
, , 1{17 ()
c Kluwer Academic Publishers, Boston. Manufactured in The Netherlands.

A Highly Dependable Computing Architecture

for Safety-Critical Control Applications

BERND J. KR�AMER bernd.kraemer@fernuni-hagen.de

NORBERT V�OLKER norbert.voelker@fernuni-hagen.de

FernUniversit�at, Faculty of Electrical Engineering, D-58084 Hagen, Germany

Received January 15, 1996; Revised June 17, 1996

Editor:

Abstract. More and more technical systems are supervised, controlled and regulated by pro-

grammable electronic systems. The dependability of the entire system depends heavily on the
safety of the embedded software. But the technological trend to entrust software with tasks of
growing complexity and safety relevance conicts with the lacking acceptance of rigorous proofs

of software safety.

Based on an international standard for higher level programming languages for programmable
logic controllers (PLC, IEC 1131-3), a mathematically based method for validating the behavioral

correctness and the functional safety of graphical designs of safe-critical control applications is
introduced. The design elements taken from a domain speci�c module library are proven correct

and safe only once. The functional correctness and satifaction of safety requirements of new
application graphical programs can then be shown e�ectively by reference to the proven properties
of the library components used. This approach is part of an comprehensive computingarchitecture
for safety critical control programs which is presented in a survey.

Keywords: Safety-Critical Real-Time Systems, PLC Programming, Dependable Software, Mo-
dular Veri�cation, Higher Order Logic Theorem Proving

1. Introduction

Programmable Electronic Systems are spreading to more and more �elds of every-

day life. They can be found in household appliances, motor vehicles of higher price

ranges, emergency shut-down systems of nuclear power plants, medical treatment

systems, tra�c control systems, or process automation.

Severe accidents in the chemical and nuclear power industry, spectacular plane

crashes and intrusions into company and government computer networks have in-

creased the suspicion generally nursed in society that insu�cient quality of the

software embedded in these technical applications is the main cause of system un-

reliability. Thus, the technological trend to more exible and complex systems and

devices is opposed by the growing safety awareness of modern society and a critical

attitude towards software taking over control in technical solutions. In addition, in

Germany and other countries, technical devices and equipment that can endanger

human life or the environment have to be licensed formally by regulatory authorities

before being taken into use and later during their life-time.

2

These authorities are still quite reluctant licensing exclusively program controlled

safety related automation systems. In general, no safety-critical systems contai-

ning software of non-trivial complexity are licensed, as yet, because: rigorous proof

techniques and robust tools that can be used e�ectively by practitioners in regula-

tory authorities and in the application domain are not available; although existing

design guidelines and testing procedures may help to prevent or detect design and

programming errors, they cannot guarantee the absence of faults that may cause a

disaster; the method of diverse back-translation currently used by the T�UV Rhein-

land and other regulatory bodies is very time consuming and does not scale up. In

this approach, the inspector tries to reconstruct a speci�cation from the assembly

or machine code manually and check it for conformity with the developer's speci�-

cation. The method is e�ective in the sense that it is even able to detect compiler

errors but experience has shown that it does not scale up. Up to two man-months

are needed, for example, to verify four kByte of machine code.

1.1. Hardware versus Software Safety

Safety techniques of traditional engineering disciplines deal mainly with random fai-

lures of hardware. Design faults are not taken into consideration seriously because

it assumed that they can be avoided by systematic design and validation techni-

ques and because the extensive use of hardware components has demonstrated their

dependability.

For hardware, this assumption is justi�ed due to the relatively low system com-

plexity and because a particular hardware design is typically produced in large

quantities. These assumptions cannot be transferred to software intensive systems

since software does not wear out, and programming faults are always systematic.

The largest source of errors are design and speci�cation faults, particularly non-

considered situations, ambiguous or contradictory requirements.

In spite of some remarkable progresses in the �elds of standard software and

libraries of re-usable software modules, the majority of today's program systems

still represents individual solutions that have no extensive usage history. Moreover,

software contains an extremely large, often even in�nite number of discrete system

states which in addition | in contrast to hardware | rarely are regular. This

fact heavily reduces the possibilities to run exhaustive program tests or to create

realistic test conditions.

1.2. Formal Methods

Experiences in other engineering disciplines suggest that mathematically based me-

thods provide an adequate approach for precise speci�cation, design, and quality

assessment of dependable program systems. It is even expected that the use of

formal methods for the construction and validation of certain safety critical appli-

cation classes will be required explicitly by legislature, as it already the case in the

3

security domain [15]. Further evidence was collected recently during an internatio-

nal seminar entitled \Functional Safety of Program Controlled Electronic Systems"

[4].

Unfortunately it must be realized that formalmethods are hardly used in software

practice. Few exceptions include the formal speci�cation and veri�cation of the

emergency shut-down system of the Darlington reactor in Canada [14]; the use of

formal methods systems in the development of IBM's CICS system in Great Britain

[16]; or the extensive use of veri�cation systems for military applications with strong

data security requirements in the USA and Canada.

Reasons why many practitioners abstain from formal methods are certainly un-

realistic expectations about the contribution of formal methods because people are

often confusing correctness with adequacy. Establishing correctness means to com-

pare two formal objects, e.g., a speci�cation and a corresponding program, and

answer the question: \Are we doing the thing right?". This is, what formal me-

thods can help to achieve. Determining the adequacy of a speci�cation, design, or a

program, however, means to answer the question: \Are we doing the right thing?"

by comparing the formal object's behavior with our mental expectations. Here,

formal methods are of lesser help because they cannot guarantee that our under-

standing and model of the real world is appropriate. The accident of the Lufthansa

plane caused by a design error in Warsaw for some years ago is an example for

the fact that correct implementations of inappropriate software speci�cations1 can-

not be discovered by formal veri�cation. Formal proof techniques can only verify

mathematical objects like requirement, design or program speci�cation concerning

properties such as consistency, soundness and completeness. Another reason for

disappointment results in the fact that many formal methods and their associated

tools reach their limits as soon as they are applied to problems of a complexity

usual in practice. Also the requirements for a formal basic training of the users of

formal methods, which often are too high, form an acceptance threshold still being

too high today.

1.3. Overview

This contribution describes methodological aspects of a high integrity systems pro-

ject. We focus on the development and analysis of software for programmable logic

controllers (PLC) with high safety requirements. The language concepts for PLC

programming were de�ned in the international standard IEC 1131-3 [1]. They are

especially suited for industrial automation projects which we chose as a focal ap-

plication domain. The limited complexity of algorithms and dats structures used

and the rich body of domain knowledge enables us to tailor suitable and mature

formal methods to the work procedures of practitioners in the �eld.

In the following section, we outline the IEC languages relevant for our approach.

Section 3 presents an overview of a safety-oriented computing architecture which

is partly realized. In Section 4, we introduce a simple example along which we

discuss the formal speci�cation and veri�cation of graphically designed application

4

programs with recourse to already proven properties of their component modules

taken from an application-speci�c library of standard building blocks. Finally,

we discuss further work aiming at the completion of our high integrity systems

development architecture.

2. Language Concepts of the IEC Standard

The standard IEC 1131-3 contains four compatible languages. The Function Block

Diagram (FBD) and the Sequential Function Chart (SFC) languages have a visual

representation, while Structured Text (ST) is a conventional higher level program-

ming language with a textual syntax. Function block types are the central language

elements of FBD. The standard includes a set of function block types realizing basic

processing functions of process automation. Each function block type encapsulates

a data structure which is divided into input, output and internal state variables of

arbitrary types. Output variables are functionally dependent on the input and state

variables. Outputs and inputs of function block instances can be "wired together"

to a diagram of function blocks forming the actual application program.

Fig. 1 shows a hierarchical function block type, called measure, which is built up

from an instance of the standard type IN A, named input, and two instances of the

standard type SAM, named highlimit and lowlimit. IN A converts an analogue

value read from address HWADR to a numerical value. This value is output at port

X after having been scaled to the boundary values available at the ports XMIN and

XMAX. The unit of the measured value is determined by the character string provided

at input t XUNIT. Function block type SAM serves as a boundary value switch for the

value at the X port. It also enables the storage of alarms or messages. Signal X is

compared with the boundary value which arrives at port S. The Boolean value LOW

determines whether S is interpreted as an upper or a lower bound. In the former

case, the Boolean output QS switches from 0 to 1 in case S is exceeded and returns

to 0 in case the value at port X drops under S-SHYS. Similarly, when LOW is 1, the

Boolean output QS switches from 0 to 1 once the value at port X drops below the

value at port S and returns to 0 when it exceeds S+SHYS again. SHYS describes the

switching di�erence or hysteresis. Port SHYS may remain unconnected and is then

assumed to be 0.

In �g. 2 the interface de�nition or signature of SAM is described in ST. ST is

a block structured language which mainly follows Pascal concerning notation and

language concepts. In addition, it o�ers a task concept to handle parallel real-

time processes. Apart from being de�ned by graphical composition using the FBD

language, the behavior of a hierarchical function block type can also be determined

by an ST program. The program text then occurs as a function block body between

the interface declaration and the keyword END FUNCTION BLOCK.

The second graphical process control language of the standard, SFC, can be

regarded as an industrial application of Petri nets. The language concepts in SFC

include transitions, steps and actions. They serve to co-ordinate the processing of

function block instances which are regarded as asynchronous sequential processes.

5

SAM

S
LOW
X QS

IN_A

XUNIT
XMAX

HWADR

XMIN X

SAM

S
LOW
X QS

max
unit
adr

hs
ls

min

1

0

x

qhs

qls

input

lowlimit

highlimit

measure

Figure 1. Derived function block type measure

FUNCTION_BLOCK SAM

VAR_INPUT (* input declarations *)

X: NUM; (* input value *)

LOW: BOOL; (* type of boundary value *)

S: NUM; (* boundary value *)

SHYS: NUM :=0 (* hysteresis of the boundary value S *)

END_VAR;

VAR_OUT

QS: BOOL (* boundary value infringed *)

END_VAR;

body

END_FUNCTION_BLOCK

Figure 2. Signature of function block type SAM

Fig. 6b shows an example with four steps s0 to s3. The transitions separating

these steps are enabled by Boolean conditions such as lmax and tmax, by preceding

steps, and by the actions �ll , heat and discharge associated with steps s1, s2, and

s3, respectively. The double framed box states that s0 is the initial state.

6

3. A Safety Oriented Computer Architecture

Di�erent possibilities for the formal speci�cation and veri�cation of standard and

application speci�c function modules serving as library elements have been de-

monstrated in previous work. A �rst prototype design and validation environment

tailored to the graphical notation of higher PLC languages was introduced in [8].

Similar to the approach in [6], algebraic data structuring concepts were used for

requirement speci�cation. The properties of elementary function modules are ve-

ri�ed with the help of structural induction techniques supported by term rewrite

systems. For the analysis of the dynamic behavior of entire function block diagrams,

higher Petri nets marked with instances of abstract data types were suggested. In

[10] the components of an emergency shut-down system used in reactor control

were speci�ed in higher order predicate logic and veri�ed mechanically using the

Isabelle/HOL theorem proof assistant.

Hardware

Development Process

Programming Techniques
& Tools

Analysis, Verification
Methods & Tools

Runtime Environment

Function Block Library
Safety Oriented
 Computing
 Architecture

Figure 3. Structure of a safety oriented computing architecture

The suggested speci�cation, design and validation method is supported by the

computing architecture presented in �g. 3. The architecture includes ergonomically

designed tools, a library of re-usable software modules as well as a simple speciali-

zed run-time environment. The latter is tailored for the language concepts of the

standard and runs on a fault tolerant hardware (cf. [6]). Two prototype versions of

the hardware architecture are operational. They are supported by a simple runtime

environment. It was designed to serve the needs of the IEC standard and reduce

the potential for introducing errors.

A customized computer supported process model organizes the entire develop-

ment and licensing process. It leads application developers in companies and en-

gineers a�liated with regulatory authorities through the prescribed process steps.

In addition, it executes clerical development steps automatically and records the

entire construction and licensing process. The essential components of the develop-

7

ment process have been described in [9]. An executable re�nement of this process

model can be designed for concrete application domains and work procedures with

reasonable expenditure. The basic idea is to formulate the individual steps of an

application speci�c development or licensing process as production rules [11].

Relying on the standard IEC 1131-3, a joint commission of the German Asso-

ciations of Engineers (VDI) and Electrical Engineers (VDE) jointly produced the

design guideline VDI/VDE 3696 [2]. This guideline provides a basis for the plan-

ning and con�guration of process control systems. It supplies a vendor independent

description language and a collection of standard function module de�nitions. As

a preliminary work for the construction of an application speci�c module library,

the module speci�cations named in the guideline design were investigated in [17].

Throughout this study

� incomplete information about the algorithmic de�nition of certain function mo-

dules such as time components, standard PID regulators, or characteristic com-

ponents, were discovered and lacking information was added;

� ambiguities, contradictions, redundancies and design aws in individual mo-

dule descriptions were identi�ed and recommendations for their removal were

developed;

� a large number of module de�nitions was formally veri�ed.

The approach to construct application programs by re-use of library components

reduces development time and e�ort. In combination with the use of formal me-

thods, it also provides the basis for e�ective formal veri�cation and validation of

critical properties of new applications because we can rely on proven properties of

the modules involved. It is a desired side e�ect of this approach that the costs for

the veri�cation of library modules can thus be shared among many applications.

4. Veri�cation of Hierarchical Function Modules

Our main approach to veri�cation is based on higher order logic (HOL) theorem

proving [13]. This means that both speci�cations and implementations are modeled

in a very powerful, general purpose logic. The correctness of an implementation

then becomes a mathematical theorem which can be proven using standard ma-

thematical reasoning. Since all proofs are checked by the Isabelle/HOL system, we

can be very con�dent that no invalid deductions occur during the proof process.

Our computation model is based on the cyclic execution of reactive systems [12].

Controllers are described essentially as net-lists of function blocks. Function blocks

are entities which have their own private memory that persists from one invocation

to the next. In accordance with guideline VDI/VDE 3696, the only form of commu-

nication between function blocks is the passing of parameters from output to input

ports. Therefore the evaluation order of function blocks within one cycle does not

matter as long as causal dependencies between function blocks are respected. Such

8

dependencies exist if a function block A provides input for another function block

B, Therefore the execution of A must be completed before that of B is started.

Currently, we are restricting ourselves to single tasks. Hence we do not need to

address issues such as scheduling or processing of interrupts.

The underlying processing model contains two principal components (see Fig. 4)

� a plant, also called \unit under control", and

� the controller.

Plant

sensor readings

control signals

Controller

Figure 4. Control process model

In every cycle, the current reading of a number of plant sensors are digitized and

communicated to the controller. After a certain delay, the controller responds by

sending control signals back to the plant. The state of the plant is modeled via

a number of real-valued variables. Its behavior will usually be given as a set of

linear di�erential equations. Our approach does not require that the behavior of

the plant is deterministic. Instead, it is su�cient to have a number of inequalities

which limit the maximal possible variation of the plant variables per cycle.

Upper bounds for the delay in the response of the controller can be calculated by

summing up upper bounds for the individual delays caused by the execution of each

activated function block. In general, these delays depend on the current inputs and

states of the function blocks. However, in practice, it is usually both possible and

su�cient to give constant upper bounds for the delays of all components and thus

also for the whole controller.

Qualitative time behavior is expressed by Linear time Temporal Logic (LTL)

formulas (cf. e.g. [12]). Timers are treated as nondeterministic functions subject

to the condition that the values of subsequent readings increase monotonously as

long as there is no reset. Of course, we also assume that the readings of timers

are compatible with the bounds on the function block delays. We believe that this

simple model of time is adequate for most control applications.

The reactive model sketched above allows modular veri�cation. Thus, base com-

ponents can be veri�ed �rst. In subsequent steps, these results can be used in the

proof of the correctness of the entire control system. In this inductive process re-

quirements speci�cations of base components are combined by logical conjunction,

while a composite program is formed by identifying input and output variables of

connected components according to their wiring in the given diagram.

9

For the mechanical support of the proof method, we are working on an extension

of a method for the veri�cation of elementary function blocks which already has

been implemented with the help of the proof system Isabelle/HOL [10].

4.1. Example

As a simple example, we consider the process control for a container automation

taken from VDI/VDE guideline 3696. The physical con�guration is depicted in

�g. 5. In the VDI/VDE guideline the automation task for this example is described

sequence

measure

measure

control

steam

filling valve

heating valve

discharge valve condensed water

Figure 5. Automatic Level and Temperature Control

informally as follows [2]:

If a start button is pressed and held, and if the temperature is below 40o

C, the �lling valve opens and remains open until a liquid level of 90 % is

reached. Subsequently, the container casing is heated with steam by opening

the heating valve until 90o C are reached. Now, the emptying valve is opened

until the �lling height has fallen below 5 %; then the control goes back to

its initial step and the whole process is repeated.

The controller for this system depicted in �g. 6a is composed of two instances of

function block measure, which was shown in �g. 1a, and an instance of function

block sequence, whose structure is illustrated in �g. 6b.

10

fill

I1 Q
AND

I2

s3

sequencecontrol

0
100

90

’cel’
’1.1.1’

sequence

startkey

tmin

lmax

tmax

lmin

s0

s2 heat

s1

discharge

hs

adr
ls

unit
max
min

measure

hs

adr
ls

unit
max
min

measure

0
100
’%’

’1.1.2’
5

90

a1

a) b)

s1

m2

m1

40

startkey
qls
qhs

lmin
lmax

qls
qhs

tmax
tmin

Figure 6. Function block sequence

4.2. Speci�cation of Function Blocks

The core of the control system shown in �g. 6a is function block sequence. It has

�ve Boolean inputs startkey, tmin, tmax , lmin, lmax and controls the three actions

�ll , heat , and discharge . The control algorithm is speci�ed through an SFC with

four steps s0, s1, s2, and s3. These steps are sequentially dependent on each other

so that exactly one of them can be activated at any time.

As mentioned before, our approach to formal veri�cation is based on higher order

logic theorem proving. For modeling the behavior of function blocks, we have ad-

opted the relational approach advocated in [13]. A function block with n input and

m output ports is represented by an (n+m)-ary relation on streams. Every stream

parameter refers to the ow of values communicated through the corresponding

port. For example, the HOL type of the standard function block SAM is

SAM :: NUM STREAM� SIGNAL� NUM STREAM� NUM STREAM� SIGNAL ! BOOL

where SIGNAL is an abbreviation for BOOL STREAM. As this typing suggests, the

identi�cation of function block ports in the HOL representation is by order of

parameters and not by name. Streams of some type a are simply modeled as

functions from type NAT to a. As usual in HOL, function application is denoted

simply by juxtaposition, i.e. QS n is the value of the stream QS at time step n. The

relation between the values of input and output parameters of SAM is characterized

by:

11

SAM X LOW S SHYS QS ==

8n: QS n = (LOW n ^X n < S n

_ : (LOW n) ^ S n < X n

_ 0 < n ^QS (pred n)

^ (LOW n ^X n � S n+ SHYS n

_:LOW n ^ S n� SHYS n � X n))

The readability of this formula su�ers from the frequent occurrence of the variable

n which refers to the current point of time. Using the linear time temporal logic

operator ALWAYS and stream versions of the logical and arithmetical operations

obtained by pointwise lifting (cf., e.g., [12]), the following equivalent speci�cation

of SAM is possible:

SAM X LOW S SHYS QS =

ALWAYS (QS Eq (LOW AND X Less S

OR Not LOW AND S Less X

OR (�n:0 < n) AND Pre QS

AND (LOW AND X Le S + SHYS

OR Not LOW AND S � SHYS Le X)))

As usual, the expression �n:E denotes a �-binding, i.e. a function with formal

parameter n and result E.

Using an embedding of the SFC formalism in HOL, a third equivalent formulation

of SAM via sequential function charts would also be possible. Instead, we will give

below some temporal logic formulaswhich can be derived from the SFC speci�cation

of the function block type sequence in �g. 6b. These formulas all assume the

premise

sequence startkey lmin lmax tmin tmax �ll heat discharge

where

sequence :: SIGNAL� : : :� SIGNAL ! BOOL

is the relation on input- and output signals derived from the SFC speci�cation.

Further, the stream

Step :: (STEP SET) STREAM

consists of the corresponding set of activated steps of sequence over time.

First, the possible sets of active steps of sequence are characterized by the for-

mula:

ALWAYS (Step =c fs0g OR Step =c fs1g OR Step =c fs2g OR Step =c fs3g)

where the operator

=c :: a STREAM � a ! SIGNAL

12

compares the values of a stream with a constant:

8n: (x =c a)n = (xn = a)

Because the steps s0; : : : ; s3 are pairwise di�erent, the formula above implies that

always exactly one of the four steps is active.

In the following, we will drop the outer ALWAYS quanti�er in LTL formulas and

assume an implicit universal quanti�cation over all instances. The LTL formulation

of the step transition relation of the SFC speci�cation of function block sequence

can be derived directly by symbolic evaluation of the speci�cation:

Step =c fs0g =) NEXT (UNLESS (tmin AND startkey) (Step =c fs0g))

Step =c fs1g =) NEXT (UNLESS lmax (Step =c fs1g))

Step =c fs2g =) NEXT (UNLESS tmax (Step =c fs2g))

Step =c fs3g =) NEXT (UNLESS lmin (Step =c fs3g))

Step =c fs0g AND NEXT (tmin AND startkey) =) NEXT (Step =c fs1g)

Step =c fs1g AND NEXT lmax =) NEXT (Step =c fs2g)

Step =c fs2g AND NEXT tmax =) NEXT (Step =c fs3g)

Step =c fs3g AND NEXT lmin =) NEXT (Step =c fs0g)

The temporal operator UNLESS P Q is valid at some point in time, provided Q

remains TRUE as long as P is FALSE. It does not say anything about the truth of

P . The NEXT operator shifts a stream by one instance \to the left":

8n: (NEXT x)n = x(n+ 1)

The initial state and the correspondence between steps and actions complete our

list of propositions about the function block sequence:

Step 0 = fs0g

�ll = (Step =c fs1g)

heat = (Step =c fs2g)

discharge = (Step =c fs3g)

Composition and instantiation of function blocks lead to analogous operations on

relations. Ports which connect components inside a function block can be made

invisible to the outside by existential quanti�cation. Assuming a relation measure

modeling the function block of the same name, the net-list description of control

in �g. 6a can be speci�ed as follows:

control startkey �ll heat discharge ==

9 m1:qls m1:qhs m2:qls m2:qhs s1:lmin s1:lmax s1:tmin s1:tmax :

measure 0 100 0%0 01:1:20 5 90 m1:qls m1:qhs ^

measure 0 100 0cel0 01:1:10 40 90 m2:qls m2:qhs ^

sequence startkey s1:lmin s1:lmax s1:tmin s1:tmax �ll heat discharge

^ m1:qls = s1:lmin ^ m1:qhs = s1:lmax

^ m2:qls = s1:tmin ^ m2:qhs = s1:tmax

13

Following our process model of �g. 4, the function block control receives analogue

input streams from the plant at the addresses '1.1.1' and '1.1.2'. The controller

responds by sending the Boolean signals �ll , heat , discharge to the plant.

4.3. Veri�cation of a Safety Property

As we have already seen in the previous section, some safety properties can be deri-

ved from the individual speci�cations of the involved function alone. For example,

the speci�cation of function block type sequence implied immediately that no more

than one of the three actions �ll, heat and discharge can be activated at any time.

As an example for a safety property of the composed system, we will give an

informal sketch of the derivation of an upper bound for the liquid level in the

tank. For this, we assume that the current value of the liquid level is read with a

frequency of f = 100Hz. The maximal ow of liquid into the tank is dfmax = 2%

per second. Further, we assume that the �lling valve reacts with a mechanical

delay of dvalve = 0:5 s, i.e. it takes this time for the �lling valve to open and close

completely after the corresponding change of the controller signal �ll . During the

opening or closing of the valve, we assume a linear increase and decrease of the

liquid stream, respectively.

In order to obtain an upper bound for the delay in the controller response, we

examine the tasks accomplished by the components. In addition to one analog-

digital conversion, these consist mainly of a couple of simple arithmetic and Boolean

operations. Since none of the programs implementing a function block requires a

loop or a backward jump, upper bounds for the execution times can be obtained

by simply multiplying the number of instructions with the maximal execution time

per instruction. We will require in the following that the controller delay is less

than dctrl = 1ms. Considering the small number of instructions necessary for

implementing the function blocks, this delay could even be achieved easily with

a slow, low-cost PLC and a program written in a strictly sequential, higher level

programming language.

For the following veri�cation, we assume a composition of control as in �g. 6a.

This is expressed by the predicate

control startkey �ll heat discharge

where the relation control is de�ned as above. Further we assume that

m1:qls m1:qhs m1:X s1:lmin s1:lmax

denote the respective streams at the input/output ports of function block m1 and

s1. Thus, ignoring rounding errors in the digitization step, the last reading of the

uid level in the container is given by the value of the stream m1:X.

Recall that our aim is to obtain an upper bound on the liquid level in the tank.

Assuming that the tank is initially empty, i.e.

14

(m1:X) 0 < m1:ls

we deduce from the speci�cation of SAM

(m1:qls) 0 = TRUE

The equality

m1:qls = s1:lmin

reects the composition of these two ports in control. Using it, we obtain

(s1:lmin) 0 = TRUE

Next note that the water level can not rise while the controller is in step s0:

(x = m1:X AND Step = fs0g) =) NEXT (m1:X � x)

This implies

Step = fs0g =) s1:lmin

by induction over the number of instances and using the precondition of the only

transition which leads to an activation of step s0.

The increase in the liquid level is always bound by dfmax

(x = m1:X) =) NEXT (m1:X � x+ dfmax=f)

= NEXT (m1:X � x+ 0:02%)

The switching from step s1 to s2 takes place as soon as m1:X exceeds m1:hs.

Because of the last two inequalities, simple arithmetic shows that the value of

m1:X in this instance must be less than m1:X + dfmax=f . Due to the controller

delay, the �lling will continue for another 1ms, leading to a maximal intake of

dfmax � dctrl = 0:002%. Integration shows that during the closing phase of the

�lling valve, the liquid level will rise by at most

Z
0:5

0

(2� 4 � t)% dt = 0:5%

Since no more liquid is added to the tank in the remaining steps of the control loop,

induction over the number of instances proves

8t: level(t) < m1:hs + dfmax=f + dfmax � dctrl+ 0:5%

= 90:522%

15

5. Further Work

The results presented in the main body of this paper are supplemented by an

ongoing \Study of programming languages with limited features suitable for control

applications with safety tasks" supported by the Federal Institute of Labor. This

study aims at

� identifying language elements and constructions of higher programming langua-

ges which may cause design faults, impede a su�cient analysis of the program

code, or render the formal proof of functional correctness, safety and timing

constraints di�cult or even impossible;

� selecting reliable subsets of suitable programming languages staggered according

to safety requirement classes;

� characterizing corresponding restrictions for syntax and type checkers, compi-

lers, and run-time environments for the chosen languages;

� designing comprehensive methods for systematic programming and formal ve-

ri�cation of safety-oriented program systems.

Starting-point for this study are the Safe Technical Language de�ned by Daimler-

Benz AG [5], the comparative evaluation of programming languages for real time

applications presented in [7], and our own preliminary work.

In parallel, an international project is planned in which, for the �rst time, a

complete real-time operating system kernel shall be speci�ed and veri�ed formally.

Theorem prover based veri�cation methods such as the one sketched above are

very trustworthy, exible and support modular proofs. However, in general they

require a sophisticated guidance by the user. Hence it is very important to �nd

ways to automates recurring development steps. In this respect, the integration of

automatic model checking procedures such as pioneered by N. Shankar for the PVS

system seems particularly promising.

Another and for the automation practice decisive step is �nally the construction

of a complete development environment. According to this approach, it should

support a mathematically precise description of safety critical components of PLC-

based process control systems and the veri�cation of ful�lling the given safety

requirements with the help of formal proof techniques. An ergonomic design of

the construction and proof processes and tools matching the working processes in

development laboratories and licensing authorities such as Technical Supervising

Organizations and internal company quality control groups must be focused here.

However, this step can only be executed sensibly in close co-operation with intere-

sted vendors, users and evaluators for PLC controllers in safety critical �elds, who

we are still looking for.

The authors would like to thank R. Lichtenecker and the anonymous referees for

their helpful comments on an earlier version of the paper.

16

Notes

1. The software prevented the pilots to switch the reverse thrust on in time. The reason was that
the control software failed to detect the plane's touching of the ground due to the reduced
friction caused by rain and the undercarriage's one-sided touching of the ground caused by
severe side winds.

References

1. IEC Draft International Standard 1131-3. Programmable Controllers. Part 3: Programming

Languages. International Electro-technical Commission, Geneva, 1992.

2. VDI/VDE Richtlinie 3696. HerstellerneutraleKon�gurierungvon Proze�leitsystemem. Tech-
nical report, D�usseldorf, 1993 (in German).

3. R.M. Cardell-Oliver and C. Southon. A Theorem Proving Abstraction of Model Checking.
Technical Report CSM-253, Department of Computer Science, University of Essex, England,
1995.

4. W.J. Cullyer, W.A. Halang, and B.J. Kr�amer (Eds.). High integrity programmable electronic
systems. Dagstuhl-Seminar-Report 107, IBFI GmbH, Schlo� Dagstuhl, D-66687 Wadern,

Germany, 1995.

5. G. Egger, A. Fett, and P. Pepper. Formal speci�cation of a safe PLC language and its
compiler. Technical report, Daimler-Benz AG, 1994.

6. W.A. Halang, S.-K. Jung, B.J. Kr�amer, and J. Scheepstra. An Safety Licensable Computing

Architecture. World Scienti�c, 1993.

7. W.A. Halang and A.D. Stoyenko. Extending PEARL for industrial real-time applications.
IEEE Software, 10(4):65{74, 1993.

8. W.A. Halang and B.J. Kr�amer. Achieving high integrity of process control software by
graphical design and formal veri�cation. Software Engineering Journal, 7(1):53{64, January

1992.

9. W.A. Halang and B.J. Kr�amer. Safety assurance in process control. IEEE Software, Special
issue on Safety-Critical Software:61{67, January 1994.

10. W.A. Halang, B.J. Kr�amer, and N. V�olker. Formally veri�ed building blocks in functional
logic diagrams for emergency shutdown system design. High Integrity Systems, 1995.

11. B.J. Kr�amer and B. Dinler. Software process environment drives hardware synthesis. In
P.A. Ng, F.G. Sobrinho, C.V. Ramamorthy, R.T. Yeh, and L.C. Seifert, editors, Systems

Integration '94, volume I, pages 354{361, Sao Paulo, Brazil, 1994. IEEE Computer Society

Press.

12. Z. Manna and A. Pnueli. The Temporal Logic of Reactive and Concurrent Systems, volume

1. Speci�cation. Springer Verlag, 1992.

13. T.F. Melham. Higher Order Logic and Hardware Veri�cation. Cambridge University Press,
1993.

14. D.L. Parnas, J. van Schouwen, and S.P. Kwan. Evaluation of safety-critical software. Com-

munications of the ACM, 33(6):636{648, 1990.

15. H. Pohl and G. Weck (Eds.). Internationale Sicherheitskriterien, Oldenbourg Verlag,
M�unchen, Wien, 1993 (in German)

16. J. Wordsworth. Practical experience of formal speci�cation: A programming interface for
communications. In C. Ghezzi and J.A. McDermid, editors,ESEC '89 2nd European Software

Engineering Conference, number 387 in Lecture Notes in Computer Science, pages 140{158,

Berlin, Heidelberg, New York, 1989. Springer Verlag.

17. G. Wulf. �Uberpr�ufung des Richtlinienentwurfs VDI/VDE 3696 und Veri�kation der darin
de�nierten Funktionsbausteine. Diplomarbeit, FernUniversit�at, 1995 (in German).

17

Received Date
Accepted Date
Final Manuscript Date

