NEGATIVE COSTS

The given figure shows a graph with vertices labeled as A, B, C, and D. The edges and their respective costs are as follows:

- A to B: 3
- B to C: 3
- C to D: -7
- D to C: 5
- A to D: -10

The text explains:

- The path from A to C via B does not make sense, as it leads to $-\infty$.
- It is a loop with a negative cost.

The text also states:

- The path from A to C via D makes sense.
- There is no loop with a negative cost.

The shortest distance from A to C is calculated as:

$$3 + 5 - 7 = 1$$
Dijkstra (greedy) algorithm does not work

Step 1.
\[s = \{ a \} \quad V - s = \{ b, c, d \} \]

Step 2.
\[s = \{ a, b \} \quad V - s = \{ c, d \} \]

Step 3.
\[s = \{ a, b, c \} \quad \text{no change} \quad V - s = \{ d \} \]

Step 4.
\[s = \{ a, b, c, d \} \quad \text{no change} \quad V - s = \emptyset \]
Some notation often used.

- **INITIALIZE** \((s)\)

 for each vertex \(v \in V\) do

 \[
 \text{begin} \quad d[v] \leftarrow \infty; \\
 \quad p[v] \leftarrow \text{nil}
 \]

 \[
 \text{end}
 \]

 \[
 d[s] \leftarrow 0
 \]

- **RELAX** \((u, v)\)

 if \(d[v] > d[u] + \omega(u, v)\)

 then \[
 \text{begin} \quad d[v] \leftarrow d[u] + \omega(u, v); \\
 \quad p[v] \leftarrow u
 \]

 \[
 \text{end}
 \]

ALTERNATIVE START

\[
\text{begin} \quad d[v] \leftarrow \omega(s, v); \\
\quad p[v] \leftarrow s
\]

\[
\omega(,) \quad \text{the incidence matrix}
\]

HISTORICAL NAME
IN THIS NOTATION:

DIJKSTRA (s)

INITIALIZE (s);
$S \leftarrow \emptyset$;
Queue $\leftarrow V$;

while Queue $\neq \emptyset$ do

begin
 $u \leftarrow$ MINIMUM (Queue);
 $S \leftarrow S \cup \{u\}$; \text{ \texttt{INSERT(S,u)}}

 for each vertex v adjacent to u
 do RELAX (u,v)

end
Bellman-Ford algorithm

\[|V| = n \]

BELLMAN-FORD (s)

1. \text{INITIALIZE}(s);
2. \text{for } i = 1 \text{ to } n-1 \\
3. \text{do for each } (u,v) \in E \text{ do } \text{RELAX}(u,v); \\
4. \text{for each } (u,v) \in E \text{ do } \\
5. \quad \text{if } d[v] > d[u] + w(u,v) \text{ then return (False);} \\
6. \text{return (True)}

Complexity
1. is \(O(n) \)
2. is \(O(1E) \) or \(O(1E1) \)
3. Overall \(O(|V|1E1) \)

Slower than DIJKSTRA but works for negative costs!
AND “TRUE” IS RETURNED
- Path recovery: Identical to Dijkstra!!

Special case: The graph is acyclic!

- Now we can do it in \(\Theta(IV + IE) \), so better than Dijkstra and Bellman-Ford.

DAG - Directed **Acyclic Graph**

\[
\text{DAG-Peak-Path} (s) \\
\text{topologically sort the vertices of } G \\
\text{INITIALIZE} (s) \\
\{ \\
\text{for each } u \in V, \text{ taken in topologically sorted order} \\
\text{do for each } v \text{ on the adjacency list of } u \\
\text{do RELAX}(u, v) \\
\}\]

Complexity: \(\Theta(IV + IE) \) time
ALL PAIRS SHORTEST PROBLEM

- For each pair of nodes u, v find the shortest path from u to v.

- **No negative costs**: Apply Dijkstra's algorithm n times ($n = |V|$), $m = |E|$.
 - Complexity: $O(n^3)$ - Adjacency matrix, dense graphs.
 - Complexity: $O(nm \log n)$ - Adjacency list, sparse graphs.

- **Negative costs**: Apply Bellman-Ford algorithm n times.
 - Complexity: $O(n^2m)$.

- Can we do better? Remember, Big O notation forgets about constant overheads!
FLOYD'S ALGORITHM

- IDEA: THE SAME AS FOR DIJKSTRA'S AND BELLMAN-FORD, BUT ALL CASES CONSIDERED, I.E. NO GREED NEEDED!

\[S_k = \{1, 2, \ldots, k\}, \quad k < n \]

Suppose \(D_{S_k}(i, j) \), a shortest distance from \(i \) to \(j \) using only nodes from \(S_k \), is known.

Let \(S_{kn+1} = \{1, 2, \ldots, k, k+1\} \)

\[D_{S_{kn+1}}(i, j) = \min \left(D_{S_k}(i, j), D_{S_k}(i, k+1) + D_{S_k}(k+1, j) \right) \]

We compute: \(D_{S_0}(i, j), D_{S_1}(i, j), \ldots, D_{S_n}(i, j) = D(i, j) \)

THE SHORTEST DISTANCE FROM \(i \) TO \(j \)
NO OVERHEAD SOLUTION!

Notation: \(C[i,j] \) - weight at \((i,j) \)
\(A[i,j] = D_{ik}(i,j) \)
\(P[i,j] = k \) mean \(k \) is on a currently shortest path from \(i \) to \(j \).

FLOYD'S ALGORITHM

Initialize \(A[i,j] = C[i,j] \), \(P[i,j] = 0 \) for \(i,j = 1, \ldots, n \)

For \(k = 1 \) to \(n \) do
 For \(i = 1 \) to \(n \) do
 For \(j = 1 \) to \(n \) do
 begin
 \(P[i,j] = k \);
 end
 End If
 End For
 End For
End For

Complexity: \(O(n^3) \)
Path Recovery:

Shortest Path from i to j is given by the following procedure:

PATH(i,j)

$k = P[i,j]$ ← k is on the shortest path from i to j

If $k \neq 0$ then

begin

PATH(i,k);
WRITE(k);
PATH(k,j);

end

end PATH
HUFFMAN CODES AND DATA COMPRESSION,

ANOTHER POPULAR GREEDY ALGORITHM.

- **WE HAVE A SET OF CHARACTERS:** \(A = \{a_1, a_2, ..., a_k\} \)
- **A STRING OR MESSAGE:** \(x_1 x_2 ... x_n \) where \(x_i \in A \)
- **FOR EACH** \(a_i \in A \), \(f(a_i) \) **IS THE FREQUENCY OF APPEARANCE** \(a_i \) **IN THE MESSAGE** (or a probability)

 \[\sum_{a_i \in A} f(a_i) = 1 \]

- **ENCODING:** **ASSIGN A BINARY CODE** \(c(a_i) \) **FOR EACH** \(a_i \), **AND EXTEND** \(c \) **TO STRINGS BY**

 \[c(x_1 x_2 ... x_n) = c(x_1) c(x_2) ... c(x_n) \]

- **DECODING:** **GIVEN A CODE** \(b_1 b_2 ... b_m \) **FIND THE UNIQUE MESSAGE** \(x_1 x_2 ... x_n \) **SUCH THAT**

 \[c(x_1 x_2 ... x_n) = b_1 b_2 ... b_m \]

- **ENCODING LENGTH/AVERAGE CODE LENGTH:**

 \[\sum_{a_i \in A} f(a_i) \text{ length}(c(a_i)) \]
<table>
<thead>
<tr>
<th>CHARACTER</th>
<th>FREQUENCY</th>
<th>CODE 1</th>
<th>CODE 2</th>
<th>CODE 3</th>
</tr>
</thead>
<tbody>
<tr>
<td>a</td>
<td>.30</td>
<td>000</td>
<td>01</td>
<td>00</td>
</tr>
<tr>
<td>b</td>
<td>.10</td>
<td>001</td>
<td>0010</td>
<td>00</td>
</tr>
<tr>
<td>c</td>
<td>.10</td>
<td>010</td>
<td>0011</td>
<td>01</td>
</tr>
<tr>
<td>d</td>
<td>.10</td>
<td>011</td>
<td>0001</td>
<td></td>
</tr>
<tr>
<td>e</td>
<td>.40</td>
<td>100</td>
<td>000</td>
<td></td>
</tr>
</tbody>
</table>

Average Code Length

<table>
<thead>
<tr>
<th>CHARACTER</th>
<th>CODE 1</th>
<th>CODE 2</th>
<th>CODE 3</th>
</tr>
</thead>
<tbody>
<tr>
<td>a</td>
<td>3</td>
<td>2.1</td>
<td>1.7</td>
</tr>
</tbody>
</table>

Prefix Property: $c(a_i)$ is not a prefix of $c(a_j)$ for any $i \neq j$.

No Prefix Property: No Decoding!

Code 1, Code 2 have prefix property.

Code 3 doesn't have prefix property.
BINARY TREE REPRESENTATION OF CODES

CODE 1
- \(c(a) = 000 \)
- \(c(b) = 001 \)
- \(c(c) = 010 \)
- \(c(d) = 011 \)
- \(c(e) = 100 \)

CODE 2
- \(c(a) = 01 \)
- \(c(b) = 0010 \)
- \(c(c) = 0011 \)
- \(c(d) = 0000 \)
- \(c(e) = 1 \)

PREFIX PROPERTY
- ALL LETTERS AS LEAVES

NO PREFIX PROPERTY
- SOME LETTERS AS INTERIOR NODES
HUFFMAN CODE: AN OPTIMAL (MINIMAL LENGTH) PREFIX CODE.

ALGORITHM: IT FINDS HUFFMAN CODE \(C(a_i) \) FOR EACH \(a_i \).

HUFFMAN \((\{a_1, a_2, \ldots, a_n\}) \)

Let \(a_i \) and \(a_j \) are such that \(f(a_i) \) and \(f(a_j) \) are the lowest among \(a_i, \ldots, a_n \).

Let \(a' \) be a new character and we set
\[f(a') = f(a_i) + f(a_j) \]

Define \(A' = (\{a_1, a_2, \ldots, a_n, a'\} - \{a_i, a_j\}) \cup \{a'\} \)

Call HUFFMAN \((A') \)

\[C(a_i) = C(a') 0; \]
\[C(a_j) = C(a') 1; \]

END HUFFMAN

Example: \(\{a, b, c\} \), \(f(a) = 0.5 \), \(f(b) = 0.3 \), \(f(c) = 0.2 \)

HUFFMAN \((\{a, b, c\}) \Rightarrow f(\{bc\}) = 0.5 \) HUFFMAN \((\{a, \{bc\}\}) \)

\[\downarrow \]

\[C(a) = 0 \]
\[C(b) = 10 \]
\[C(c) = 11 \]

THE PROCEDURE IS BETTER UNDERSTOOD IF PRESENTED IN TERMS OF TREES.
Example

<table>
<thead>
<tr>
<th></th>
<th>a</th>
<th>b</th>
<th>c</th>
<th>d</th>
<th>e</th>
<th>f</th>
<th>g</th>
<th>h</th>
</tr>
</thead>
<tbody>
<tr>
<td>f</td>
<td>0.10</td>
<td>0.20</td>
<td>0.05</td>
<td>0.05</td>
<td>0.10</td>
<td>0.30</td>
<td>0.10</td>
<td>0.10</td>
</tr>
</tbody>
</table>

We start with a forest

(1) 0.10 0.20 0.05 0.05 0.10 0.30 0.10 0.10

a b c d e f g h

(2) 0.10 0.20 0.10 0.05 0.05 0.10 0.30 0.10 0.10

a b c d e f g h

(3) 0.20 0.10 0.10 0.10 0.05 0.05 0.30 0.10 0.10

b e f g h
• Solutions are not unique but the value of \(\sum_{i=1}^{n} f(a_i) \text{ length}(c(a_i)) \) is always the same and it is the minimal value for all binary prefix codes.

• Complexity:

 • K-1 iterations, each consists of finding two minimal values and merging, can easily be done in \(O(k) \), so totally \(O(k^2) \).

 • If priority queues implemented as heaps are used, then finding two minimal elements is \(O(\log k) \), merging is \(O(1) \), so totally \(O(k \log k) \).

• Ideas can be extended, see pages 175-177 in textbook.