPhysPages().

When it comes to virtual memory for multi-programming, there are two
key aspects that need to be addressed in the implementation. First, how is
the physical memory allocated among user processes? Since virtual memory
allows the size of the address space of a user process to be larger than that of
the physical memory, naturally, questions like which part of the address space
should be in the physical memory and what happens in presence of a page
fault arise. In the class, we have discussed types of page faults and various
strategies for page replacement including FIFO, LRU, etc. The second question
is how to map virtual addresses to physical addresses. Users should only be
concerned with virtual addresses. However, actual memory references should
be with respect to physical addresses. In what follows, we will investigate how
the two aspects are implemented in the default Nachos.

6.1 Memory allocation

The default Nachos implementation assumes uni-programming, namely, only
one user process runs and occupies the physical memory at a time (note this
is different from having multiple kernel threads). When a process is executed,
its program and data are loaded to the main memory. Furthermore, the entire
address space fits in memory. Therefore, virtual memory and physical memory
are in fact identical in this case.

1 protected boolean UserProcess.loadSections() {
2 ...
3

4 // load sections
5 for (int s = 0; s < coff.getNumSections(); s++) {
6 CoffSection section = coff.getSection(s);
7

8 Lib.debug(dbgProcess, "\tinitializing " + section.getName()
9 + " section (" + section.getLength() + " pages)");

10

11 for (int i = 0; i < section.getLength(); i++) {
12 int vpn = section.getFirstVPN() + i;
13

14 // for now, just assume virtual addresses=physical addresses
15 section.loadPage(i, vpn);
16 }
17 }
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18

19 return true;
20 }

In Line 15, section.loadPage loads a page in the section into a physical
memory page indexed by vpn.

Implementation notes: Nachos user programs do not make use of malloc()
or free() and thus effectively have no dynamic memory allocation needs (or
equivalently, no heap). In the current implementation, a fixed number of pages
is used for the process’ stack, e.g., 8 pages. Therefore, the complete memory
needs of a process is known when it is created. This eases the task of static
memory allocation when no on-demand paging is used.

6.2 Address translation

Nachos processor supports VM through either a single linear page table or a
software-managed TLB (but not both). The mode of address translation is
actually used is determined by nachos.conf, and is returned by hasTLB().

In both cases, the TranslationEntry class is the data structure in Na-
chos to store information related to a page. Each TranslationEntry object
contains the physical page number, the virtual page number, whether the page
is ready only, whether it has been used recently (e.g., to implement the CLOCK
algorithm), and whether the entry is valid (if not, accessing it will result in a
page fault). The Processor.translate method translates virtual address
into a physical address, using either a page table or a TLB.

1 private int translate(int vaddr, int size, boolean writing)
2 throws MipsException {
3 ...
4

5 // calculate virtual page number and offset from the virtual address
6 int vpn = pageFromAddress(vaddr);
7 int offset = offsetFromAddress(vaddr);
8

9 TranslationEntry entry = null;
10

11 // if not using a TLB, then the vpn is an index into the table
12 if (!usingTLB) {
13 if (translations == null || vpn >= translations.length
14 || translations[vpn] == null || !translations[vpn].valid) {
15 privilege.stats.numPageFaults++;
16 Lib.debug(dbgProcessor, "\t\tpage fault");
17 throw new MipsException(exceptionPageFault, vaddr);
18 }
19
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20 entry = translations[vpn];
21 }
22 // else, look through all TLB entries for matching vpn
23 else {
24 for (int i = 0; i < tlbSize; i++) {
25 if (translations[i].valid && translations[i].vpn == vpn) {
26 entry = translations[i];
27 break;
28 }
29 }
30 if (entry == null) {
31 privilege.stats.numTLBMisses++;
32 Lib.debug(dbgProcessor, "\t\tTLB miss");
33 throw new MipsException(exceptionTLBMiss, vaddr);
34 }
35 }
36

37 // check if trying to write a read-only page
38 if (entry.readOnly && writing) {
39 Lib.debug(dbgProcessor, "\t\tread-only exception");
40 throw new MipsException(exceptionReadOnly, vaddr);
41 }
42

43 // check if physical page number is out of range
44 int ppn = entry.ppn;
45 if (ppn < 0 || ppn >= numPhysPages) {
46 Lib.debug(dbgProcessor, "\t\tbad ppn");
47 throw new MipsException(exceptionBusError, vaddr);
48 }
49

50 // set used and dirty bits as appropriate
51 entry.used = true;
52 if (writing)
53 entry.dirty = true;
54

55 int paddr = (ppn * pageSize) + offset;
56

57 if (Lib.test(dbgProcessor))
58 System.out.println("\t\tpaddr=0x" + Lib.toHexString(paddr));
59 return paddr;
60 }

6.2.1 Software-managed TLB

The default TLB size is 4. The kernel can query the size of the TLB by calling
getTLBSize(), and the kernel can read and write TLB entries by calling
readTLBEntry() and writeTLBEntry(). TLB is used to cache recently
used page table entries and to expedite address translation. If TLB is enabled
(usingTLB = true),
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In Line 24 – 34 of Processor.translate, the input vpn will be looked
up among the TLB entries. If not found, a exceptionTLBMiss exception is
generated and handled by the exception handler (to be implemented). Other-
wise, the associated page entry will be checked for validity and the respective
dirty and used bits will be set accordingly.

In the case of TLB misses, an appropriate TLB replacement policy shall be
implemented to substitute existing TLB entries with new ones.

TLB can be used in conjunction with per-process page table or a global
inverted page table for address translation.

6.2.2 Per-process page table

If the processor does not have a TLB, Processor.translate (Line 13 – 20)
looks up the page table in translations and retrieves the entry corresponding
to the virtual address. If the page table is null, the respective entry is null
or invalid then a page fault exception will be generated.

Per-process page table is set up by calling Processor.setPageTable()
by the user process. On a real machine, the page table pointer would be stored
in a special processor register. The user process is responsible for populating
the per-process page table initially.

1 public UserProcess() {
2 int numPhysPages = Machine.processor().getNumPhysPages();
3 pageTable = new TranslationEntry[numPhysPages];
4 for (int i = 0; i < numPhysPages; i++)
5 pageTable[i] = new TranslationEntry(i, i, true, false, false, false);
6 }

As indicated in Line 5, in uni-programming, it is sufficient to initialize the page
table with one-to-one mapping between the physical and virtual memory.
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A Common Object File Format (COFF)

The Common Object File Format (COFF) is a specification of a format for
executable, object code, and shared library computer files used on Unix systems.
COFF is mostly replaced by ELF.

A.1 COFF header

At the beginning of an object file, or immediately after the signature of an image
file, there is a standard COFF header of the following format (See table cen-
ter10). More details can be found at [].

Table 9: COFF Header format

Offset Size Field Description

0 2 Machine Number identifying type of
target machine

2 2 NumberOfSections Number of sections; indi-
cates size of the Section Ta-
ble, which immediately fol-
lows the headers.

4 4 TimeDateStamp Time and date the file was
created.

8 4 PointerToSymbolTable File offset of the COFF sym-
bol table or 0 if none is
present.

12 4 NumberOfSymbols Number of entries in the
symbol table. This data
can be used in locating the
string table, which immedi-
ately follows the symbol ta-
ble.

16 2 SizeOfOptionalHeader Size of the optional header,
which is required for exe-
cutable files but not for ob-
ject files. An object file
should have a value of 0
here. The format is de-
scribed in the section Op-
tional Header.

18 2 Characteristics Flags indicating attributes
of the file.

A.2 Section table

A section table contains a collection of section table entries each containing
40 bytes of information listed in Table center10. The number of entries in
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the Section Table is given by the NumberOfSections field in the file header.
Entries in the Section Table are numbered starting from one. The code and
data memory section entries are in the order chosen by the linker. In an image
file, the virtual addresses for sections must be assigned by the linker such that
they are in ascending order and adjacent, and they must be a multiple of the
Section Align value in the optional header.

B Q&As – Questions Raised During Nachos Projects

B.1 Virtual memory

Qa: Do I need to keep both global invert page table (IPT) and a per-process
page table?

Ans: No.

Qb: Where is the swap file stored? How to read and write swap file?

Ans: A swap file is a regular file in the stubFileSytem that can read and written
using OpenFile.read() and OpenFile.write(). You may imple-
ment a private class for operations (open, delete, swap in, swap out, etc.)
related to swap file. Swap file is organized in pages. Similar to IPT, you
can use a hash table to store the mapping between <process id, virtual
page number> and the index of swap page entry.

Qc: With on-demand paging, shall I allocate all free physical pages when exe-
cuting a process (loadSections)?

Ans: This is implementation dependent. Some OS reserves a pool of free phys-
ical pages to reduce the latency for handling page faults. In Linux, code
section of the process is on disk (the executable becomes part of the swap
file). In your implementation, you may choose to put as many pages in
the physical memory as possible and let on-demand paging handle the rest
if no free physical pages are available.

Qd: How to generate page faults using matmult.c?

Ans: In matmult.c, 3 integer arrays of size DIMxDIM are statically allocated.
By changing the value of DIM, you can make the total memory require-
ment exceeds the # of pages of physical memory. (Alternatively, you can
also reduce the # of physical pages in the config file.
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Table 10: Section table entries in COFF

Offset Size Field Description

0 8 Name An 8-byte, null-padded ASCII string. There is no ter-
minating null if the string is exactly eight characters
long. For longer names, this field contains a slash (/)
followed by ASCII representation of a decimal num-
ber: this number is an offset into the string table.
Executable images do not use a string table and do
not support section names longer than eight charac-
ters. Long names in object files will be truncated if
emitted to an executable file.

8 4 VirtualSize Total size of the section when loaded into memory.
If this value is greater than Size of Raw Data, the
section is zero-padded. This field is valid only for
executable images and should be set to 0 for object
files.

12 4 VirtualAddress For executable images this is the address of the first
byte of the section, when loaded into memory, rela-
tive to the image base. For object files, this field is
the address of the first byte before relocation is ap-
plied; for simplicity, compilers should set this to zero.
Otherwise, it is an arbitrary value that is subtracted
from offsets during relocation.

16 4 SizeOfRawData Size of the section (object file) or size of the initial-
ized data on disk (image files). For executable image,
this must be a multiple of FileAlignment from the
optional header. If this is less than VirtualSize the
remainder of the section is zero filled. Because this
field is rounded while the VirtualSize field is not it
is possible for this to be greater than VirtualSize as
well. When a section contains only uninitialized data,
this field should be 0.

20 4 PointerToRawData File pointer to section’s first page within the COFF
file. For executable images, this must be a multiple
of FileAlignment from the optional header. For ob-
ject files, the value should be aligned on a four-byte
boundary for best performance. When a section con-
tains only uninitialized data, this field should be 0.

24 4 PointerToRelocations File pointer to beginning of relocation entries for the
section. Set to 0 for executable images or if there are
no relocations.

28 4 PointerToLinenumbers File pointer to beginning of line-number entries for
the section. Set to 0 if there are no COFF line num-
bers.

32 2 NumberOfRelocations Number of relocation entries for the section. Set to 0
for executable images.

34 2 NumberOfLinenumbers Number of line-number entries for the section.

36 4 Characteristics Flags describing sections characteristics.
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Qe:

Ans:

Qf:

Ans:

Qg:

Ans:
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