
Interface-Based Design

Abstract
A new system design methodology is proposed that separates com-
munication from behavior. To demonstrate the methodology we
applied it to a simple ATM design. Since verification is clearly a
major stumbling block for large system design, we focussed on the
verification aspects of our methodology.

In particular, a simulator was developed that is based on the com-
munication paradigm typical of our methodology. The simulator
gives substantial performance improvements without sacrificing
user access to detail.

Finally, the potential for this methodology to improve verification,
modeling and synthesis is explored.

1. Introduction
The design of large electronic systems such as an ATM network, a
computer network, an automotive engine control unit, a multipro-
cessor system, is indeed very complex. Complexity arises not only
from the ever increasing functionality of the systems but also from
more and more stringent requirements imposed upon them: time-
to-market constraints, safety and performance requirements are
populating the nightmares of system designers.

Time-to-market pressure together with the multitude of compo-
nents that are needed to implement the required functionality make
it impossible for a single company to design and manufacture an
entire electronic system in time and within reasonable cost. Hence,
design re-use and Intellectual Property (IP) trading should now be
considered a necessity. The recent Virtual Socket Initiative (VSI)
[1] is a fist step towards a methodology supporting the trade of IP
blocks. However, present design methodologies are at a loss when
IP blocks coming from different design groups are mixed and
matched to create a new product. In particular, verifying whether a
design satisfies all constraints and requirements is today a most
difficult design step. To address this problem, we emphasized that
design tools are not enough, new methodologies have to be put in
place [2]. This paper is concerned with an important aspect of a
design methodology that favors design re-use and verification:
interface-based design.

The design methodology originally proposed in [2] was based on
three cornerstones:

■ Formalization, which consists of capturing the design and its
specification in an unambiguous, formal "language'' with
precise semantics.

■ Abstraction, which eliminates details that are of no importance
when dealing with high-level design or checking whether a
design satisfies a particular property.

■ Decomposition, which consists of breaking the design at a
given level of the hierarchy into components that can be
designed and verified almost independently.

These three theoretical tools can be used to simplify design and
verification in many different ways. An important one consists of
"orthogonalizing" the properties of a design. For example, decom-
posing the verification problem into a functional verification
phase, where the timing aspects of the design are ignored, and into
a timing verification phase, where only limited information about
functionality is considered, has been a major design methodology
improvement.

In this paper, we propose a way of orthogonalizing an electronic
design along different dimensions: behavior and communica-
tions. This idea is based on the realization that there is a common
structure of electronic systems consisting of a set of entities (either
hardware, software or both) that are connected together. Each of
the entities may either be a similar structure consisting of other
inteconnected entities or a basic block of the design, the leaf of the
hierarchy. The interconnection is a symbolic way of indicating
communication that takes place among entities. In fact, an inter-
connection of software models is certainly an abstraction since
there are no wires there to use for the communicating entities!

Examining most of the methods used to design such systems
shows that communication is often intertwined with behavior
and/or with its physical carrier so that it is difficult to talk about the
"abstract" communication aspects of a design. This is particularly
true at the RTL level and below.

Inspired by [3,4,5,6,7,8], we believe that it is possible to clearly

Permission to make digital/hard copy of all or part of this work
for personal or classroom use is granted without fee provided
that copies are not made or distributed for profit or commercial
advantage, the copyright notice, the title of the publication and its
date appear, and notice is given that copying is by permission of
ACM, Inc. To copy otherwise, to republish, to post on servers or
to redistribute to lists, requires prior specific permission and/or a
fee.

DAC 97, Anaheim, California
(c) 1997 ACM 0-89791-920-3/97/06  ..$3.50

Design

Interfaces Behaviors

Figure 1: Separating Behavior
from Communication

James A. Rowson
Alta Group of Cadence Design Systems Inc.

jimr@altagroup.com

Alberto Sangiovanni-Vincentelli
University of California at Berkeley

alberto@eecs.berkeley.edu



identify what role communication plays at all levels of the design
and keep it separate from component behavior (see Figure 1). It is
our intention to show how the design of an electronic system can
be carried out into two almost independent steps: the design and
selection of the functionality of the components of the design and
the way in which these components interact through a communica-
tion mechanism. In particular, we believe that a specific methodol-
ogy can be used to carry out the design of communications in a
top-down, constraint-driven fashion.

2. Interface-Based Design
We propose a new way of describing designs that includes commu-
nication abstraction. Because the focus of such a method would be
on how the modules interface with each other, we'll call this new
method interface-based design.

Telecommunication developers have long used protocol stacks to
provide an abstraction mechanism for their complex communica-
tion systems. Protocols use hierarchical principles to hide complex
time or encoding behavior of the lower levels of the communica-
tion stack. Each layer of the stack provides System Access Points
(or SAPs), which are points of contact between that stack layer and
the one below. These SAPs are analogous to ports on a module.

As a more pragmatic example, a bus could be described as a sim-
ple hierarchical protocol. The top layer of the protocol is the set of
possible bus transactions: read, write, burst read, burst write, read-
modify-write. Each of these transactions can be further described
using some protocol on a given set of pins, say PCI bus or EISA
bus.

In order to generalize these concepts to all levels and types of
design, we need to formalize better what is the basic communica-
tion mechanism that we propose and how to refine it.

2.1 Models of Computation
Lee [11] has proposed over the years that systems be designed
using a heterogeneous collection of models of computation. A
model of computation is a self-consistent set of rules or laws of
physics that are useful for modeling at an abstract level. Com-
monly used models include Dynamic Data Flow, Communicating
Finite State Machines, Synchronous Data Flow and Discrete
Event. Each of these models has certain properties that are quite
useful in design.

If the differences between the most popular system level models
are analyzed, it becomes clear that the major difference is in the
method of communication between concurrent objects. Dataflow
[9] (both dynamic and static) communicate using queues, never
losing a token. Discrete Event [10] (DE) level performance model-
ing uses a single entry queue to hold tokens until the receiver can
be invoked. Each model of computation relies on specific proper-
ties to be guaranteed by the communication mechanism. In DE,
there is no guarantee that every event will be seen by the receiver
because the receiver may not be sensitive to that event when it is
emitted. On the other hand, there is a global order that can be
established between events in unrelated portions of the design.
Dataflow guarantees the safe arrival of every token and that the
sequence of tokens on each communication path is defined. There
is, however, no global ordering for tokens in unrelated design
parts.

Others have also proposed models of computation. Chiodo et al.
[12] have proposed a model (Codesign Finite State Machines)
based on FSMs communicating among themselves with event
broadcasting that allows for asynchronous communication. Note
that in this case the composition of the FSMs under the event
broadcasting communication model cannot be claimed to have the

same property as an FSM. Both DE and event broadcasting were
selected because of their simplicity and generality. However, while
other more complex models of communication could be expressed
in terms of event broadcasting, it was not clear how to use this
model to do top-down design of the communication part of the
design.

2.2 Incrementally Refining a Model of
Computation

The interface-based system design methodology that we propose
adopts the token passing methodology from dataflow and discrete
event system level while providing a method to refine communica-
tion mechanisms incrementally and hierarchically.

A token represents a complete communication between two or
more design entities. Some examples of tokens include bus writes,
bus reads, bursts, and variable length encoded data.

The process of refining token passing down to an implementation
is similar to the successive refinement concept proposed by several
researchers especially in the formal verification community. One
simple method of communication refinement could be imple-
mented by replacing the abstract, simple token exchange in the
model of computation by another design that has two parts: a mas-
ter and a slave (see Figure 2).

The master side initiates the communication by accepting the
token from the sender and breaks the token down into a series of
data and handshaking events on some new communication
paths.The slave recognizes the handshaking events and gathers the
sent data, reconstructing the token for delivery to the receiver. The
master part of this new communication design will be synthesized
with the sender, the slave synthesized with the receiver.

This methodology is clearly not limited to hardware. It is appropri-
ate for describing communication between multiple software
threads (shared memory, queues, posted events, etc.) or between
hardware-software (polling, interrupts, etc.) or software-hardware
(I/O instructions, memory mapped registers, coprocessor).

3. Interface-based Design Example
Hierarchical stepwise refinement is an essential part of interface-
based design. To illustrate the concepts, we use a mixed hardware/
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Figure 2: Refining Communication



software design that is communicating across a network using
ATM packets. For example purposes we will only look at a small
portion of the overall system, namely a software thread that is
sending packets through a hardware transmitter (see Figure 3). We
implemented this example in an experimental simulator named
Cheetah that is described in more detail in the next section.

At the most abstract level, the ATM packets will be modeled as a
token. The token contains 53 bytes of data (5 header bytes and 48
payload). To debug system functionality, we can pass these tokens
around without regard to how long they take to be transmitted. At
first, it is immaterial that the packet creation is software and packet
transmission is hardware, and in fact the exact line between hard-
ware and software should remain fuzzy as long as possible to keep
implementation options open. Simulation at this abstract level can
be done in the DE domain by passing tokens between abstract
behaviors simply by exchanging pointers.

Simulation results from Cheetah at this level consist of a simple
trace of the ATM packets crossing through the interface between
the blocks.

As we refine the system we need to make design implementation
choices. We can now explicitly choose to put the packet creation in
software and transmitter in hardware. The communication between
them will be across the processor's bus. At this point we have not
chosen the processor bus (or the processor, for that matter), so we
will model this refinement using an abstraction of a bus that han-
dles reads, writes, burst reads, and burst writes. Each of these
transactions will, for the moment, take a constant amount of time.

Refining the token passing into a series of bus transactions can be
done in many different ways. In this example, we'll only consider
the differences between individual writes and burst writes. Since
each ATM packet has 53 bytes, we can transmit it in several differ-
ent ways, from one byte per write to all 53 bytes in a single burst
transaction. To make the protocol a bit more robust, we will add a
write to a special location as the first bus transaction, followed by
writes of the real data to another address as shown in Figure 4. The
data transactions can be burst transactions of various lengths or
could be individual writes. In a real system, we would probably be

packing bytes into words for efficiently, but for this example we
will just put each byte into a separate write (or separate part of a
burst write).

Of course, we are dealing with a more complex system than just
the packet creator and transmitter, so other communication paths
will also be sharing the processor bus. We need to make sure that
our protocols are being refined correctly, that the transmitter is
faithfully reconstructing the packets and that other traffic on the
bus is also getting through. At this point, we cannot yet do accurate
performance studies (although if we made a slightly more accurate
bus model, we could get a first feel of bottlenecks). Arbitration of
the bus has to be modeled at this level, and we can start to assign
memory maps and get the programmer's model of the system
decided upon.

Simulation results from Cheetah at this level of refinement allow
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the user to "expand" the ATM packets into the more detailed bus
transactions that implement the protocol.

The next refinement is to select a bus implementation. We might
choose a PCI bus or an EISA bus, but for this example we chose
the PI-bus from the Open Microprocessor Initiative in Europe [15].
The PI-bus is a synchronous bus intended for on-chip work. Now
we can get cycle accurate knowledge of how each bus transaction
is happening. Buses can have multiple masters, so the arbitration
of bus access is important. Here, arbitration is modeled to the cycle
accurate level, as is the performance.

Simulation results here allow the user to "expand" down through
the bus transaction level and into the cycle accurate pin transition
detail as shown in Figure 5. Within Cheetah this last level of detail
isn’t simulated, but is instead recreated on demand from the user.

Now that we have selected a bus, it is possible to do detailed
throughput versus latency studies. The burst mode we can use to
send ATM packets will offer high throughput for the ATM packets
at the cost of higher latency for normal bus transactions for others
using the bus. Only with models that show a more detailed timing
model of the bus can we make these studies. Optimally we would
like a cycle accurate detail, but we at least need to be statistically
correct (what might be called a cycle approximate model).

4. The Cheetah Simulator
We have written a simulator, named Cheetah, that is designed to
support interface-based design. Cheetah was developed to explore
two areas: simulation speed and modeling style. Simulation speed
comes from abstracting the interface, in particular avoiding
detailed simulation of the interface internals. Modeling style
exploration included investigations into how to simulate an inter-
face abstractly and configure different interface implementations
into the simulator easily.

The Cheetah simulator is an event driven simulator. Events are
used to trigger actions in modules and interfaces. Full objects
(instances of a Java class, in this case) are passed from module to
module through abstract interfaces. We can substitute different
interface implementations without changing the module code. The
ATM example shown in Figure 3 and described in the next section
has three different interface implementations that satisfy the same
abstract interface.

Speed of simulation in Cheetah is obtained by avoiding unneces-
sary events and computations within the interfaces. During simula-
tion, the interface simply passes tokens through, delaying them by
a quickly computed delay before passing them onto the receiver
and before letting the sender know the transaction has finished. No
detailed cycle accurate simulation is done although the delay rep-
resents the cycle accurate time.

Synchronization, as for arbitrating access to a bus, is performed
using a typical DE resource object, which knows how to allocate a
shared resource to multiple requestors. No events are posted to the
main event queue for handling synchronization, instead a local
algorithm awakens the waiting requestor.

By abstracting synchronization and avoiding unnecessary events
and computation, we can get performance similar to that of other
token passing, queuing level performance analysis simulators.

For analysis purposes, designers would like to be able to expand
this token level simulation into its constituent parts so that they can
analyze resource usage, see opportunities for optimization, and
understand how a bus protocol is working. As with most simula-
tors, Cheetah allows probes on the interfaces between modules.
The probed data captures the transaction, its beginning and end,
and any synchronization or parameterization data necessary to
reconstruct the cycle accurate behavior of that interface for that
transaction.

On demand from the user, the probe data can then be expanded by
the interface into what appears to be more probed data of assign-
ments to the lower level details within the interface. In effect, we
are resimulating each probed transact ion in isolation to create new
probed data for display.

The interface, then, consists of a type specification (what type of
data is carried by a single transaction across this interface), a delay
calculation that is cycle accurate for the given transaction, and a
procedure to expand or resimulate a previously handled transac-
tion.

Interfaces can be hierarchical, allowing the parent interface to
break a big transaction up into a series of smaller transaction on
the children interfaces.

Expand ATMs

Figure 5: ATM packets sent over a PI Bus
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Each interface can be thought of as serving several purposes as
shown in Figure 6.

The master starts a transaction by creating the transaction object
and passing it to the interface. The interface then performs its
abstract implementation, which for the simplest cases is to just use
the global event queue to delay for a computed amount of time.
The slave is notified that a new transaction has started. The inter-
face may start building a history trace object using an optionally
provided probe. When the abstract implementation is done, both
the master and slave are notified that the transaction is finished and
the optional trace object is added to the simulation history.

Later on, the user interface can come back to the interface and ask
that a given trace be expanded into more detail. In the current
implementation of Cheetah, this procedure will then create new
history trace objects that show how the original transaction would
have simulated if it was being done in detail.

The Cheetah simulator gains performance from abstraction in both
time and space as shown in Figure 7. The time abstraction avoids
multiple assignments to a single signal because we only deal with
the transaction object. Similarly space abstraction avoids assign-
ments to multiple signals. In the case of a bus, the space expansion
includes the address and datalines, as well as many handshaking,
request, acknowledge, and state signals. The best simulator perfor-
mance is at the most abstract level, and was approximately 25x the
slowest simulation we saw during the ATM methodology experi-
ment.

Cheetah is in an experimental condition, so it is difficult to get an
accurate performance comparison against an RTL level simulator.
To get some sort of relative performance comparison we use events
as our metric. Many designs are event queue limited, which means
that their performance (in clocks simulated per second of
wallclock time) is proportional to the number of events required to
simulate a clock cycle. Our bus model avoids using events to simu-
late the detailed cycle level behavior, so each bus transaction only
requires one event. An HDL simulator would require at least one
event per bus signal transaction. Our bus has a minimum 7 signal
assignments per bus transaction.

Based on this relative performance argument, our most accurate
simulation would be about 7x faster than an equivalent RTL simu-
lation. Our most abstract simulation would then be approximately
175x the performance of a cycle accurate RTL.

5. Summary
We have proposed a new methodology for system level design that
separates communication from behavior. This interface-based
design methodology seems to provide numerous advantages in
design modeling and exploration, synthesis, and verification.

A simulator (Cheetah) was built to explore the performance and
modeling implications of this methodology and was found to given
cycle accurate simulation with substantially fewer events posted to

an event queue than would be required in an HDL simulator. Full
cycle accurate detail can be reconstructed post-simulation.

By adopting this methodology, we expect to see improvements in
three major areas: modeling and design exploration, synthesis, and
verification.

5.1 Modeling and Design Exploration
Modeling is improved in two important ways:

■ better design reuse

■ easier exploration of the design space

By separating communication from behavior, we have orthogonal-
ized two extremely important design considerations. This separa-
tion makes it possible to mix and match communication
techniques with behaviors. We can model some behavior and then
snap on different bus interfaces. Alternatively, we can create a
communication architecture and plug in different IP.

Design exploration is enhanced by providing a new place to con-
figure the design. Using VHDL configurations as the archetype,
we can switch in different communication architectures without
modifying the original design.

5.2 Synthesis
By separating communication and behavior, new opportunities for
synthesis are also created:

■ improving the productivity of logic synthesis

■ solving a major stumbling block for high level synthesis.

Despite the use of synthesis for a decade, design reuse is still cited
as the most important desired productivity step. By incrementally
inserting the communication logic into the behavior, blocks and
communication schemes can be more easily reused.

Coelho [13] has shown that having an abstraction of the communi-
cation between modules can provide important don’t care informa-
tion that leads to better synthesis results.

High level synthesis suffers from a lack of composition methodol-
ogy. Each block can be synthesized using high level synthesis, but
no methodology exists to easily compose separately synthesized
modules together. By imposing a communication mechanism on a
behavior, the designer is also imposing a set of high level con-
straints on the two modules, which is suitable for guiding the high
level synthesis of each for smooth composition.

5.2.1 Verification
Perhaps the most important impact could be felt in the verification
area. Important improvements could include

■ verification performance

■ enabling formal verification

■ testbench generation and reuse

■ measurement of functional coverage

■ block-based design verification methodology

Higher level abstractions provide better performance, in general,
but at the cost of accuracy or visibility into the fine detail. If we
separate communication from behavior, we can avoid simulating
the communication once it has been verified and instead abstract
the communication into a minimal set of delays. On demand, we
reconstruct the fine detail if desired by the user. A simulator that
relies on these techniques is briefly described in Section 4.

Formal verification is an extremely powerful technique that
requires abstract descriptions coupled with a formal description of
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the environment around the design. By keeping the modules
behavioral and separate from the communication we can help keep
them simpler and more likely to be amenable to formal techniques.
The formal specification of the communication protocols can pro-
vide the necessary environment description that can help isolate a
block, further simplifying the design to be verified. In addition,
formal verification can be used to verify that an interface refine-
ment continues to uphold the original abstract properties of the
original communication (each model of computation will have dif-
ferent properties that need to be checked). Balarin [16] has some
initial work in this area for CFSMs.

Testbenches are an unsung but extremely important design task.
Most designers will admit to the testbench being at least as much
work as the design. A formal, perhaps declarative, description of
the communication protocol being used on a block could be used
to automatically generate test fixtures that stimulate and check a
design. Some tools like this, from companies such as InSpec,
already exist as a separate add-on to an HDL design description.
By putting the communication descriptions right into the design
language, test generation and checking can be a natural fallout of
the design process. Further, by creating the test generation at a
high level and keeping it separate from the communication mecha-
nism, any manual work creating tests can be more easily reused
from design to design.

Code coverage [14] has emerged as a technique to answer the diffi-
cult question: Have I simulated enough yet? The known techniques
can be used to analyze coverage of behavior. With a formal proto-
col description of a communication mechanism, a new kind of cov-
erage analysis is possible, checking to see that all the types and
temporal combinations of transactions have happened.

Designing complex systems by reusing large building blocks is
partly difficult because of verification. By separating communica-
tion and behavior it should be possible for the author to verify the
IP block against an abstract interface definition. The IP user could
then use a high level description of the block, checking for interac-
tions between the blocks and using functional coverage to make
sure that all interface interactions had been investigated, but not
needing to dive deeply into the block to verify its functionality.
Different blocks can be tried out, with the correct interfaces syn-
thesized as needed between them. The separation of communica-
tion and behavior can help segment an unsolvable verification
problem into a collection of more manageable ones.

5.2.2 Future Work
Future work will involve several types of research:

■ Theoretical: What are the types of properties in different
models of computation and how might they be preserved
during refinement?

■ Language: What kind of description language would embody
this methodology most effectively? How can an interface be
described declaratively so a single description can be used to
generate, recognize, and check its protocol?

■ Formal verification: Can we formally prove refinement of a
communication style?

■ Simulation: With more realistic examples, what performance
improvement will we get?

■ Modeling: How can we mix together large complex IP without
knowing how they are built inside?

■ Refinement: How do we refine a collection of interfaces onto
a communication architecture that involves shared resources,
addressing, arbitration, etc.?

■ Synthesis: How can an interface description be used to set
constraints on the synthesis of a module? How can we
minimally incorporate the interface behavior into a module?
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