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Abstract

An attempt is made to apply information-theoretic computational com-
plexity to metamathematics. The paper studies the number of bits of
instructions that must be a given to a computer for it to perform finite
and infinite tasks, and also the amount of time that it takes the com-
puter to perform these tasks. This is applied to measuring the difficulty
of proving a given set of theorems, in terms of the number of bits of
axioms that are assumed, and the size of the proofs needed to deduce
the theorems from the axioms.
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1. Introduction

This paper attempts to study information-theoretic aspects of compu-
tation in a very general setting. It is concerned with the information
that must be supplied to a computer for it to carry out finite or infinite
computational tasks, and also with the time it takes the computer to
do this. These questions, which have come to be grouped under the
heading of abstract computational complexity, are considered to be of
interest in themselves. However, the motivation for this investigation
is primarily its metamathematical applications.

Computational complexity differs from recursive function theory in
that, instead of just asking whether it is possible to compute something,
one asks exactly how much effort is needed to do this. Similarly, instead
of the usual metamathematical approach, we propose to measure the
difficulty of proving something. How many bits of axioms are needed

1Copyright c© 1974, Association for Computing Machinery, Inc. General permis-
sion to republish, but not for profit, all or part of this material is granted provided
that ACM’s copyright notice is given and that reference is made to the publica-
tion, to its date of issue, and to the fact that reprinting privileges were granted by
permission of the Association for Computing Machinery.
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tional Complexity Symposium, New York, October 1971. [28] includes a nontech-
nical exposition of some results of this paper. [1] and [2] announce related results.

Author’s address: Rivadavia 3580, Dpto. 10A, Buenos Aires, Argentina.



Information-Theoretic Limitations of Formal Systems 3

to be able to obtain a set of theorems? How long are the proofs needed
to demonstrate them? What is the trade-off between how much is
assumed and the size of the proofs?

We consider the axioms of a formal system to be a program for
listing the set of theorems, and the time at which a theorem is written
out to be the length of its proof.

We believe that this approach to metamathematics may yield valu-
able dividends. Mathematicians were at first greatly shocked at, and
then ignored almost completely, Gödel’s announcement that no set of
axioms for number theory is complete. It wasn’t clear what, in practice,
was the significance of Gödel’s theorem, how it should affect the every-
day activities of mathematicians. Perhaps this was because the unprov-
able propositions appeared to be very pathological singular points.2,3

The approach of this paper, in contrast, is to measure the power of
a set of axioms, to measure the information that it contains. We shall
see that there are circumstances in which one only gets out of a set of
axioms what one puts in, and in which it is possible to reason in the
following manner. If a set of theorems constitutes t bits of information,
and a set of axioms contains less than t bits of information, then it is
impossible to deduce these theorems from these axioms.

We consider that this paper is only a first step in the direction of
such an approach to metamathematics;4 a great deal of work remains to
be done to clarify these matters. Nevertheless, we would like to sketch
here the conclusions which we have tentatively drawn.5

2In [3] and [4] von Neumann analyzes the effect of Gödel’s theorem upon math-
ematicians. Weyl’s reaction to Gödel’s theorem is quoted by Bell [5]. The original
source is [6]. See also Weyl’s discussion [7] of Gödel’s views regarding his incom-
pleteness theorem.

3For nontechnical expositions of Gödel’s incompleteness theorem, see [8, 9, 10,
Sec. 1, pp. xv-xviii, 11, and 12]. [28] contains a nontechnical exposition of an
incompleteness theorem analogous to Berry’s paradox that is Theorem 4.1 of this
paper.

4[13–16] are related in approach to this paper. [13, 15, and 16] are concerned
with measuring the size of proofs and the effect of varying the axioms upon their
size. In [14] Cohen “measures the strength of a [formal] system by the ordinals
which can be handled in the system.”

5The analysis that follows of the possible significance of the results of this paper
has been influenced by [17 and 18], in addition to the references cited in Footnote
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After empirically exploring, in the tradition of Euler and Gauss, the
properties of the natural numbers one may discover interesting regular-
ities. One then has two options. The first is to accept the conjectures
one has formulated on the basis of their empirical corroboration, as
an experimental scientist might do. In this way one may have a great
many laws to remember, but will not have to bother to deduce them
from other principles. The other option is to try to find a theory for
one’s observations, or to see if they follow from existing theory. In this
case it may be possible to reduce a great many observations into a few
general principles from which they can be deduced. But there is a cost:
one can now only arrive at the regularities one observed by means of
long demonstrations.

Why use formal systems, instead of proceeding empirically? First
of all, if the empirically derived conjectures aren’t independent facts,
reducing them to a few common principles allows one to have to re-
member less assumptions, and this is easier to do, and is much safer,
as one is assuming less. The cost is, of course, the size of the proofs.

What attitude, then, does this suggest toward Gödel’s theorem that
any formalization of number theory is incomplete? It tends to provide
theoretical justification for the attitude that number theorists have in
fact adopted when they extensively utilize in their work hypotheses such
as that of Riemann concerning the zeta function. Gödel’s theorem does
not mean that mathematicians must give up hope of understanding the
properties of the natural numbers; it merely means that one may have
to adopt new axioms as one seeks to order and interrelate, to organize
and comprehend, ever more extensive mathematical observations. I.e.
the mathematician shouldn’t be more upset than the physicist when he
needs to assume a new axiom; nor should he be too horrified when an
axiom must be abandoned because it is found that it contradicts pre-
viously existing theory, or because it predicts properties of the natural
numbers that are not corroborated empirically. In a word, we propose
that there may be theoretical justification for regarding number theory
somewhat more like a dynamic empirical science than as a closed static
body of theory.

This paper grew out of work on the concept of an individual random,

2. Incidentally, it is interesting to examine [19, p. 112] in the light of this analysis.
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patternless, chaotic, unpredictable string of bits. This concept has been
rigorously defined in several ways, and the properties of these random
strings have been studied by several authors (see, for example, [20–28]).
Most strings are random; they have no special distinguishing features;
they are typical and hard to tell apart. But can it be proved that a
particular string is random? The answer is that about n bits of axioms
are needed to be able to prove that a particular n-bit string is random.

More precisely, the train of thought was as follows. The entropy,
or information content, or complexity, of a string is defined to be the
number of bits needed to specify it so effectively that it can be con-
structed. A random n-bit string is about n bits of information, i.e. has
complexity/entropy/information content ≈ n; there is essentially noth-
ing better to do if one wishes to specify such a string than just show it
directly. But the string consisting of 1,000,000 repetitions of the 6-bit
pattern 000101 has far less than 6,000,000 bits of complexity. We have
just specified it using far fewer bits.

What if one wishes to be able to determine each string of complexity
≤ n and its complexity? It turns out that this requires n+O(1) bits of
axioms; at least n− c bits are necessary (Theorem 4.1), and n + c bits
are sufficient (Theorem 4.3). But the proofs will be enormously long
unless one essentially directly takes as axioms all the theorems that
one wishes to prove, and in that case there will be an enormously great
number of bits of axioms (Theorem 7.6(c)).

Another theme of this paper arises from the following metamathe-
matical considerations, which are well known (see, for example, [29]).
In a formal system without a decision method, it is impossible to bound
the size of a proof of a theorem by a recursive function of the number
of characters in the statement of the theorem. For if there were such
a function f , one could decide whether or not an arbitrary proposition
p is a theorem, by merely checking if a proof for it appears among the
finitely many possible proofs of size bounded by f of the number of
characters in p.

Thus, in a formal system having no decision method, there are very
profound theorems, theorems that have short statements, but need im-
mensely long proofs. In Section 10 we study the function e(n), neces-
sarily nonrecursive, defined to be the least s such that all theorems of
the formal system with ≤ n characters have proofs of size ≤ s.
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To close this introduction, we would like to mention without proof
an example that shows particularly clearly the relationship between the
number of bits of axioms that are assumed and what can be deduced.
This example is based on the work of M. Davis, Ju. V. Matisjasevič,
H. Putnam, and J. Robinson that settled Hilbert’s tenth problem (cf.
[30]). There is a polynomial P in k+2 variables with integer coefficients
that has the following property. Consider the infinite string whose ith
bit is 1 or 0 depending on whether or not the set

Si = {n ∈ N |∃x1, . . . , xk ∈ N P (i, n, x1, . . . , xk) = 0}
is infinite. Here N denotes the natural numbers. This infinite binary
sequence is random, i.e. the complexity of an initial segment is asymp-
totic to its length. What is the number of bits of axioms that is needed
to be able to prove for each natural number i < n whether or not the
set Si is infinite? By using the methods of Section 4, it is easy to see
that the number of bits of axioms that is needed is asymptotic to n.

2. Definitions Related to Computers and

Complexity

This paper is concerned with measuring the difficulty of computing
finite and infinite sets of binary strings. The binary strings are con-
sidered to be ordered in the following fashion: Λ, 0, 1, 00, 01, 10, 11,
000, 001, 010, 011, 100, 101, 110, 111, 0000, . . . In order to be able to
also study the difficulty of computing finite or infinite sets of natural
numbers, we consider each binary string to simultaneously be a natural
number: the nth binary string corresponds to the natural number n.
Ordinal numbers are considered to start with 0, not 1. For example,
we speak of the 0th string of length n.

In order to be able to study the difficulty of computing finite and
infinite sets of mathematical propositions, we also consider that each
binary string is simultaneously a proposition. Propositions use a finite
alphabet of characters which we suppose includes all the usual math-
ematical symbols. We consider the nth binary string to correspond to
the nth proposition, where the propositions are in lexicographical order
defined by an arbitrary ordering of the symbols of their alphabet.
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Henceforth, we say “string” instead of “binary string,” it being un-
derstood that this refers to a binary string. It should be clear from the
context whether we are considering something to be a string, a natural
number, or a proposition.

Operations with strings include exponentiation: 0k and 1k denote
the string of k 0’s and k 1’s, respectively. lg(s) denotes the length of a
string s. Note that the length lg(n) of a natural number n is therefore
blog2(n + 1)c. The maximum element of a finite set of strings S is
denoted by maxS, and we stipulate that max ∅ = 0. #(S) denotes the
number of elements in a finite set S.

We use these notational conventions in a somewhat tricky way to
indicate how to compactly code several pieces of information into a
single string. Two coding techniques are used.

(a) Consider two natural numbers n and k such that 0 ≤ k < 2n.
We code n and k into the string s = 0n + k, i.e. the kth string
of length n. Given the string s, one recovers n and k as follows:
n = lg(s), k = s − 0lg(s). This technique is used in the proofs
of Theorems 4.3, 6.1, 7.4, and 10.1. In three of these proofs k
is #(S), where S is a subset of the strings having length < n; n
and #(S) are coded into the string s = 0n + #(S). In the case
of Theorem 6.1, k is the number that corresponds to a string s
of length < n (thus 0 ≤ k < 2n − 1); n and s are coded into the
string s′ = 0n + s.

(b) Consider a string p and a natural number k. We code p and k
into the string s = 0lg(k)1kp, i.e. the string consisting of lg(k) 0’s
followed by a 1 followed by the kth string followed by the string
p. The length of the initial run of 0’s is the same as the length of
the kth string and is used to separate kp in two and recover k and
p from s. Note that lg(s) = lg(p) + 2 lg(k) + 1. This technique is
used in the proof of Theorem 10.4. The proof of Theorem 4.1 uses
a simpler technique: p and k are coded into the string s = 0k1p.
But this coding is less economical, for lg(s) = lg(p) + k + 1.

We use an extremely general definition of computer; this has the
advantage that if one can show that something is difficult to compute
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using any such computer, this will be a very strong result. A computer
is defined by indicating whether it has halted and what it has output,
as a function of its program and the time. The formal definition of a
computer C is an ordered pair 〈C, HC〉 consisting of two total recursive
functions

C : X∗ ×N → {S ∈ 2X∗|S is finite}
and HC : X∗ × N → X. Here X = {0, 1}, X∗ is the set of all strings,
and N is the set of all natural numbers. It is assumed that the functions
C and HC have the following two properties:

(a) C(p, t) ⊂ C(p, t + 1), and

(b) if HC(p, t) = 1, then HC(p, t + 1) = 1 and C(p, t) = C(p, t + 1).

C(p, t) is the finite set of strings output by the computer C up to
time t when its program is p. If HC(p, t) = 1 the computer C is halted
at time t when its program is p. If HC(p, t) = 0 the computer C isn’t
halted at time t when its program is p. Henceforth whether HC(p, t) = 1
or 0 will be indicated by stating that “C(p, t) is halted” or that “C(p, t)
isn’t halted.” Property (a) states that C(p, t) is the cumulative output,
and property (b) states that a computer that is halted remains halted
and never outputs anything else.

C(p), the output of the computation that C performs when it is
given the program p, is defined to be

⋃
t C(p, t). It is said that “C(p)

halts” iff there is a t such that C(p, t) is halted. Furthermore, if C(p)
halts, the time at which it halts is defined to be the least t such that
C(p, t) is halted. We say that the program p calculates the finite set
S when run on C if C(p) = S and halts. We say that the program p
enumerates the finite or infinite set S when run on C if C(p) = S.

We now define a class of computers that are especially suitable to
use for measuring the information needed to specify a computation. A
computer U is said to be universal if it has the following property. For
any computer C, there must be a natural number, denoted sim(C) (the
cost of simulating C), such that the following holds. For any program
p, there exists a program p′ such that: lg(p′) ≤ lg(p) + sim(C), U(p′)
halts iff C(p) halts, and U(p′) = C(p).

The idea of this definition is as follows. The universal computers
are information-theoretically the most economical ones; their programs
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are shortest. More precisely, a universal computer U is able to simu-
late any other computer, and the program p′ for U that simulates the
program p for C need not be much longer than p. If there are instruc-
tions of length n for computing something using the computer C, then
there are instructions of length ≤ n+sim(C) for carrying out the same
computation using U ; i.e. at most sim(C) bits must be added to the
length of the instructions, to indicate the computer that is to be simu-
lated. Note that we do not assume that there is an effective procedure
for obtaining p′ given C and p. We have no need for the concept of
an effectively universal computer in this paper. Nevertheless, the most
natural examples of universal computers are effectively universal. See
the Appendix for examples of universal computers.

We shall suppose that a particular universal computer U has some-
how been chosen, and shall use it as our standard computer for mea-
suring the information needed to specify a computation. The choice of
U corresponds to the choice of the standard of measurement.

We now define I(S), the information needed to calculate the finite
set S, and Ie(S), the information needed to enumerate the finite or
infinite set S.

I(S) = min lg(p) (U(p) = S and halts);

Ie(S) =

{
min lg(p) (U(p) = S),
∞ if there are no such p.

We say that I(S) is the complexity of the finite set S, and that Ie(S)
is the e-complexity (enumeration complexity) of the finite or infinite
set S. Note that I(S) is the number of bits in the shortest program
for U that calculates S, and Ie(S) is the number of bits in the shortest
program for U that enumerates S. Also, Ie(S), the e-complexity of a
set S, is ∞ if S isn’t r.e. (recursively enumerable).

We say that a program p such that U(p) = S and halts is a de-
scription of S, and a program p such that U(p) = S is an e-description
(enumeration description) of S. Moreover, if U(p) = S and halts and
lg(p) = I(S), then we say that p is a minimal description of S. Like-
wise, if U(p) = S and lg(p) = Ie(S), then we say that p is a minimal
e-description of S.
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Finally, we define Ie(f), the e-complexity of a partial function f .
This is defined to be the e-complexity of the graph of f , i.e. the set of
all ordered pairs of the form (n, f(n)). Here the ordered pair (i, j) is
defined to be the natural number (2i + 1)2j − 1; this is an effective 1–1
correspondence between the ordered pairs of natural numbers and the
natural numbers. Note that Ie(f) = ∞ if f isn’t partial recursive.

Before considering basic properties of these concepts, we introduce
an abbreviated notation. Instead of I({s}) and Ie({s}) we shall write
I(s) and Ie(s); i.e. the complexity or e-complexity of a string is defined
to be complexity or e-complexity of its singleton set.

We now present basic properties of these concepts. First of all,
note that there are precisely 2n programs of length n, and 2n+1 − 1
programs of length ≤ n. It follows that the number of different sets
of complexity n and the number of different sets of e-complexity n are
both ≤ 2n. Also, the number of different sets of complexity ≤ n and
the number of different sets of e-complexity ≤ n are both ≤ 2n+1 − 1;
i.e. the number of different objects of complexity or e-complexity ≤ n
is bounded by the number of different descriptions or e-descriptions of
length ≤ n, which is 2n+1 − 1. Thus it might be said that almost all
sets are arbitrarily complex.

It is immediate from the definition of complexity and of a universal
computer that Ie(C(p)) ≤ lg(p)+sim(C), and I(C(p)) ≤ lg(p)+sim(C)
if C(p) halts. This is used often, and without explicit mention. The
following theorem lists for reference other basic properties of complexity
and e-complexity that are used in this paper.

Theorem 2.1.

(a) There is a c such that for all strings s, I(s) ≤ lg(s) + c.

(b) There is a c such that for all finite sets S, I(S) ≤ max S + c.

(c) For any computer C, there is a c such that for all programs p,
Ie(C(p)) ≤ I(p) + c, and I(C(p)) ≤ I(p) + c if C(p) halts.

Proof. (a) There is a computer C such that C(s) = {s} and halts
for all programs s. Thus I(s) ≤ lg(s) + sim(C).

(b) There is a computer C such that C(p) halts for all programs
p, and n ∈ C(p) iff n < lg(p) and the nth bit of p is a 1. Thus
I(S) ≤ max S + 1 + sim(C).
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(c) There is a computer C ′ that does the following when it is given
the program s. First C ′ simulates running s on U , i.e. it simulates
U(s). If and when U(s) halts, C ′ has determined the set calculated by
U when it is given the program s. If this isn’t a singleton set, C ′ halts.
If it is a singleton set {p}, C ′ then simulates running p on C. As C ′

determines the strings output by C(p), it also outputs them. And C ′

halts if C halts during the simulated run.
In summary, C ′(s) = C(p) and halts iff C(p) does, if s is a descrip-

tion of the program p. Thus, if s is a minimal description of the string
p, then

{
Ie(C(p)) = Ie(C

′(s)) ≤ lg(s) + sim(C ′) = I(p) + sim(C ′), and
I(C(p)) = I(C ′(s)) ≤ lg(s) + sim(C ′) = I(p) + sim(C ′) if C(p) halts.

Q.E.D.
It follows from Theorem 2.1(a) that all strings of length n have com-

plexity ≤ n+ c. In conjunction with the fact that < 2n−k strings are of
complexity < n − k, this shows that the great majority of the strings
of length n are of complexity ≈ n. These are the random strings of
length n. By taking C = U in Theorem 2.1(c), it follows that there is a
c such that for any minimal description p, I(p) + c ≥ I(U(p)) = lg(p).
Thus minimal descriptions are highly random strings. Likewise, mini-
mal e-descriptions are highly random. This corresponds in information
theory to the fact that the most informative messages are the most un-
expected ones, the ones with least regularities and redundancies, and
appear to be noise, not meaningful messages.

3. Definitions Related to Formal Systems

This paper deals with the information and time needed to carry out
computations. However, we wish to apply these results to formal sys-
tems. This section explains how this is done.

The abstract definition used by Post that a formal system is an r.e.
set of propositions is close to the viewpoint of this paper (see [31]).6

6For standard definitions of formal systems, see, for example, [32–34] and [10, p.
117].
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However, we are not quite this unconcerned with the internal details of
formal systems.

The historical motivation for formal systems was of course to con-
struct deductive theories with completely objective, formal criteria for
the validity of a demonstration. Thus, a fundamental characteristic of a
formal system is an algorithm for checking the validity of proofs. From
the existence of this proof verification algorithm, it follows that the set
of all theorems that can be deduced from the axioms p by means of
the rules of inference by proofs ≤ t characters in length is given by a
total recursive function C of p and t. To calculate C(p, t) one applies
the proof verification algorithm to each of the finitely many possible
demonstrations having ≤ t characters.

These considerations motivate the following definition. The rules
of inference of a class of formal systems is a total recursive function
C : X∗ × N → {S ∈ 2X∗|S is finite} with the property that C(p, t) ⊂
C(p, t+1). The value of C(p, t) is the finite (possibly empty) set of the
theorems that can be proven from the axioms p by means of proofs ≤ t
in size. Here p is a string and t is a natural number. C(p) =

⋃
t C(p, t)

is the set of theorems that are consequences of the axioms p. The
ordered pair 〈C, p〉, which implies both the choice of rules of inference
and axioms, is a particular formal system.

Note that this definition is the same as the definition of a computer
with the notion of “halting” omitted. Thus given any rules of inference,
there is a computer that never halts whose output up to time t consists
precisely of those propositions that can be deduced by proofs of size
≤ t from the axioms the computer is given as its program. And given
any computer, there are rules of inference such that the set of theorems
that can be deduced by proofs of size ≤ t from the program, is precisely
the set of strings output by the computer up to time t. For this reason
we consider the following notions to be synonymous: “computer” and
“rules of inference,” “program” and “axioms,” and “output up to time
t” and “theorems with proofs of size ≤ t.”

The rules of inference that correspond to the universal computer
U are especially interesting, because they permit axioms to be very
economical. When using the rules of inference U , the number of bits
of axioms needed to deduce a given set of propositions is precisely the
e-complexity of the set of propositions. If n bit of axioms are needed to
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obtain a set T of theorems using the rules of inference U , then at least
n − sim(C) bits of axioms are needed to obtain them using the rules
of inference C; i.e. if C(a) = T , then lg(a) ≥ Ie(T )− sim(C). Thus it
could be said that U is among the rules of inference that permit axioms
to be most economical. In Section 4 we are interested exclusively in
the number of bits needed to deduce certain sets of propositions, not
in the size of the proofs. We shall therefore only consider the rules of
inference U in Section 4, i.e. formal systems of the form 〈U, p〉.

As a final comment regarding the rules of inference U , we would
like to point out the interesting fact that if these rules of inference are
used, then a minimal set of axioms for obtaining a given set of theorems
must necessarily be random. This is just another way of saying that a
minimal e-description is a highly random string, which was mentioned
at the end of Section 2.

The following theorem also plays a role in the interpretation of our
results in terms of formal systems.

Theorem 3.1.

Let f be a recursive function, and g be a recursive predicate.

(a) Let C be a computer. There is a computer C ′ that never halts
such that C ′(p, t) = {f(s)|s ∈ C(p, t) & g(s)} for all p and t.

(b) There is a c such that Ie({f(s)|s ∈ S & g(s)}) ≤ Ie(S) + c for all
r.e. sets S.

Proof. (a) is immediate; (b) follows by taking C = U in part (a).
Q.E.D.

The following is an example of the use of Theorem 3.1. Suppose we
wish to study the size of the proofs that “n ∈ H” in a formal system
〈C, p〉, where n is a numeral for a natural number. If we have a result
concerning the speed with which any computer can enumerate the set
H , we apply this result to the computer C ′ that has the property that
n ∈ C ′(p, t) iff “n ∈ H”∈ C(p, t) for all n, p, and t. In this case
the predicate g selects those strings that are propositions of the form
“n ∈ H ,” and the function f transforms “n ∈ H” to n.

Here is another kind of example. Suppose there is a computer C
that enumerates a set H very quickly. Then there is a computer C ′
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that enumerates propositions of the form “n ∈ H” just as quickly. In
this case the predicate g is taken to be always true, and the function f
transforms n to “n ∈ H .”

4. The Number of Bits of Axioms Needed

to Determine the Complexity of Specific

Strings

The set of all programs that halt when run on U is r.e. Similarly, the
set of all true propositions of the form “I(s) ≤ n” where s is a string
and n is a natural number, is an r.e. set. In other words, if a program
halts, or if a string is of complexity less than or equal to n, one will
eventually find this out. To do this one need only try on U longer and
longer test runs of more and more programs, and do this in a systematic
way.

The problem is proving that a program doesn’t halt, or that a string
is of complexity greater than n. In this section we study how many
bits of axioms are needed, and, as was pointed out in Section 3, it is
sufficient to consider only the rules of inference U . We shall see that
with n bits of axioms it is impossible to prove that a particular string
is of complexity greater than n + c, where c doesn’t depend on the
particular axioms chosen (Theorem 4.1). It follows from this that if a
formal system has n bits of axioms, then there is a program of length
≤ n + c that doesn’t halt, but the fact that this program doesn’t halt
can’t be proven in this formal system (Theorem 4.2).

Afterward, we show that n + c bits of axioms suffice to be able
to determine each program of length not greater than n that halts
(Theorem 4.4), and thus to determine each string of complexity less
than or equal to n, and its complexity (Theorem 4.3). Furthermore,
the remaining strings must be of complexity greater than n.

Next, we construct an r.e. set of strings P that has the property
that infinitely many strings aren’t in it, but a formal system with n
bits of axioms can’t prove that a particular string isn’t an element of
P if the length of this string is greater than n + c (Theorem 4.5). It
follows that P is what Post called a simple set; that is, P is r.e., and
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its complement is infinite, but contains no infinite r.e. subset (see [31],
Sec. 5, pp. 319–320). Moreover, n + c bits suffice to determine each
string of length not greater than n that isn’t an element of P .

Finally, we show that not only are n bits of axioms insufficient to
exhibit a string of complexity > n+c, they are also insufficient to exhibit
(by means of an e-description) an r.e. set of e-complexity greater than
n + c (Theorem 4.6). This is because no set can be of e-complexity
much greater than the complexity of one of its e-descriptions, and thus
Ie(U(s)) > k implies I(s) > k − c, where c is a constant that doesn’t
depend on s.

Although these results clarify how many bits of axioms are needed
to determine the complexity of individual strings, they raise several
questions regarding the size of proofs.

n + c bits of axioms suffice to determine each string of complexity
≤ n and its complexity, but the method used here to do this appears
to be extremely slow, that is, the proofs appear to be extremely long.
Is this necessarily the case? The answer is “yes,” as is shown in Section
7.

We have pointed out that there is a formal system having as the-
orems all true propositions of the form “U(p) halts.” The size of the
proof that U(p) halts must grow faster than any recursive function f of
lg(p). For suppose that such a recursive bound on the length of proofs
existed. Then all true propositions of the form “U(p) doesn’t halt”
could be enumerated by checking to see if there is no proof that U(p)
halts of size < f(lg(p)). This is impossible, by Theorem 4.2. The size
of these proofs is studied in Section 10.

Theorem 4.1. (a) There is a c such that for all programs p, if a
proposition of the form “I(s) > n” (s a string, n a natural number) is
in U(p) only if I(s) > n, then “I(s) > n” is in U(p) only if n < lg(p)+c.

In other words: (b) There is a c such that for all formal systems
〈U, p〉, if “I(s) > n” is a theorem of 〈U, p〉 only if it is true, then
“I(s) > n” is a theorem of 〈U, p〉 only if n < lg(p) + c.

For any r.e. set of propositions T , one obtains the following from
(a) by taking p to be a minimal e-description of T : (c) If T has the
property that “I(s) > n” is in T only if I(s) > n, then T has the
property that “I(s) > n” is in T only if n < Ie(T ) + c.

Idea of Proof. The following is essentially the classical Berry
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paradox.7 For each natural number n greater than 1, consider “the
least natural number that can’t be defined in less than N characters.”
Here N denotes the numeral for the number n. This is a blog10 nc + c
character phrase defining a number that supposedly needs at least n
characters to be defined. This is a paradox if blog10 nc+ c < n, which
holds for all sufficiently great values of n.

The following is a sharper version of Berry’s paradox. Consider:
“the least natural number whose definition requires more characters
than there are in this phrase.” This c-character phrase defines a number
that supposedly needs more than c characters to be defined.

The following version is analogous to our proof. Consider this pro-
gram: “Calculate the first string that can be proven in 〈U, p〉 to be of
complexity greater than the number of bits in this program, where p is
the following string: . . . ” Here “first” refers to first in the recursive enu-
meration U(p, t) (t = 0, 1, 2, . . .) of the theorems of the formal system
〈U, p〉. This program is only a constant number c of bits longer than the
number of bits in p. It is no longer a paradox; it shows that in 〈U, p〉 no
string can be proven to be of complexity greater than c + lg(p) = c +
the number of bits of axioms of 〈U, p〉.

Proof. Consider the computer C that does the following when it is
given the program p′. First, it solves the equation p′ = 0k1p. If this
isn’t possible (i.e. p′ = 0k), then C halts without outputting anything.
If this is possible, C continues by simulating running the program p on
U . It generates U(p) searching for a proposition of the form “I(s) > n”
in which s is a string, n is a natural number, and n ≥ lg(p′)+ k. If and
when it finds such a proposition “I(s) > n” in U(p), it outputs s and
halts.

Suppose that p satisfies the hypothesis of the theorem, i.e. “I(s) >
n” is in U(p) only if I(s) > n. Consider C(0sim(C)1p). If C(0sim(C)1p) =
{s}, then I(s) ≤ lg(0sim(C)1p) + sim(C) = lg(p) + 2 sim(C) + 1. But
C outputs s and halts because it found the proposition “I(s) > n” in
U(p) and

n ≥ lg(p′) + k = lg(0sim(C)1p) + sim(C) = lg(p) + 2 sim(C) + 1.

7Although due to Berry, its importance was recognized by Russell and it was
published by him [35, p. 153].
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Thus, by the hypothesis of the theorem, I(s) > n ≥ lg(p)+2 sim(C)+1,
which contradicts the upper bound on I(s). Consequently, C(0sim(C)1p)
doesn’t output anything (i.e. equals ∅), for there is no proposition
“I(s) > n” in U(p) with n ≥ lg(p) + 2 sim(C) + 1. The theorem is
proved with c = 2 sim(C) + 1. Q.E.D.

Definition 4.1. H = {p|U(p) halts}. (H is r.e., as was pointed
out in the first paragraph of this section.)

Theorem 4.2. There is a c such that for all formal systems 〈U, p〉,
if a proposition of the form “s ∈ H” or “s 6∈ H” (s a string) is a theorem
of 〈U, p〉 only if it is true, then there is a string s of length ≤ lg(p) + c
such that neither “s ∈ H” nor “s 6∈ H” is a theorem of 〈U, p〉.

Proof. Consider the computer C that does the following when it is
given the program p. It simulates running p on U , and as it generates
U(p), it checks each string in it to see if it is a proposition of the form
“s ∈ H” or “s 6∈ H ,” where s is a string. As soon as C has determined
in this way for each string s of length less than or equal to some natural
number n whether or not “s ∈ H” or “s 6∈ H” is in U(p), it does the
following.

C supposes that these propositions are true, and thus that it has
determined the set {s ∈ H| lg(s) ≤ n}. Then it simulates running each
of the programs in this set on U until U halts, and thus determines the
set S =

⋃
U(s) (s ∈ H & lg(s) ≤ n). C then outputs the proposition

“I(f) > n,” where f is the first string not in S, and then continues
generating U(p) as was indicated in the first paragraph of this proof.
Inasmuch as f isn’t output by any program of length ≤ n that halts,
it must in fact be of complexity > n.

Thus, C(p) enumerates true propositions of the form “I(f) > n”
if p satisfies the hypothesis of the theorem. Hence, by Theorem 4.1,
“I(f) > n” is in C(p) only if n < Ie(C(p))+ c′ ≤ lg(p)+sim(C)+ c′. It
is easy to see that the theorem is proved with c = sim(C) + c′. Q.E.D.

Theorem 4.3. Consider the set Tn consisting of all true proposi-
tions of the form “I(s) = k” (s a string, k a natural number ≤ n) and
all true propositions of the form “I(s) > n.” Ie(Tn) = n + O(1).

In other words, a formal system 〈U, p′〉 whose theorems consist pre-
cisely of all true propositions of the form “I(s) = k” with k ≤ n, and
all true propositions of the form “I(s) > n,” requires n + O(1) bits
of axioms; i.e. n − c bits are necessary and n + c bits are sufficient to
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obtain this set of theorems.
Idea of Proof. If one knows n and how many programs of length

≤ n halt when run of U , then one can find them all, and see what they
calculate. n and this number h can be coded into an (n +1)-bit string.
In other words, the axiom of this formal system with theorem set Tn is
essentially “the number of programs of length ≤ n that halt when run
on U is h,” where n and h are particular natural numbers. This axiom
is n + O(1) bits of information.

Proof. By Theorem 4.1, Ie(Tn) ≥ n − c. It remains to show that
Ie(Tn) ≤ n + c.

Consider the computer C that does the following when it is given
the program p of length ≥ 1. It generates the r.e. set H until it has
found p − 0lg(p) programs of length ≤ lg(p) − 1 that halt when run
on U . If and when it has found this set S of programs, it simulates
running each program in S on U until it halts. C then examines each
string that is calculated by a program in S, and determines the length
of the shortest program in S that calculates it. If p − 0lg(p) = the
number h of programs of length ≤ lg(p) − 1 that halt when run of
U , then C has determined each string of complexity ≤ lg(p) − 1 and
its complexity. If p − 0lg(p) < h, then C’s estimates of the complexity
of strings are too high. And if p − 0lg(p) > h, then C never finishes
generating H . Finally, C outputs its estimates as propositions of the
form “I(s) = k” with k ≤ lg(p) − 1, and as propositions of the form
“I(s) > k” with k = lg(p) − 1 indicating that all other strings are of
complexity > lg(p)− 1.

We now show how C can be used to enumerate Tn economically.
Consider h = #({s ∈ H| lg(s) ≤ n}). As there are precisely 2n+1 − 1
strings of length ≤ n, 0 ≤ h ≤ 2n+1 − 1. Let p be 0n+1 + h, that is,
the hth string of length n + 1. Then C(p) = Tn, and thus Ie(Tn) ≤
lg(p) + sim(C) = n + 1 + sim(C). Q.E.D.

Theorem 4.4. Let Tn be the set of all true propositions of the form
“s ∈ H” or “s 6∈ H” with s a string of length ≤ n. Ie(Tn) = n + O(1).

In other words, a formal system 〈U, p〉 whose theorems consist pre-
cisely of all true propositions of the form “s ∈ H” or “s 6∈ H” with
lg(s) ≤ n, requires n+O(1) bits of axioms; i.e. n− c bits are necessary
and n + c bits are sufficient to obtain this set of theorems.

Proof. Theorem 4.2 shows that Ie(Tn) ≥ n − c. The proof that
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Ie(Tn) ≤ n+c is obtained from the proof of Theorem 4.3 by simplifying
the definition of the computer C so that it outputs Tn, instead of, in
effect, using Tn to determine each string of complexity ≤ n and its
complexity. Q.E.D.

Definition 4.2. P = {s|I(s) < lg(s)}; i.e. P contains each string
s whose complexity I(s) is less than its length lg(s).

Theorem 4.5. (a) P is r.e., i.e. there is a formal system with the
property that “s ∈ P” is a theorem iff s ∈ P .

(b) P is infinite, because for each n there is a string of length n that
isn’t an element of P .

(c) There is a c such that for all formal systems 〈U, p〉, if “s 6∈ P”
is a theorem only if it is true, then “s 6∈ P” is a theorem only if
lg(s) < lg(p) + c. Thus, by the definition of e-complexity, if an r.e. set
T of propositions has the property that “s 6∈ P” is in T only if it is
true, then “s 6∈ P” is in T only if lg(s) < Ie(T ) + c.

(d) There is a c such that for all r.e. sets of strings S, if S contains
no string in P (i.e. S ⊂ P ), then lg(maxS) < Ie(S)+ c. Thus max S <
0Ie(S)+c = 2Ie(S)+c − 1, and #(S) < 2Ie(S)+c.

(e) Let Tn be the set of all true propositions of the form “s 6∈ P”
with lg(s) ≤ n. Ie(Tn) = n + O(1). In other words, a formal system
〈U, p〉 whose theorems consist precisely of all true propositions of the
form “s 6∈ P” with lg(s) ≤ n, requires n + O(1) bits of axioms; i.e.
n− c bits are necessary and n + c bits are sufficient to obtain this set
of theorems.

Proof. (a) This is an immediate consequence of the fact that the
set of all true propositions of the form “I(s) ≤ n” is r.e.

(b) We must show that for each n there is a string of length n whose
complexity is greater than or equal to its length. There are 2n strings
of length n. As there are exactly 2n − 1 program of length < n, there
are < 2n strings of complexity < n. Thus at least one string of length
n must be of complexity ≥ n.

(c) Consider the computer C that does the following when it is
given the program p. It simulates running p on U . As C generates
U(p), it examines each string in it to see if it is a proposition of the
form “s 6∈ P ,” where s is a string of length ≥ 1. If it is, C outputs the
proposition “I(s) > n” where n = lg(s)− 1.

If p satisfies the hypothesis, i.e. “s 6∈ P” is in U(p) only if it is
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true, then C(p) enumerates true propositions of the form “I(s) > n”
with n = lg(s) − 1. It follows by Theorem 4.1 that n must be <
Ie(C(p))+c′ ≤ lg(p)+sim(C)+c′. Thus lg(s)−1 < lg(p)+sim(C)+c′,
and part (c) of the theorem is proved with c = sim(C) + c′ + 1.

(d) Consider the computer C that does the following when it is given
the program p. It simulates running p on U . As C generates U(p), it
takes each string s in U(p), and outputs the proposition “s 6∈ P .”

Suppose S contains no string in P . Let p be a minimal e-description
of S, i.e. U(p) = S and lg(p) = Ie(S). Then C(p) enumerates true
propositions of the form “s 6∈ P” with s ∈ S. By part (c) of this
theorem,

lg(s) < Ie(C(p)) + c′ ≤ lg(p) + sim(C) + c′ = Ie(S) + sim(C) + c′.

Part (d) of the theorem is proved with c = sim(C) + c′.
(e) That Ie(Tn) ≥ n− c follows from part (c) of this theorem. The

proof that Ie(Tn) ≤ n + c is obtained by changing the definition of the
computer C in the proof of Theorem 4.3 in the following manner. After
C has determined each string of complexity ≤ n and its complexity,
C determines each string s of complexity ≤ n whose complexity is
greater than or equal to its length, and then C outputs each such s in
a proposition of the form “s 6∈ P .” Q.E.D.

Theorem 4.6. (a) There is a c such that for all programs p, if a
proposition of the form “Ie(U(s)) > n” (s a string, n a natural number)
is in U(p) only if Ie(U(s)) > n, then “Ie(U(s)) > n” is in U(p) only if
n < lg(p) + c.

In other words: (b) There is a c such that for all formal systems
〈U, p〉, if “Ie(U(s)) > n” is a theorem of 〈U, p〉 only if it is true, then
“Ie(U(s)) > n” is a theorem of 〈U, p〉 only if n < lg(p) + c.

For any r.e. set of propositions T , one obtains the following from
(a) by taking p to be a minimal e-description of T : (c) If T has the
property that “Ie(U(s)) > n” is in T only if Ie(U(s)) > n, then T has
the property that “Ie(U(s)) > n” is in T only if n < Ie(T ) + c.

Proof. By Theorem 2.1(c), there is a c′ such that Ie(U(s)) > n
implies I(s) > n− c′.

Consider the computer C that does the following when it is given the
program p. It simulates running p on U . As C generates U(p), it checks
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each string in it to see if it is a proposition of the form “Ie(U(s)) > n”
with s a string and n a natural number. Each time it finds such a
proposition in which n ≥ c′, C outputs the proposition “I(s) > m”
where m = n− c′ ≥ 0.

If p satisfies the hypothesis of the theorem, then C(p) enumerates
true propositions of the form “I(s) > m.” “I(s) > m” (m = n−c′ ≥ 0)
is in C(p) iff “Ie(U(s)) > n” (n ≥ c′) is in U(p). By Theorem 4.1,
“I(s) > m” is in C(p) only if

m < Ie(C(p)) + c′′ ≤ lg(p) + sim(C) + c′′.

Thus “Ie(U(s)) > n” (n ≥ c′) is in U(p) only if n−c′ < lg(p)+sim(C)+
c′′. The theorem is proved with c = sim(C) + c′′ + c′. Q.E.D.

5. The Greatest Natural Number of Com-

plexity ≤ N

The growth of a(n), the greatest natural number of complexity ≤ n as
a partial function of n, serves as a benchmark for measuring a number
of computational phenomena. The general approach in Sections 6 to
10 will be to use a partial function of n to measure some quantity
of computational interest, and to compare the growth of this partial
function as n increases with that of a(n).

We compare rates of growth in the following fashion.
Definition 5.1. We say that a partial function f grows at least as

quickly as another partial function g, written f � g or g � f , when a
shift of f overbounds g. That is, when there is a c such that for all n,
if g(n) is defined, then f(n + c) is defined and f(n + c) ≥ g(n). Note
that f � g and g � h implies f � h.

Definition 5.2. We say that the partial functions f and g grow
equally quickly, written f � g, iff f � g and g � f .

We now formally define a(n), and list its basic properties for future
reference.

Definition 5.3. a(n) = max k (I(k) ≤ n). The maximum is taken
over all natural numbers k of complexity ≤ n. If there are no such k,
then a(n) is undefined.

Theorem 5.1.
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(a) If a(n) is defined, then I(a(n)) ≤ n.

(b) If a(n) is defined, then a(n + 1) is defined and a(n) ≤ a(n + 1).

(c) If I(n) ≤ m, then n ≤ a(m).

(d) n ≤ a(I(n)).

(e) If a(m) is defined, then n > a(m) implies I(n) > m.

(f) If I(n) > i for all n ≥ m, then m > a(i) if a(i) is defined.

(g) I(a(n)) = n + O(1).

(h) There is a c such that for all finite sets S of strings, maxS ≤
a(I(S) + c).

(i) There is a c such that for all finite sets S of strings and all n, if
a(n) is defined and a(n) ∈ S, then I(S) > n− c.

Proof. (a) to (f) follow immediately from the definition of a(n).
(g) Consider the two computers C and C ′ that always halt and such

that C(n) = {n+1} and C ′(n+1) = {n}. It follows by Theorem 2.1(c)
that I(n) = I(n + 1) + O(1). By part (e) of this theorem, if a(n) is
defined then I(a(n)+1) > n. By part (a) of this theorem, I(a(n)) ≤ n.
Hence if a(n) is defined we have I(a(n)) = I(a(n)+1)+O(1), I(a(n)) ≤
n, and I(a(n) + 1) > n. It follows that I(a(n)) = n + O(1).

(h) Consider the computer C such that C(p) = {max S} and halts
if p is a description of S, i.e. if U(p) = S and halts. It follows that
I(maxS) ≤ I(S)+ sim(C). Thus by part (c) of this theorem, maxS ≤
a(I(S) + c), where c = sim(C).

(i) Consider the computer C such that C(p) = {1 + maxS} and
halts if p is a description of S, i.e. if U(p) = S and halts. It follows
that I(1 + maxS) ≤ I(S) + sim(C). If a(n) ∈ S, then 1 + maxS >
a(n), and thus by part (e) of this theorem I(1 + maxS) > n. Hence
n < I(1 + maxS) ≤ I(S) + sim(C), and thus I(S) > n − c, where
c = sim(C). Q.E.D.
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6. How Fast Does the Greatest Natural

Number of Complexity ≤ N Grow with In-

creasing N?

In Theorem 6.2 we show that an equivalent definition of a(n) is the
greatest value at n of any partial recursive function of complexity ≤ n.
In Theorem 6.3 we use this to show that any partial function � a
eventually overtakes any partial recursive function. This will apply
directly to all the functions that will be shown in succeeding sections
to be � to a.

In Theorem 6.4 it is shown that for any partial recursive function
f , f(a(.)) � a. Thus there is a c such that for all n, if a(n) is defined,
then a(n) < a(n + c) (Theorem 6.5).

Theorem 6.1. There is a c such that if f : N → N is a partial
recursive function defined at n and n ≥ Ie(f), then I(f(n)) ≤ n + c.

Proof. Given a minimal e-description s of the graph of f , we add
it to 0n+1. As n ≥ Ie(f) = lg(s), the resulting string p = 0n+1 + s has
both n (= lg(p)− 1) and the graph of f (= U(s) = U(p− 0lg(p))) coded
into it. Given this string p as its program, a computer C generates the
graph of f searching for the pair (n, f(n)). If and when it is found,
the computer outputs f(n) and halts. Thus, f(n), if defined, is of
complexity ≤ lg(p) + sim(C) = n + 1 + sim(C). Q.E.D.

Definition 6.1. b(n) = max f(n) (Ie(f) ≤ n). The maximum is
taken over all partial recursive functions f : N → N that are defined
at n and are of e-complexity ≤ n. If there are no such functions, then
b(n) is undefined.

Theorem 6.2. a � b.
Proof. First we show that b � a. If b(n) is defined, then there is

a partial recursive function f : N → N defined at n with Ie(f) ≤ n,
such that f(n) = b(n). By Theorem 6.1, I(f(n)) ≤ n + c, and thus
f(n) ≤ a(n + c) by Theorem 5.1(c). Hence if b(n) is defined, b(n) =
f(n) ≤ a(n + c), and thus b � a.

Now we show that a � b. Suppose that a(n) is defined, and consider
the constant function fn : N → N whose value is always a(n), and the
computer C such that C(n) = {(0, n), (1, n), (2, n), . . .}. It follows by
Theorem 2.1(c) that Ie(fn) ≤ I(a(n)) + c, which by Theorem 5.1(a)
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is ≤ n + c. Thus if a(n) is defined, a(n) = fn(n + c) ≤ max f(n + c)
(Ie(f) ≤ n + c) = b(n + c). Hence a � b. Q.E.D.

Theorem 6.3. Let the partial function x : N → N have the
property that x � a. There is a constant c′ such that the following
holds for all partial recursive functions f : N → N . If f(n) is defined
and n ≥ Ie(f) + c′, then x(n) is defined and x(n) ≥ f(n).

Proof. By Theorem 6.2 and the transitivity of �, x � a � b. Thus
there is a c such that x(n + c) is defined and x(n + c) ≥ b(n) if b(n) is
defined. Consider the shifted function f ′(n) = f(n + c). The existence
of a computer C such that (i, j) ∈ C(p) iff (i + c, j) ∈ U(p) shows that
Ie(f

′) ≤ Ie(f)+sim(C). By the definition of b, x(n+ c) ≥ b(n) ≥ f ′(n)
if f ′ is defined at n and Ie(f

′) ≤ n. Thus x(n + c) ≥ f(n + c) if f
is defined at n + c and Ie(f

′) ≤ Ie(f) + sim(C) ≤ n. In other words,
x(n) ≥ f(n) if f is defined at n and Ie(f) + sim(C) + c ≤ n. The
theorem is proved with c′ = sim(C) + c. Q.E.D.

Theorem 6.4. Let f : N → N be a partial recursive function.
f(a(.)) � a.

Proof. There is a computer C such that C(n) = {f(n)} and halts if
f(n) is defined. Thus by Theorem 2.1(c), if f(n) is defined, I(f(n)) ≤
I(n)+ c. Substituting a(n) for n, we obtain I(f(a(n))) ≤ I(a(n))+ c ≤
n + c, for by Theorem 5.1(a), I(a(n)) ≤ n. Thus if f(a(n)) is defined,
f(a(n)) ≤ a(n + c), by Theorem 5.1(c). Q.E.D.

Theorem 6.5. There is a c such that for all n, if a(n) is defined,
then a(n) < a(n + c).

Proof. Taking f(n) = n+1 in Theorem 6.4, we obtain a(.)+ 1 � a.
Q.E.D.

7. The Resources Needed to Calculate/

Enumerate the Set of All Strings of Com-

plexity ≤ N

7.1

We first discuss the metamathematical implications of the material in
this section.
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The basic fact used in this section (see the proof of Theorem 7.3)
is that for any computer C there is a c such that for all n, if a(n) is
defined then max

⋃
C(p, a(n)) (lg(p) ≤ a(n)) is less than a(n+c). Thus

a(n+c) cannot be output by programs of length ≤ a(n) in time ≤ a(n).
If we use Theorem 3.1(a) to take C to be such that s ∈ C(p, t) iff
“I(s) = k”∈ C∗(p, t), and we recall that a(n+c) is a string of complexity
≤ n + c, we obtain the following result. Any formal system 〈C∗, p〉
whose theorems include all true propositions of the form “I(s) = k”
with k ≤ n + c, must either have more than a(n) bits of axioms, or
need proofs of size greater than a(n) to be able to demonstrate these
propositions. Here c depends only on the rules of inference C∗. This is
a strong result, in view of the fact that a(n) is greater than or equal to
any partial recursive function f(n) for n ≥ Ie(f) + c′ (Theorem 6.3).

The idea of Section 9 is to show that both extremes are possible
and there is a drastic trade-off. We can deduce these results from a few
bits of axioms (≤ n + c bits by Theorem 4.3) by means of enormous
proofs, or we can directly take as axioms all that we wish to prove.
This gives short proofs, but we are assuming an enormous number of
bits of axioms.

From the fact that a(n + c) > max
⋃

C(p, a(n)) (lg(p) ≤ a(n)), it
also follows that if one wishes to prove a numerical upper bound on
a(n + c), one faces the same drastic alternatives. Lin and Rado, in
trying to determine particular values of Σ(n) and SH(n), have, in fact,
essentially been trying to do this (see [36]). In their paper they explain
the difficulties they encountered and overcame for n = 3, and expect
to be insurmountable for greater values of n.

7.2

Now we begin the formal exposition, which is couched exclusively in
terms of computers.

In this section we study the set K(n) consisting of all strings of com-
plexity ≤ n. This set turns out to be extremely difficult to calculate,
or even to enumerate a superset of—either the program or the time
needed must be extremely large. In order to measure this difficulty, we
will first measure the resources needed to output a(n).

Definition 7.1. K(n) = {s|I(s) ≤ n}. Note that this set may be
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empty, and #(K(n)) isn’t greater than 2n+1− 1, inasmuch as there are
exactly 2n+1 − 1 programs of length ≤ n.

We shall show that a(n) and the resources required to calcu-
late/enumerate K(n) grow equally quickly. What do we mean by the
resources required to calculate a finite set, or to enumerate a superset
of it? It is assumed that the computer C is being used to do this.

Definition 7.2. Let S be a finite set of strings. r(S), the resources
required to calculate S, is the least r such that there is a program p
of length ≤ r having the property that C(p, r) = S and is halted. If
there is no such r, r(S) is undefined. re(S), the resources required to
enumerate a superset of S, is the least r such that there is a program p
of length ≤ r with the property that S ⊂ C(p, r). If there is no such r,
re(S) is undefined. We abbreviate r({s}) and re({s}) as r(s) and re(s).

We shall find very useful the notion of the set of all output produced
by the computer C with information and time resources limited to r.
We denote this by Cr.

Definition 7.3. Cr =
⋃

C(p, r) (lg(p) ≤ r).
We now list for future reference basic properties of these concepts.
Theorem 7.0.

(a) a(n) =

{
max K(n) if K(n) 6= ∅,
undefined if K(n) = ∅.

(b) K(n) 6= ∅, and a(n) is defined, iff n ≥ n∗. Here n∗ = min I(s),
where the minimum is taken over all strings s.

(c) For all r, Cr ⊂ Cr+1.

In (d) to (k), S and S ′ are arbitrary finite sets of strings.

(d) S ⊂ Cre(S) if re(S) is defined.

(e) re(S) ≤ r(S) if r(S) is defined.

(f) If re(S
′) is defined, then S ⊂ S ′ implies re(S) ≤ re(S

′).

(g) If S ⊂ C(p, t), then either lg(p) ≥ re(S) or t ≥ re(S).

(h) If C(p) = S and halts, then either lg(p) ≥ r(S), or the time at
which C(p) halts is ≥ r(S).
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(i) If C(p) = S and halts, and lg(p) < r(S), then C(p) halts at time
≥ r(S).

In (j) and (k) it is assumed that C is U . Thus r(S) and re(S) are
always defined.

(j) If r(S) > I(S), then there is a program p of length I(S) such that
U(p) = S and halts at time ≥ r(S).

(k) r(S) ≥ I(S).

Proof. These results follow immediately from the definitions.
Q.E.D.

Theorem 7.1.

There is a c such that for all finite sets S of strings,

(a) I(r(S)) ≤ I(S) + c if r(S) is defined, and

(b) I(re(S)) ≤ I(S) + c if re(S) is defined.

Proof. (a) Consider the computer C ′ that does the following when
it is given the program p. First, it simulates running p on U . If and
when U halts during the simulated run, C ′ has determined the finite
set S = U(p) of strings. Then C ′ repeats the following operations for
r = 0, 1, 2, . . .

C ′ determines C(p′, r) for each program p′ of length ≤ r. It checks
those C(p′, r) (lg(p′) ≤ r) that are halted to see if one of them is equal
to S. If none of them are, C ′ adds 1 to r and repeats this operation. If
one of them is equal to S, C ′ outputs r and halts.

Let p be a minimal description of a finite set S of strings, i.e. U(p) =
S and halts, and lg(p) = I(S). Then if r(S) is defined, C ′(p) = {r(S)}
and halts, and thus I(r(S)) ≤ lg(p) + sim(C ′) = I(S) + sim(C ′). This
proves part (a) of the theorem.

(b) The proof of part (b) of the theorem is obtained from the proof
of part (a) by changing the definition of the computer C ′ so that it
checks all C(p′, r) (lg(p′) ≤ r) to see if one of them includes S, instead
of checking all those C(p′, r) (lg(p′) ≤ r) that are halted to see if one
of them is equal to S. Q.E.D.
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Theorem 7.2. max Ca(.) � a.
Proof. Theorem 2.1(c) and the existence of a computer C ′ such

that C ′(r) = Cr and halts, shows that there is a c such that for all
r, I(Cr) ≤ I(r) + c. Thus by Theorem 5.1(h) and (b) there is a c′

such that for all r, max Cr ≤ a(I(r) + c′). Hence if a(n) is defined,
max Ca(n) ≤ a(I(a(n)) + c′) ≤ a(n + c′) by Theorem 5.1(a) and (b).
Q.E.D.

Theorem 7.3.

(a) If re(a(n)) is defined when a(n) is, then re(a(.)) � a.

(b) If r(a(n)) is defined when a(n) is, then r(a(.)) � a.

Proof. By Theorem 7.1, if re(a(n)) and r(a(n)) are defined,
I(re(a(n))) ≤ I(a(n)) + c and I(r(a(n))) ≤ I(a(n)) + c. By Theorem
5.1(a), I(a(n)) ≤ n. Thus I(re(a(n))) ≤ n + c and I(r(a(n))) ≤ n + c.
Applying Theorem 5.1(c), we obtain re(a(n)) ≤ a(n+ c) and r(a(n)) ≤
a(n + c). Thus we have shown that re(a(.)) � a and r(a(.)) � a, no
matter what C is.

r(S), if defined, is ≥ re(S) (Theorem 7.0(e)), and thus to finish the
proof it is sufficient to show that a � re(a(.)) if re(a(n)) is defined when
a(n) is. By Theorems 7.2 and 6.5 there is a c such that for all n, if
a(n) is defined, then max Ca(n) < a(n + c), and thus a(n + c) 6∈ Ca(n).
And inasmuch as for all finite sets S, S ⊂ Cre(S) (Theorem 7.0(d)), it
follows that a(n + c) ∈ Cre(a(n+c)).

In summary, there is a c such that for all n, if a(n) is defined, then
a(n + c) 6∈ Ca(n), and a(n + c) ∈ Cre(a(n+c)).

As for all r, Cr ⊂ Cr+1 (Theorem 7.0(c)), it follows that if a(n) is
defined then a(n) < re(a(n + c)). Thus a � re(a(.)). Q.E.D.

Theorem 7.4. I(K(n)) = n + O(1).
Proof. As was essentially shown in the proof of Theorem 4.3, there

is a computer C ′ such that C ′(0n+1 + #({p ∈ H| lg(p) ≤ n})) = K(n)
and halts, for all n. Thus I(K(n)) ≤ n + 1 + sim(C ′) for all n.

K(n) = ∅ can hold for only finitely many values of n, by Theorem
7.0(b). By Theorem 7.0(a), for all other values of n, a(n) ∈ K(n), and
thus, by Theorem 5.1(i), there is a c such that I(K(n)) ≥ n− c for all
n. Q.E.D.

Theorem 7.5.
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(a) If re(K(n)) is defined for all n, then re(K(.)) � a.

(b) If r(K(n)) is defined for all n, then r(K(.)) � a.

Proof. By Theorem 7.1, if re(K(n)) and r(K(n)) are defined,
I(re(K(n))) ≤ I(K(n))+ c, and I(r(K(n))) ≤ I(K(n))+ c. I(K(n)) =
n+O(1) (Theorem 7.4), and thus there is a c′ that doesn’t depend on n
such that I(re(K(n))) ≤ n+c′, and I(r(K(n))) ≤ n+c′. Applying The-
orem 5.1(c), we obtain re(K(n)) ≤ a(n + c′), and r(K(n)) ≤ a(n + c′).
Thus we have shown that re(K(.)) � a and r(K(.)) � a, no matter
what C is.

For all finite sets S and S ′ of strings, if S ⊂ S ′, then re(S) ≤ re(S
′) ≤

r(S ′) if these are defined (Theorem 7.0(f), (e)). As a(n) ∈ K(n) if a(n)
is defined (Theorem 7.0(a)), we have re(a(n)) ≤ re(K(n)) ≤ r(K(n))
if these are defined. By Theorem 7.3(a), re(a(.)) � a if re(a(n)) is
defined when a(n) is, and thus re(K(.)) � a and r(K(.)) � a if these
are defined for all n. Q.E.D.

Theorem 7.6. Suppose re(a(n)) is defined when a(n) is. There
is a c such that the following holds for all partial recursive functions
f : N → N . If n ≥ Ie(f) + c and f(n) is defined, then

(a) a(n) is defined,

(b) if a(n) ∈ C(p, t), then either lg(p) ≥ f(n) or t ≥ f(n), and

(c) if K(n) ⊂ C(p, t), then either lg(p) ≥ f(n), or t ≥ f(n).

Proof. (a) and (b) By Theorem 7.3(a), re(a(.)) � a. Taking re(a(.))
to be the partial function x(.) in the hypothesis of Theorem 6.3, we
deduce that if n ≥ Ie(f) + c and f(n) is defined, then a(n) is defined
and re(a(n)) ≥ f(n). Here c doesn’t depend on f .

Thus if a(n) ∈ C(p, t), then by Theorem 7.0(g) it follows that either
lg(p) ≥ re(a(n)) ≥ f(n) or t ≥ re(a(n)) ≥ f(n).

(c) Part (c) of this theorem is an immediate consequence of parts
(a) and (b) and the fact that if a(n) is defined then a(n) ∈ K(n) (see
Theorem 7.0(a)). Q.E.D.
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8. The Minimum Time Such That All Pro-

grams of Length ≤ N That Halt Have Done

So

In this section we show that for any computer, a � the minimum time
such that all programs of length ≤ n that halt have done so (Theorem
8.1). Moreover, in the case of U this is true with “�” instead of “�”
(Theorem 8.2).

The situation revealed in the proof of Theorem 8.2 can be stated in
the following vague but suggestive manner. Suppose that one wishes
to calculate a(n) or K(n) using the standard computer U . To do this
one only needs about n bits of information. But a program of length
n+O(1) for calculating a(n) is among the programs of length≤ n+O(1)
that take the most time to halt. Likewise, an (n+O(1))-bit program for
calculating K(n) is among the programs of length ≤ n+O(1) that take
the most time to halt. These are among the most difficult calculations
that can be accomplished by program having not more than n bits.

Definition 8.1. dC(n) = the least t such that for all p of length
≤ n, if C(p) halts, then C(p, t) is halted. This is the minimum time
at which all programs of length ≤ n that halt have done so. Although
it is 0 if no program of length ≤ n halts, we stipulate that dC(n) is
undefined in this case.

Theorem 8.1. dC � a.
Proof. Consider the computer C ′ that does the following when it is

given the program p. C ′ simulates C(p, t) for t = 0, 1, 2, . . . until C(p, t)
is halted. If and when this occurs, C ′ outputs the final value of t, which
is the time at which C(p) halts. Finally, C ′ halts.

If dC(n) is defined, then there is a program p of length ≤ n that halts
when run on C and does this at time dC(n). Then C ′(p) = {dC(n)} and
halts. Thus I(dC(n)) ≤ lg(p) + sim(C ′) ≤ n + sim(C ′). By Theorem
5.1(c), we conclude that dC(n) is, if defined, ≤ a(n + sim(C ′)). Q.E.D.

Theorem 8.2. dU � a.
Proof. In view of Theorem 8.1, dU � a. Thus we need only show

that dU � a.
Recall that a(n) is defined iff n ≥ n∗ (Theorem 7.0(b)). As C = U

is a universal computer, r(a(n)) is defined if a(n) is defined. Thus
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Theorem 7.3(b) applies to this choice of C, and r(a(.)) � a. That is to
say, there is a c such that for all n ≥ n∗, r(a(n + c)) ≥ a(n).

As a � a, taking x = a and f(n) = n + c + 1 in Theorem 6.3,
we obtain the following. There is a c′ such that for all n ≥ n∗ + c′,
a(n) ≥ f(n) = n + c + 1. We conclude that for all n ≥ n∗ + c′,
a(n) > n + c.

By Theorem 5.1(a), n + c ≥ I(a(n + c)) for all n ≥ n∗.
The preceding results may be summarized in the following chain of

inequalities. For all n ≥ n∗+c′, r(a(n+c)) ≥ a(n) > n+c ≥ I(a(n+c)).
As r(a(n + c)) ≥ I(a(n + c)), the hypothesis of Theorem 7.0(j)

is satisfied, and we conclude the following. There is a program p of
length I(a(n + c)) ≤ n + c such that U(p) = {a(n + c)} and halts at
time ≥ r(a(n + c)) ≥ a(n). Thus for all n ≥ n∗ + c′, dU(n + c) ≥ a(n).

Applying Theorem 5.1(b) to this lower bound on dU(n + c), we
conclude that for all n ≥ n∗, dU(n + c′ + c) ≥ a(n + c′) ≥ a(n). Q.E.D.

9. Examples of Trade-Offs Between Infor-

mation and Time

Consider calculating a(n) using the computer U and the computer C
defined as follows. For all programs p, C(p, 0) = {p} and is halted.

Since I(a(n)) ≤ n (Theorem 5.1(a)), there is a program ≤ n bits
long for calculating a(n) using U . But inasmuch as r(a(.)) � a (Theo-
rem 7.3(b)) and dU � a (Theorem 8.1), this program takes “about” a(n)
units of time to halt (see the proof of Theorem 8.2). More precisely,
with finitely many exceptions, this program takes between a(n−c) and
a(n + c) units of time to halt.

What happens if one uses C to calculate a(n)? Inasmuch as
C(a(n)) = {a(n)} and halts at time 0, C can calculate a(n) imme-
diately. But this program, although fast, is lg(a(n)) = blog2(a(n) + 1)c
bits long. Thus r(a(n)) is precisely lg(a(n)) if one uses this computer.

Now for our second example. Suppose one wishes to enumerate a
superset of K(n), and is using the following two computers, which never
halt: C(p, t) = {s| lg(s) ≤ t} and C ′(p, t) = {s| lg(s) ≤ lg(p)}. These
two computers have the property that K(n), if not empty, is included in
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C(p, t), or is included in C ′(p, t), iff t ≥ lg(a(n)), or iff lg(p) ≥ lg(a(n)),
respectively. Thus for these two computers, re(K(n)), which we know
by Theorem 7.5(a) must be � to a, is precisely given by the following:
re(K(n)) = 0 if a(n) is undefined, and lg(a(n)) otherwise.

It is also interesting to slow down or speed up the computer C by
changing its time scale recursively. Let f : N → N be an arbitrary
unbounded total recursive function with the property that for all n,
f(n) ≤ f(n + 1). Cf , the f speed-up/slowdown of C, is defined as
follows: Cf (p, t) = {s|f(lg(s)) ≤ t}. For the computer Cf , re(K(n)) is
precisely given by the following: re(K(n)) = 0 if a(n) is undefined, and
f(lg(a(n))) otherwise. The fact that by Theorem 7.5(a) this must be �
to a, is related to Theorem 6.4 that for any partial recursive function
f , f(a(.)) � a.

Now, for our third example, we consider trade-offs in calculating
K(n). We use U and the computer C defined as follows. For all p and
n, C(p, 0) is halted, and n ∈ C(p, 0) iff lg(p) > n and the nth bit of the
string p is a 1.

Inasmuch as I(K(n)) = n + O(1) (Theorem 7.4), if we use U there
is a program about n bits long for calculating K(n). But this pro-
gram takes “about” a(n) units of time to halt, in view of the fact that
r(K(.)) � a (Theorem 7.5(b)) and dU � a (Theorem 8.1) (see the
proof of Theorem 8.2). More precisely, with finitely many exceptions,
this program takes between a(n− c) and a(n + c) units of time to halt.

On the other hand, using the computer C we can calculate K(n)
immediately. But the shortest program for doing this has length pre-
cisely 1 + maxK(n) = a(n) + 1 if a(n) is defined, and has length 0
otherwise. In other words, for this computer r(K(n)) = 0 if a(n) is
undefined, and a(n) + 1 otherwise.

We have thus seen three examples of a drastic trade-off between
information and time resources. In this setting information and time
play symmetrical roles, especially in the case of the resources needed
to enumerate a superset.
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10. The Speed of Recursive Enumerations

10.1

We first discuss the metamathematical implications of the material in
this section.

Consider a particular formal system, and a particular r.e. set of
strings R. Suppose that a proposition of the form “s ∈ R” is a theorem
of this formal system iff it is true, i.e. iff the string s is an element of
R. Define e(n) to be the least m such that all theorems of the formal
system of the form “s ∈ R” with lg(s) ≤ n have proofs of size ≤ m. By
using Theorem 3.1(a) we can draw the following conclusions from the
results of this section. First, e � a for any R. Second, e � a iff

I({s ∈ R| lg(s) ≤ n}) = n + O(1). (∗)
Thus r.e. sets R for which e � a are the ones that require the longest
proofs to show that “s ∈ R,” and this is the case iff R satisfies (∗). It
is shown in this section that the r.e. set of strings {p|p ∈ U(p)} has
property (∗), and the reader can show without difficulty that H and P
are also r.e. sets of strings that have property (∗). Thus we have three
examples of R for which e � a.

10.2

Now we begin the formal exposition, which is couched exclusively in
terms of computers.

Consider an r.e. set of strings R and a particular computer C∗ and
p* such that C∗(p∗) = R. How quickly is R enumerated? This is, what
is the time e(n) that it takes to output all elements of R of length ≤ n?

Definition 10.1. Rn = {s ∈ R| lg(s) ≤ n}. e(n) = the least t such
that Rn ⊂ C∗(p∗, t).

We shall see that the rate of growth of the total function e(n) can
be related to the growth of the complexity of Rn. In this way we shall
show that some r.e. sets R are the most difficult to enumerate, i.e. take
the most time.

Theorem 10.1.8 There is a c such that for all n, I(Rn) ≤ n + c.

8This theorem, with a different proof, is due to Loveland [37, p. 64].
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Proof. 0 ≤ #(Rn) ≤ 2n+1 − 1, for there are precisely 2n+1 − 1
strings of length ≤ n. Consider p, the #(Rn)-th string of length n + 1;
i.e. p = 0n+1 + #(Rn). This string has both n (= lg(p) − 1) and
#(Rn) (= p− 0lg(p)) coded into it. When this string p is its program,
the computer C generates the r.e. set R by simulating C∗(p∗), until it
has found #(Rn) strings of length ≤ n in R. C then outputs this set
of strings, which is Rn, and halts. Thus I(Rn) ≤ lg(p) + sim(C) =
n + 1 + sim(C). Q.E.D.

Theorem 10.2.

(a) There is a c such that for all n, e(n) ≤ a(I(Rn) + c).

(b) e � a.

Proof. (a) Consider the computer C that does the following. Given
a description p of Rn as its program, the computer C first simulates
running p on U in order to determine Rn. Then it simulates C∗(p∗, t)
for t = 0, 1, 2, . . . until Rn ⊂ C∗(p∗, t). C then outputs the final value
of t, which is e(n), and halts.

This shows that ≤ sim(C) bits need be added to the length of a
description of Rn to bound the length of a description of e(n); i.e. if
U(p) = Rn and halts, then C(p) = {e(n)} and halts, and thus I(e(n)) ≤
lg(p) + sim(C). Taking p to be a minimal description of Rn, we have
lg(p) = I(Rn), and thus I(e(n)) ≤ I(Rn) + sim(C). By Theorem
5.1(c), this gives us e(n) ≤ a(I(Rn)+ sim(C)). Part (a) of the theorem
is proved with c = sim(C).

(b) By part (a) of this theorem, e(n) ≤ a(I(Rn) + c). And by
Theorem 10.1, I(Rn) ≤ n + c′ for all n. Applying Theorem 5.1(b), we
obtain e(n) ≤ a(I(Rn)+c) ≤ a(n+c′+c) for all n. Thus e � a. Q.E.D.

Theorem 10.3. If a � e, then there is a c such that I(Rn) ≥ n− c
for all n.

Proof. By Theorem 7.0(b) and the definition of �, if a � e, then
there is a c0 such that for all n ≥ n∗, a(n) ≤ e(n+c0). And by Theorem
10.2(a), there is a c1 such that e(n + c0) ≤ a(I(Rn+c0) + c1) for all n.
We conclude that for all n ≥ n∗, a(n) ≤ a(I(Rn+c0) + c1).

By Theorems 6.5 and 5.1(b), there is a c2 such that if a(m) is defined
and m ≤ n − c2, then a(m) < a(n). As we have shown in the first
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paragraph of this proof that for all n ≥ n∗, a(n) ≤ a(I(Rn+c0) + c1), it
follows that I(Rn+c0) > n− c2.

In other words, for all n ≥ n∗, I(Rn+c0) > (n+c0)−c0−c1−c2. And
thus for all n, I(Rn) ≥ n−c0−c1−c2−M , where M = maxn<n∗+c0 n−
c0 − c1 − c2 if this is positive, and 0 otherwise. The theorem is proved
with c = c0 + c1 + c2 + M . Q.E.D.

Theorem 10.4.

If there is a c such that I(Rn) ≥ n− c for all n, then

(a) there is a c′ such that if t ≥ e(n), then I(t) > n− c′, and

(b) e � a.

Proof. By Theorem 5.1(f) it follows from (a) that e(n) > a(n− c′)
if a(n − c′) is defined. Hence e(n + c′) ≥ a(n) if a(n) is defined, i.e.
e � a. Thus to complete the proof we need only show that (a) follows
from the hypothesis.

We consider the case in which t ≥ e(n) and n ≥ I(t) = n− k, for if
I(t) > n then any c′ will do.

There is a computer C that does the following when it is given
the program 0lg(k)1kp, where p is a minimal description of t. First,
C determines lg(p) + k = I(t) + k = (n − k) + k = n. Second, C
simulates running p on U in order to determine U(p) = {t}. C now
uses its knowledge of n and t in order to calculate Rn. To do this C
first simulates running p∗ on C∗ in order to determine C∗(p∗, t), and
finally C outputs all strings in C∗(p∗, t) that are of length ≤ n, which
is Rn, and halts.

In summary, C has the property that if t ≥ e(n), I(t) = n− k, and
p is a minimal description of t, then C(0lg(k)1kp) = Rn and halts, and
thus

I(Rn)

≤ lg(0lg(k)1kp) + sim(C)

= lg(p) + 2 lg(k) + sim(C) + 1

= I(t) + 2 lg(k) + sim(C) + 1

= n− k + 2 lg(k) + sim(C) + 1.
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Taking into account the hypothesis of this theorem, we obtain the
following for all n: if t ≥ e(n) and I(t) = n− k, then n− c ≤ I(Rn) ≤
n− k + 2 lg(k) + sim(C) + 1, and thus c + sim(C) + 1 ≥ k− 2 lg(k). As
lg(k) = blog2(k + 1)c, this implies that there is a c′ such that for all n,
if t ≥ e(n) and I(t) = n− k, then k < c′. We conclude that for all n, if
t ≥ e(n), then either I(t) > n or I(t) = n− k > n− c′. Thus in either
case I(t) > n− c′. Q.E.D.

Theorem 10.5. If R = {p|p ∈ U(p)}, then there is a c such that
I(Rn) > n− c for all n.

Proof. Consider the following computer C. When given the program
p, C first simulates running p on U until U halts. If and when it finishes
doing this, C then outputs each string s 6∈ U(p), and never halts.

If the program p is a minimal description of Rn, then C enumerates
a set that cannot be enumerated by any program p′ run on U having
≤ n bits. The reason is that if lg(p′) ≤ n, then p′ ∈ C(p) iff p′ 6∈ Rn iff
p′ 6∈ U(p′). Thus ≤ sim(C) bits need be added to the length I(Rn) of a
minimal description p of Rn to bound the length of an e-description of
the set C(p) of e-complexity > n; i.e. n < Ie(C(p)) ≤ lg(p) + sim(C) =
I(Rn) + sim(C). Hence n < I(Rn) + c, where c = sim(C). Q.E.D.

Theorem 10.6.

(a) e � a and ∃c ∀n I(Rn) ≤ n + c.

(b) e � a iff ∃c ∀n I(Rn) ≥ n− c.

(c) If R = {p|p ∈ U(p)}, then e � a and I(Rn) = n + O(1).

Proof. (a) is Theorems 10.2(b) and 10.1. (b) is Theorem 10.4(b) and
10.3. And (c) follows immediately from parts (a) and (b) and Theorem
10.5. Q.E.D.

Appendix. Examples of Universal Com-

puters

In this Appendix we use the formalism of Rogers.9 In particular, Px

denotes the xth Turing machine, ϕ(2)
x denotes the partial recursive func-

9See [38, pp. 13–15, 21, 70].
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tion N ×N → N that Px calculates, and Dx denotes the xth finite set
of natural numbers. Here the index x is an arbitrary natural number.

First we give a more formal definition of computer than in Section
2.

A partial recursive function c : N ×N → N is said to be adequate
(as a defining function for a computer C) iff it has the following three
properties:

(a) it is a total function;

(b) Dc(p,t) ⊂ Dc(p,t+1);

(c) if the natural number 0 is an element of Dc(p,t), then Dc(p,t) =
Dc(p,t+1).

A computer C is defined by means of an adequate function c :
N ×N → N as follows.

(a) C(p, t) is halted iff the natural number 0 is an element of Dc(p,t).

(b) C(p, t) is the set of strings {n|n + 1 ∈ Dc(p,t)}; i.e. the nth string
is in C(p, t) iff the natural number n + 1 is an element of Dc(p,t).

We now give an name to each computer. The natural number i is
said to be an adequate index iff ϕ

(2)
i is an adequate function. If i is

an adequate index, Ci denotes the computer whose defining function
is ϕ

(2)
i . If i isn’t an adequate index, then “C i” isn’t the name of a

computer.
We now define a universal computer U in such a way that it has

the property that if i is an adequate index, then U(0i1p) = Ci(p) and
halts iff Ci(p) halts. In what follows i and t denote arbitrary natural
numbers, and p denotes an arbitrary string. U(0i, t) is defined to be
equal to ∅ and to be halted. U(0i1p, t) is defined recursively. If t ≥ 1
and U(0i1p, t − 1) is halted, then U(0i1p, t) = U(0i1p, t − 1) and is
halted. Otherwise U(0i1p, t) is the set of strings {n|n + 1 ∈ W} and is
halted iff 0 ∈ W . Here

W =
⋃

t′<t0

D
ϕ

(2)
i (p,t′),
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and t0 is the greatest natural number ≤ t such that if t′ < t0 then Pi

applied to 〈p, t′〉 yields an output in ≤ t steps.
The universal computer U that we have just defined is, in fact,

effectively universal: to simulate the computation that C i performs
when it is given the program p, one gives U the program p′ = 0i1p,
and thus p′ can be obtained from p in an effective manner. Our second
example of a universal computer, U ′, is not effectively universal, i.e.
there is no effective procedure for obtaining p′ from p.10

U ′ is defined as follows:


U ′(Λ, t) = ∅ and is halted,
U ′(0p, t) = U(p, t)− {1} and is halted iff U(p, t) is, and
U ′(1p, t) = U(p, t) ∪ {1} and is halted iff U(p, t) is.

I.e. U ′ is almost identical to U , except that it eliminates the string 1
from the output, or forces the string 1 to be included in the output,
depending on whether the first bit of its program is 0 or not. It is
easy to see that U ′ cannot be effectively universal. If it were, given
any program p for U , by examining the first bit of the program p′ for
U ′ that simulates it, one could decide whether or not the string 1 is in
U(p). But there cannot be an effective procedure for deciding, given
any p, whether or not the string 1 is in U(p).

Added in Proof

The following additional references have come to our attention.
Part of Gödel’s analysis of Cantor’s continuum problem [39] is highly

relevant to the philosophical considerations of Section 1. Cf. especially
[39, pp. 265, 272].

Schwartz [40, pp. 26–28] first reformulates our Theorem 4.1 using
the hypothesis that the formal system in question is a consistent ex-
tension of arithmetic. He then considerably extends Theorem 4.1 [40,
pp. 32–34]. The following is a paraphrase of these pages.

Consider a recursive function f : N → N that grows very quickly,
say f(n) = n!!!!!!!!!!. A string s is said to have property f if the fact

10The definition of U ′ is an adaptation of [38, p. 42, Exercise 2-11].
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that p is a description of {s} either implies that lg(p) ≥ lg(s) or that
U(p) halts at time > f(lg(s)). Clearly a 1000-bit string with property f
is very difficult to calculate. Nevertheless, a counting argument shows
that there are strings of all lengths with property f , and they can be
found in an effective manner [40, Lemma 7, p. 32]. In fact, the first
string of length n with property f is given by a recursive function of
n, and is therefore of complexity ≤ log2 n + c. This is thus an example
of an extreme trade-off between program size and the length of com-
putation. Furthermore, an argument analogous to the demonstration
of Theorem 4.1 shows that proofs that specific strings have property f
must necessarily be extremely tedious (if some natural hypotheses con-
cerning U and the formal system in question are satisfied) [40, Theorem
8, pp. 33–34].

[41, Item 2, pp. 12–20] sheds light on the significance of these results.
Cf. especially the first unitalicized paragraphs of answers numbers 4 and
8 to the question “What is programming?” [41, pp. 13, 15–16]. Cf. also
[40, Appendix, pp. 63–69].

Index of Symbols

Section 2: lg(s) maxS #(S) X∗ N C(p, t) C(p) U sim(C) I(S) Ie(S)

Section 3: 〈C, p〉 〈U, p〉
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Section 5: � � � a(n)
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