
0018-9162/00/$10.00 © 2000 IEEE64 Computer

A Generic
Framework
for Modeling
Resources with UML

P
hilosophers, mathematicians, and software
designers have a great fondness for the log-
ical world—a pliant place unhampered by
the laws of physics and the messy complex-
ities of the real world. Current wisdom

encourages designers to first focus on the logical
aspects of their problem and to defer platform and
technology issues until the concluding phases of devel-
opment. This behavior is reasonable, considering that
devising logically sound solutions is frequently the
most difficult aspect of development. The solution
that emerges from this approach is often portable to
different target platforms and technologies.

Unfortunately—and this has been understated to
date—there are many situations in which this approach
is inappropriate. For example, numerous software
design problems exist where the implementation tech-
nology’s characteristics have a fundamental impact on
the software solution. Real-time software design is one
domain in which this situation is particularly obvious
because the domain’s requirements force software to
interact with the physical world in some way.

A dominant characteristic of real-time software design
is contending with the quantitative as well as qualitative
limitations of underlying computing platforms. Here,
the finite nature of the physical world is reflected in the
generic notion of a resource. This term applies to phys-
ical devices—processors, memory, and other hardware
facilities—as well as to buffers, queues, and process con-
trol blocks, which are not necessarily physical but which
ultimately have physical underpinnings.

The ability to accurately model logical and physical
resources is clearly an important facet of real-time

design. It is also key to introducing into software devel-
opment quantitative analysis techniques. Such tech-
niques are used to predict crucial system properties—
response times, queue sizes, and so on—before the sys-
tem is fully constructed, an essential element of every
classical engineering discipline.

Recently, a generic object-oriented framework has
been proposed for modeling both physical and logical
resources. Although the framework is generic, it is
mainly used with the industry-standard unified mod-
eling language (UML).1 By providing a standard means
for representing resources and their attributes, we can
seamlessly transfer UML models of real-time systems
between design and specialized analysis tools.

QUANTITATIVE MODELING
The majority of quantitative analysis techniques

falls into one of the following two major categories:

• Schedulability analysis relies on a collection of
primarily deterministic mathematical techniques
for deciding whether a given real-time system will
meet all its deadlines.2,3 Schedulability analysis
requires an accurate specification of the timing
and processing load requirements for the job at
hand. Because schedulability analysis produces
deterministic results, it is particularly useful for
hard real-time systems, where determining if even
a single deadline may be violated is crucial.
However, schedulability analysis applies primar-
ily to systems with mainly static periodic loads.

• Performance analysis provides a set of analysis
techniques based on queuing theory that can pre-

For real-time systems, designers must consider physical and logical
resources. Developers can use the OMG’s Unified Modeling Language to
model resources and thus predict crucial system properties before fully
implementing a system.

Bran Selic
Rational
Software

C O V E R F E A T U R E

dict response times, delays, and resource require-
ments for a variety of software systems.4

Designers can apply these techniques to systems
with dynamically changing loads, which are typ-
ically specified by probability distributions.
Because the characterizations are probabilistic,
performance analysis cannot be used to make
definitive claims about deadlines, so it applies
best to soft real-time systems.

Despite their limitations and the lack of qualified
experts, designers use these and more specialized
quantitative techniques extensively. We can safely
assume that the variety, power, and use of quantita-
tive methods for software design will increase.

UNIFIED MODELING LANGUAGE
Because most quantitative analysis techniques for

real-time systems were developed before the advent
of the object paradigm, does it make sense to focus
this resource-modeling framework on UML, which is,
after all, an object-oriented modeling language? Yes.
UML is a good choice for several reasons.

• It is a widely adopted standard that is familiar to
many software practitioners, widely taught in
undergraduate courses, and supported by many
books and training courses.

• Many tools from different vendors support UML.
• Most significantly, there is an excellent concep-

tual match between the object paradigm and real-
time systems.

In contrast to procedural programming, which
emphasizes algorithmic sequences, object-oriented pro-
gramming uses a structure of collaborating parts or
objects. Each part performs its specialized processing
by reacting to inputs from its immediate neighbors.
The superposition in time of these parts’ localized
behaviors, then, results in overall system behavior. In
this model, structure is foremost because it literally
provides a framework through which behavior flows.

This approach fits well with many real-time systems,
which have a heavy structural aspect rooted in the
interfaces that connect them to the external world. The
real-time system’s basic task is to transform external
inputs into appropriate timely outputs—for example,
translating the dialed digits of a phone call into a des-
tination line address. Many concurrent flows may pass
through the system, but the system’s internal structure
remains more or less constant. This structure-domi-
nant style is evident even in many real-time systems
developed well before the emergence of the object par-
adigm and object-oriented programming languages.

Since the Object Management Group adopted UML
as a standard in 1997, the language has rapidly become

a lingua franca across different domains. Although con-
ceived as a general-purpose modeling language, UML
includes built-in facilities that allow customizations—
or profiles—for a particular domain. A profile fully con-
forms to the semantics of general UML but specifies
additional constraints on selected general concepts to
capture domain-specific forms and abstractions.

The OMG is currently working on a series of stan-
dard real-time profiles for modeling real-time appli-
cations. The first of these standards—expected to be
adopted in 2001—will address the issue of modeling
time and time-related facilities and services.5 A pri-
mary requirement for this profile is the ability to con-
struct UML models that can be analyzed using
common quantitative techniques. At least two other
standard real-time profiles are expected, one for mod-
eling fault-tolerant systems and another for modeling
the architectures of complex real-time systems.

The role of standards is crucial since they provide
a common form for automatic exchange of models
between design editing tools and specialized analysis
tools. This automatic exchange eliminates the current
error-prone and complex manual process of convert-
ing a design tool model into a model suitable for an
analysis tool.

RESOURCE MODELING FRAMEWORK
Our resource modeling framework does not define

any specific resources—such as semaphores, memory,
and so on—but defines instead a generic approach for
modeling such resources. The model therefore focuses
on the notion of an abstract resource, which defines
the common characteristics of resources regardless of
their specific manifestation.

Quality-of-service characteristics
We use the term resource to denote any runtime

entity for which the services can be qualified by one or
more quality-of-service characteristics. We model a
resource as a server with services that are character-
ized by both their functional and nonfunctional
aspects, such as response time and availability. A QoS
characteristic represents some aspect of the perfor-
mance of a quantifiable service that generally reflects
some underlying bounded quantities. Hence, QoS
characteristics form the basis for true software sys-
tems engineering.

As Figure 1 shows, in the relationship between a
client and a resource, there must be some correlation

June 2000 65

Client Resource
QoS contract

Figure 1. A QoS contract is a relationship between a resource
and its client that incorporates explicit QoS specifications.

66 Computer

between the QoS the client requires—the required
QoS—and the QoS the resource provides—the offered
QoS. Ideally, the offered QoS should be at least as
good as the required QoS, but in some applications
clients may be willing to compromise and settle for
something less. The relationship between a client and
a resource that incorporates QoS characteristics is
called a QoS contract.

QoS characteristics, whether required or offered,
are typically more complex than simple numerical val-
ues. For example, they can be expressed as ranges or
even probability distributions, and they can include
the specification of policies to be applied when a QoS
requirement can’t be met.

The UML model in Figure 2 illustrates some of the
finer details of the QoS contract concept. A QoS con-
tract involves one or more services that a resource
offers and that the client requires. The framework can
define QoS characteristics for both the offered and
required services. Since the two are related by the QoS
contract, it may be possible to determine analytically
whether the offered services can satisfy the client’s QoS
needs.

The UML diagram in Figure 3 depicts a second
aspect of the generic resource model that describes
how the system manages and allocates resources. In
general, clients may need to access resources through
resource brokers, entities responsible for allocating
usage rights to resources according to some resource
allocation policy. Resource managers, on the other
hand, must manage resources, such as initialization
and recovery, based on a resource management policy.
Resource managers often act as resource brokers for
the resources under their control.

A resource may itself be a client of other resources
it needs for its functionality. This relationship means
that a resource can have its own QoS requirements.
In general, a resource can only guarantee its offered
QoS to its clients if its resources meet its QoS require-
ments. Consequently, unless the resource does not
require other resources, the offered QoS characteris-
tics are always conditional.

Resources as engineering elements
Figure 1 shows a peer interpretation situation in

which the client and the resource are distinct entities
coexisting in the same environment. While the client
will likely not function properly without the resource,
its existence does not depend on the resource’s exis-
tence, and vice versa. Figure 4, however, shows an
alternative and equally useful view of the relationship
between clients and resources—a layered interpreta-
tion. The two interpretations complement each other
and can be used concurrently.

To understand the layered interpretation, it is use-
ful to observe that we can model a software system
from two different viewpoints:

• The logical model shows an object-oriented
application as a mesh of collaborating objects.
This model abstracts out the details of how a
computer actually realizes the objects and their
relationships.

• The engineering model describes how a particu-
lar technology implements logical model ele-
ments. This more implementation-oriented view
of the application reveals a set of mechanisms
such as memory, buses, and CPUs, which are the
more concrete manifestations of the objects in
the logical model.

Resource

Client

0..*

1..*

Service1..*

+offered
service

0..*
+required

service

QoS contract

1..*

QoS characteristic

0..*

0..*

0..*/required QoS

/offered QoS

Figure 2. A generic QoS contract model. The resource provides one or more services that
the client uses, and the system compares the required QoS service level with the corre-
sponding QoS the resource offers to determine whether the QoS contract is feasible.

Shared resource

Capacity : Integer

Exclusive
resource

Resource
manager

Resource
management policy

Resource
allocation policy

Resource

0..11..*
Manages

Client

Resource
broker

0..1
1..*

Allocates

0..*

0..*

Figure 3. The management and allocation of resources. Clients obtain resources
through a resource broker; a resource manager manages the resources according to
specific policies.

The two viewpoints describe the same system but
serve different purposes. We can use this dual view to
separate our concerns about the logic of our software
from its realization in a particular environment. The
relationship between these two models is such that
elements of the engineering model realize elements of
the logical model. The mapping between a logical ele-
ment and its corresponding realization, or engineering,
elements is called a realization mapping.

In principle, we can change the engineering model
without changing the logical model. This means that
a logical model can adapt to changing technologies
and different hardware configurations. However, for
the two to be compatible, the new engineering model
must meet all requirements of the logical model—
notably the QoS requirements.

If we view the elements of the engineering model as
resources and the elements of the logical model as their
clients, we can apply the generic resource model shown
in Figure 2. In this case, the realization mappings play
the role of QoS contracts. We can use layered inter-
pretation to achieve the objective of making the logi-
cal model independent of the engineering model while
still accounting for the important quantitative aspects
that influence the logical design. Thus, logical model
elements must specify the target environment’s QoS
requirements, but don’t need to specify the technology
or internal structure of that environment.

The engineering model’s resources are not necessar-
ily hardware elements; they can also include software,
as in buffers, operating system threads, and synchro-
nization monitors. However, the actual hardware
resources—such as memory, CPUs, and hardware com-
munication channels—are also essentially abstractions.
At one level of abstraction, we can view an engineering
model as a logical model requiring its own engineer-
ing model—and so on, recursively, until we reach a level
of “pure” hardware resources. Thus, no matter how
complex the system or how numerous its resource lay-
ers, we can still apply the same generic model.

Validity analyses and aggregation
QoS analysis compares the required QoS with the

offered QoS, independent of whether you use peer
interpretation or layered interpretation. In most cases,
the offered QoS should equal or exceed the required
QoS. What we deem equal or better depends greatly on

• the type of service under consideration—for exam-
ple, availability, response time, or security; and

• the service’s format—for example, simple number
or probability distribution.

While this analysis may look relatively straightfor-
ward, it is greatly complicated when we consider
aggregated QoS characteristics, a composite’s over-

all QoS characteristics given the components’ indi-
vidual QoS characteristics. Several issues exacerbate
this situation.

• Different QoS characteristics combine in differ-
ent ways. For example, to determine the avail-
ability characteristics of a composite, we must
not only know each component’s availability
characteristics but also whether the components
are combined in series or in parallel.

• Resources are often shared. Sharing resources
leads to contention and complex interference pat-
terns between clients. For example, we might
need to determine whether a given composite
system can satisfy the maximum acceptable
response requirements for a specific use case. If
the use case involves a chain of interactions, or
operation invocations, between individual com-
ponents, we must determine the end-to-end delay
from the initiating event to the last operation’s
completion. We need to know each component’s
duration. how the components map to resources
(processing sites), and which other use cases (and
their processing times and frequency character-
istics) may be sharing the resources concurrently.

QoS aggregation presents a complex problem with
no general solution. Certain techniques for specific
QoS characteristics, performance modeling, and
schedulability analysis apply only in special cases.

UML MAPPING
Although our model’s general nature makes it inde-

pendent of a specific modeling language, for our pur-
poses we want to apply it to UML.

In general, any type of UML modeling element that
directly or indirectly represents a runtime entity capa-

June 2000 67

Logical
element

Logical Model

Logical
element

Logical
element

Engineering Model

Engineering
element

Engineering
element

Engineering
element

Figure 4. Two different viewpoints of a software system. The logical model captures the
logic of the software of a particular technology independently, whereas the engineering
model captures the realization of the logical model on a given technology.

68 Computer

ble of performing services can model a resource. This
category includes classes, classifiers, association
classes, and their instances. These elements are clearly
distinguishable as resources only because one or more
of their features have offered QoS characteristics.

Offered QoS characteristics can be specified by con-
straints or tagged values attached to model elements
that specify the behavior of a classifier: state machine
transitions, operations, interactions, and so on. They
can also be specified as attributes.

Because QoS characteristics form the basis for any
type of quantitative analysis, we must specify the
required QoS characteristics for elements of the logi-
cal model. In general, we can specify required QoS
characteristics as constraints to model elements that
specify behavior at runtime, including use cases, inter-
actions, operations, state machine transitions, activi-
ties, and individual actions. We can also specify them
for model elements with implicit services, such as
CPUs. A CPU is a resource that, among other things,
provides a processing service. Because its processing
service is not accessed through explicit operations, the
QoS characteristics are attached to the CPU as a whole.

Realization relationship
In UML, the general abstraction dependency “relates

two elements or sets of elements that represent the same
concept at different levels of abstraction or from dif-
ferent viewpoints.”1 The realization relationship is a
specialized form, or stereotype, of abstraction that
relates “a specification model element with the elements
that implement it.”1 This is precisely the relationship
between logical model elements and engineering model
elements bound by realization mappings.

The semantics of realization relationships can be
quite complex and highly dependent on the specific
nature of the mapped elements. For example, mapping
a logical object to a physical processor implies that the
system must load that object’s program component
into the same processor, that the object is created and

executes within that processor, and that its processing
requirements combine in a very intricate way with the
processing requirements of all other objects mapped
to that processor. As Figure 5 shows, UML uses a spe-
cial notation for the realization relationship.

In its most basic form, a realization mapping is
merely a syntactical declaration that a particular
resource supports a particular logical element in some
unspecified way. The modeler must determine the real-
ization’s semantics and validity. More formal and
more sophisticated forms—defined as standard stereo-
types of the basic realization relationship—involve
semantic knowledge of the nature of the logical and
engineering model elements being bound. Specialized
tools with that knowledge built in can compare the
corresponding offered and required QoS characteris-
tics to make statements about the model’s validity.

We can use formal and semantically precise real-
ization mappings to generate software that adapts a
generic logical model element to a specific resource
type. For example, either a CORBA or a COM chan-
nel can realize a communication link between two
objects in a logical model. A code generator with
knowledge of the two target resource types’ seman-
tics could automatically generate the appropriate
implementation code for the two cases. This approach
frees developers from getting involved with the com-
plex implementation details of the various technolo-
gies and allows truly generic design.

Realization packaging
Frequently, logical elements can be bound to a set

of resources in different ways. For example, we may
want to experiment with several methods for parti-
tioning a set of objects across a collection of physical
processors to determine the allocation that optimizes
performance. Doing so implies that a single logical
model element may have multiple mutually exclusive
realization associations. Further, two or more logical
elements and their realization mappings may have
mutual dependencies. For example, queue lengths may
be a function of the specified CPU speed.

Clearly, we need to package together the set of real-
ization mappings that represents a consistent set—
mappings that are mutually compatible and
nonexclusive. This realization package is conveniently
modeled as a UML package. A given logical model
can have any number of realization packages, each of
which represents one distinct mapping of the logical
model to exactly one engineering model.

T he stringent demands typically placed on real-
time systems have led to the development of
quantitative techniques, such as performance

modeling and schedulability analysis. This develop-
ment has enabled software engineers to model systems

Engineering Model

Logical Model

Software program

CPU Main memory Disk drive

Figure 5. Realization mapping using UML. The logical model element software program
is realized by three engineering model elements: a CPU, main memory, and a disk drive.

and predict some of their salient characteristics before
actually constructing them. As software becomes more
instrumental to the everyday functioning of society,
we can expect that the use and diversity of such tech-
niques will increase. These encouraging signs indicate
that software may be moving gradually toward
becoming a bona fide engineering discipline.

UML, as an industry standard with widespread
acceptance throughout the software community, pro-
vides an excellent opportunity to advance this highly
desirable trend. Incorporating a generic QoS frame-
work into UML gives us a standard way of produc-
ing quantifiable and, hence, precisely analyzable
software models. In addition to bolstering the use of
current quantitative techniques—for example, by
allowing specialized analysis tools to import and
exchange models—this capability will also provide a
unified base on which to develop new techniques and
methods. ✸

Acknowledgments
I thank my colleagues on the real-time profile sub-

mission team—Morgan Bjorkander, Bruce Douglass,
Mark Gerhardt, Alan Moore, Jim Rumbaugh, Srini
Vasan, and Ben Watson; as well as Murray Woodside
of Carleton University, who provided useful feedback
on the work described here. I also thank the anony-

mous referees whose excellent suggestions signifi-
cantly improved this article.

References
1. Object Management Group, The Unified Modeling Lan-

guage Specification, Nov. 1999, http://www.omg.org.
2. A. Burns and A. Wellings, Real-Time Systems and Pro-

gramming Languages, 2nd ed., Addison Wesley Long-
man, Reading, Mass., 1997.

3. M. Klein et al., A Practitioner’s Handbook for Real-Time
Analysis: Guide to Rate Monotonic Analysis for Real-
Time Systems, Kluwer Academic, Boston, 1993.

4. R. Cooper, Introduction to Queuing Theory, Macmil-
lan, Indianapolis, Ind., 1972.

5. Object Management Group, RFP for Scheduling, Per-
formance, and Time, OMG Document No. ad/99-03-
13, Mar. 1999.

Bran Selic is a principal engineer at Rational Software
Inc. in Kanata, Canada, and an adjunct professor at
Carleton University in Ottawa. His experience covers
real-time software, fault-tolerant distributed systems,
and object-oriented modeling techniques. He holds a
BS in electrical engineering and an MS in systems the-
ory from the University of Belgrade. Selic is a member
of the IFAC Technical Committee on Real-Time Soft-
ware Engineering. Contact him at bselic@rational.com.

June 2000 69

A
W

A
R

D
S

A
W

A
R

D
S You work hard.

We notice.
You work hard.
We notice.

¤

Publisher ofPublisher of

SOFTWARE PROCESS ACHIEVEMENT AWARD
NASA Goddard 1994
Raytheon 1995
Hughes 1997

COMPUTER ENTREPRENEUR AWARD
William Hewlett and David Packard 1995

COMPUTER PIONEER AWARD
Grace M. Hopper 1980

SEYMOUR CRAY COMPUTER SCIENCE AND ENGINEERING AWARD
John Cocke 1999

TSUTOMU KANAI AWARD
Kenneth L. Thompson 1999

computer.org/awards/

SOFTWARE PROCESS ACHIEVEMENT AWARD
NASA Goddard 1994
Raytheon 1995
Hughes 1997

COMPUTER ENTREPRENEUR AWARD
William Hewlett and David Packard 1995

COMPUTER PIONEER AWARD
Grace M. Hopper 1980

SEYMOUR CRAY COMPUTER SCIENCE AND ENGINEERING AWARD
John Cocke 1999

TSUTOMU KANAI AWARD
Kenneth L. Thompson 1999

computer.org/awards/

