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Sequences

Alphabet: an arbitrary (usually finite) set of elements, often
denoted by the symbol X.
Sequence:

e an element x = (a1, a,...,ax) € XX, where ¥ is a Cartesian
product of X’s.
For convenience we write x = aja» ... ak.

@ a function ¢ : {1,...,k} — X, such that
¢(1) = at,..., ¢(k) = dk.

& The two above definitions are in a sense identical since:
YX..xr={f|f:{1,....k} = X}

n

o Frequently a sequence is considered as a primitive undefined
concept that is understood and does not need any
explanation.
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Sequences and strings

o If the elements of X are symbols, then a finite sequence of
symbols is often called a string or a word.

& In concurrency theory sequences are often called traces (for
example in the textbook for this course).

@ The length of a sequence x, denoted |x|, is the number of
elements composing the sequence. For example |aba| = 3,
|aabbc| = 5.

o The empty sequence, ¢, is the sequence consisting of zero
symbols, i.e. |¢| = 0.

o A prefix of a sequence is any number of leading symbols of
that sequence, and a suffix is any number of trailing symbols
(any number means ‘zero included’). For example a sequence
(word, trace) abca has the following prefixes: ¢, a, ab, abc,
abca, and the following suffixes: abca, bca, ca, a, ¢.
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Concatenation

o Concatenation (operation)
Let x=a1...a, y=b1...b. Then

xoy:al...akbl...b,.

We usually write xy instead of x o y.
o Properties of concatenation:

Q x(yz) = (xy)z

Q sx=xe=x
Fact. A triple (X,0,¢) is a monoid (recall 2LC3).

o Power operator: x® =¢, x! = x and x¥ = x...x.
(R
k
@ Recursive definition of power:
x0=¢
xk+1 = xkx.
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> * and Formal Language

o Let X be a finite alphabet. Then we define ©* as:
Y*={a1...ak| ai € LAk >0},

i.e. the set of all sequences, including e, built from the
elements of X.

@ For example
{a,b}* ={e,a, b, aa, ab, ba, bb, aaa, aba, aab, ...}, all
sequences built from a and b.

o 0* ={e}

o If X # () then |T*| = oc.

e A (formal) language over ¥ is any subset of L*, including the
empty set () and T*.

e For example {ab, cba, ba, bbbb} C {a, b, c}* is a finite
language, while
{abc, ba, ab, abb, abbb, . .., ab",...} C {a,b}* in an infinite
language.
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Automata or State Machines

There is a set of states Q.
Q@ may be finite, then we have finite state machines.

There is a set of actions/operations that allow to move from
one state to another state.

There is a transition function/relation that allow movement
from one state to another state using actions/operations.

There is an initial state.

There might be final states.

The concept of a current state may easily be introduced.
The set of actions/operations is finite.

There is a concept of nondeterministic choice.
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(Finite) Automata or (Finite) State Machines: an example

Ryszard Janicki Automata: Short Course 7/45



Automata: Non-determinism
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Deterministic Automata

Definition

A deterministic (finite) automaton (state machine) is a
5-tuple:
M = (Za Qaév S0, F)v

where: Y is the alphabet (finite) (input alphabet),
Q is the set of states (finite),

0:Q xX — Q is the transition function,

so € Q is the initial state,

F C Q is the set of final states.

Definition (& function, also often denoted as 6*)

We extend the function 6 to 6 : @ x ¥* — Q as follows:
o Vge Q. i(q.¢)=gq
o Vge QVx e X*VaeX. §(q,xa) = d(5(q,x),a).
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5 function, also often denoted as &*

Definition

We extend the function 6 to 6 : Q x ¥* — Q as follows:
o Vge Q. i(q.¢)=gq
o Vg e QVxeX*VacX. §(q,xa) = 6(5(q,x), a).

@ The above definition of § is recursive and the recursion is on
the length of x.

e Intuitively d(g, a) is the state that can be reached from ¢ in
one step, while d(g, x) is the state that can be reached from g
in |x| steps by using ¢ in each step.

e For example (g, abcd) = 6(8(5(6(q, a), b), ¢), d).

o We usually write & instead of § when it does not lead to any
misunderstanding.

e For example d(q, abcd) = §(5(5(4(q, a), b), ), d).
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Language Accepted/Generated by an Automaton

Definition (Language)

For every automaton M, the set
L(M) = {x | §(s0,x) € F}

is called the language accepted/generated by M.

@ The language is just a set of all sequences (words, traces) that
can be derived by starting from the initial state travelling
trough automaton (using 0 as next state function) and ending
in some final state.

@ It is possible to leave a final state!

@ In concurrency we often do not have final states! In such a
case we assume that each state is a final state, i.e. F = Q!
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Deterministic Automaton: an Example

o Consider the following deterministic automaton M

o We have: ¥ ={a,b}, Q ={s0,51,%,5}, F={s,s3} and
the below table shows the transition function .

ElEREN
S0 || S1 | S2
S1 | s3] S1
2| S1 | S3
53 || 2 | S1

e For example ab, bbaa ¢ L(M), while aaa, abbbaab € L(M).
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Problems!

(1) We cannot specify:

The meaning is pretty simple: “first execute a and next execute
any number of b, including none.” However, for the first definition
we have 0(sp, a) = s; and d(s1, b) = s1, but what about

d(s0, b) =7 and d(s1,a) =7. For the second definition we have
a(sp) = s1 and b(s1) = s but still b(sp) =7 and a(sy) =7.

UGLY SOLUTION stote
Ssivk, 3“”"“‘?1
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Ugly Solution

UGLY SOLUTION e

Ssivk, 8“"/'0&3’&

@ This solution is good for illustration, problematics for real
systems as we have to introduce entities that may not exist in
the real system!

@ The standard solution involves the concept of
non-determinism.
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Non-determinism: Problem #1

@ Notation for ‘power set’: 29 = P(Q) = {X | X C Q}, and
clearly § € 29,
@ Problem #1: How to model the below situation?

@ The standard solution
6(s,a) = {s1,..., s}, which implies § : Q x ¥ — 29,
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Non-determinism: Problem #2

e Consider the following automaton:

o Which is true? ab € L(M) or ab ¢ L(M)?
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Non-determinism: Problem #2

e Consider the following automaton:

o Which is true? ab € L(M) or ab ¢ L(M)?

Usually it is assumed that ab € L(M). It is called angelic
semantics.
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Angelic vs Demonic Semantics

@ Angelic: At each state an angel will tell you where to go, so if
there is a good choice you will make it. The only bad case is
when all choices are bad.

o Demonic: At each state a demon will tell you where to go, so
if there is a bad choice you will make it. The only good case
is when all choices are good.

@ Demonic semantics is much less popular. It is relatively new
and was motivated by fault tolerant systems. In this class we
will use only angelic semantics. | have mentioned demonic, to
show that non-determinism is more complex than the one
presented in most textbooks.
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Angelic vs Demonic Semantics - An Example

@ Consider the three automata below:

& a
M o= M, = 5 f2 My =
1 b b
@
S %y

o Let La(My), i =1,2,3 denote a language defined by M;
under angelic semantics, and let Lp(My), i =1,2,3 denote a
language defined by M; under demonic semantics. Note that
LA(Ml) = LD(Ml) = @, LA(MQ) = {ab}, LD(MQ) = @ and
LA(M3) = LD(M3) = {ab}
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Definition (Non-deterministic Automaton)

A non-deterministic (finite) automaton (state machine) is a
5-tuple:
M = (Za 0567 S0, F)a

where: Y is the alphabet (finite) (input alphabet),
Q is the set of states (finite),

§: Q x ¥ — 29 is the transition function,

so € Q is the initial state,

F C Q is the set of final states.

Definition (non-deterministic & function)

We extend the function & to 6 : Q@ x ¥* — 29 as follows:

o Vg€ Q. 5q,¢) ={q}

o Vge QV¥xeX*VacX. §(g,xa)= (s, a).

s€8(q,x)

Sometimes, by a small abuse of notation, we write

0(q,xa) = 3(5(q,x), a).
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Language Defined by a Non-deterministic Automaton

Definition (Angelic semantics)

For every automaton M, the set
L(M) = {x | 8(so,x) N F # 0}

is called the language accepted/generated by M.

Definition (Demonic semantics)

For every automaton M, the set

L(M) = {x | §(s0,x) C F}

is called the language accepted/generated by M.

\,

We will not consider demonic semantics in this course.
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Non-determinism: Example 1

@ Consider the following example:

e Standard model: ¥ = {a, b}, Q = {sp,s}, F = {s1}.
§(s0,a) = {s1}, 6(s0, b) = 0,
d(s1,a) =0, 6(s1,b) ={s1}.

@ In this case we do not have ‘splits’ like the one from page 15,
all outcomes of the function § are either singletons or empty
set, so intuitively this is rather a deterministic system.

o However formally the automaton is non-deterministic.
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Non-determinism: Example 2

e Consider the following example:

\Y
~y b
1 1, g
\@ &
Is

o Classical model: ¥ ={a, b,c}, @ = {q0, 91,92, g3},
F={a}.
(5(q07 ) - {ql CI2} 5(q07 b) = 5(q07 C) = (Z)’
6(q1,a) = {a3}, 6(qu, b) =0, 6(qn, c) = {a },
6(q2,a) = {a3}, 9(q2, b) = {2}, 0(q2,¢) =0,
(g3, a) = 0(q3, b) = 3(q3,¢c) =0
@ ‘Local' model: X ={a,b,c}, Q ={q0,q1,92,93}, F ={qg3}.
a={(90,91),(q0,92), (g1, 93), (92, 43)}, b = {(92, 92)},
= {(q1, q1)}-
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Another Approach to Non-determinism

An automaton (state machine) is a 5-tuple:
M — (Za 0757 S0, F)7

where: ¥ is the alphabet (finite),

Q is the set of states (finite),

§:Q x X — 29 is the transition function,
sp € Q is the initial state,

F C Q is the set of final states.

Definition

e M is deterministic iff Vg € Q.Vae€ X. |i(q,a)| <1
e M is strictly deterministic iff Vg € Q.Vac€ X. |0(q,a)| =1

These definitions are often used in the papers that deal with
applications rather than theory.
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Labelled Transition Systems

e Transition (from Collins Dictionary):
“a passing or change from one place, state, condition, etc., to
another.”

o Consider the case:
Can “a" be called a transition?

@ Transitions, state and labels:

N 2

< {,_Jre_x

@ Transitions are unique: — &

@ Transitions (labelled) are usually needed and used for
modelling concurrency.
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Non-determinism vs Determinism: Example

@ Does non-determinism increases the descriptive power? J
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Non-determinism vs Determinism: Example

@ Does non-determinism increases the descriptive power?
NO. See an example below and Theorem on next page. J
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Non-determinism vs Determinism

Let L be a language accepted by a non-deterministic finite
automaton M, i.e. L = L(M). There exists a deterministic finite
automaton M’ such that L(M') = L.
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Invisible (silent) Actions or e-moves

@ In many cases we need to model invisible actions!

Definition

A non-deterministic automaton with s-moves is:
M= (Q,%,0,qo, F),

where: Q, X, qo, F are as usual, and:
0: Qx(ZU{&})—)QQ.

@ Problem: ¢ has two interpretations:
© Do nothing,
@ Go to another state by executing invisible (silent) action.
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Removal of e-moves

If L is accepted by a nondeterministic automaton with e-moves,
then L is also accepted by a nondeterministic automaton without

E-MOVES.
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Removal of e-moves: An example

o
S0
£
‘ o =
&
C
SZ.

@ We may then transform the non-deterministic automaton
from the right hand side into appropriate deterministic one.
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Equivalence of Finite Automata

Two automata M; and M, are equivalent if and only if
L(My) = L(M>).

V.
Non-deterministic automata, nondeterministic automata with
e-moves, and deterministic automata are all equivalent.

e Equivalence means only the same language, other properties
may differ.

@ For example the concept of 'demonic semantics’ does not
make much sense for deterministic automata as we do not
have non-deterministic choices.

@ For any deterministic automaton M, if all states are finite then
then L(M) = X*, so this concept also has very little sense.

Ryszard Janicki Automata: Short Course 30/45



No Final States

@ No final states is equivalent to all states are final, i.e.
F=0=F=Q.

@ But this makes sense only for nondeterministic automata.

. So
) Se
OSo @) >< @D, . ¢
b o Ho6 TS, .
6\ S} ‘51 @I ‘
N e ) — e _— -
NV g _
NON ~D ETEZMINISTIC DeETERMINISTIC
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Modelling Dynamic Systems With Automata: Hotel

Reservation

room request
none

room available no room available
—_— Requested -
put on list

decrement room count
room available

l Confirmed SFMN Do oot ll On waiting list I

customer moves in customer gives up
none Ccustomer cancels remove from list
increment room count

| Used I Canceled I
customer pays
increment room count

@ No arrow to initial state and no arrow from final state.

=
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Road Deicing

Road treated

Ice formation predicted

I v

Ice
; I Road predicted Road predicted
safe for use melte unsafe for traffic
Road /I\ I
treated Ice melts

Road becomes
unsafe for use

Road closed

o Neither initial nor final state specified.
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Simplified

Z'S

Armed for

Home Security

Program
Mode
change setting

FS

enter program mode

sensors closed; arm
for house empty

Away

leave program mode

sensors closed; arm

for staying in house

Disarmed

smoke detected;
dial fire department

FS

>

enter code

sensor
open

within 30 seconds
motion

detected

Beeping

correct code not
entered within 30
seconds; dial police

Sounding

v

correct code entered

enter code

Armed for
Stay

wrong code entered

smoke detected;
dial fire department

Alarm

@ Neither initial nor final state specified.
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Modelling Dynamic Systems With Automata

e FOR THIS KIND OF APPLICATIONS AUTOMATA
ARE USUALLY NONDETERMINISTIC, or deterministic
in the sense of the definition from page 23.
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Regular Expressions: Intuition

(Ou1)o* — {0, 00,000,...,1,10,100,1000,...}
‘zero or one followed by any number of zero:
including none’

ab* — {a,ab, abb, abbb, . ..}

(aU b)* —  {a,b}*
‘all strings (including ¢) that can be
built from a and b’

(aUe)(bUe) =

abUebUasUee =

abubUaUe —  {e,a, b,ab}
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Definition (Formal Definition of Regular Expressions)

Let X be an alphabet. A string R built from the elements of

Y U{e,0,(,),U,* } is a regular expression, if it is defined by the
following rules:

Q (), e and each a € ¥ are regular expressions.

@ (R1UR») is a regular expression if Ry and R are regular
expressions.

© (R1R») is a regular expression if Ry and R, are regular
expressions.

O (R)* is a regular expression if R is a regular expression.
© There are no other regular expressions.

The set of all regular expressions over the alphabet ¥ will be
denoted by Rex(X).

@ We usually skip some parenthesis.
@ Rules: * first, followed by concatenation, and finally U, unless
parentheses say differently.
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Languages Defined by Regular Expressions

Let L : Rex(X) — 2% be the following function called
interpretation:

Q L(D)=0, L) =¢, L(a) ={a}
L((R URz)) = L(Ri) U L(R2)
L((RiR2)) = L(R1)L(R2)
L((R)") = L(R)

*

Definition (Language)

For every regular expression R, L(R) is a language defined by R.

A class of all languages defined by regular expressions will be
denoted by Lrex.

Ryszard Janicki Automata: Short Course 38/45



Languages Defined by Regular Expressions: Examples

o L((0U1)0*) = {0,00,000,...,1,10,100, 1000, ...}
e L(ab*) ={a, ab, abb, abbb, abbbb, ...}
o L((aUue)(bUe)) = {e,a,b,ab}

@ We customarily often identify a regular expression R with
L(R) but technically R is not L(R).

& A question: What is the relationship between L and Lrex?

Lr = LRex
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Minimization of Deterministic Finite Automata

o Consider the following two deterministic automata:

@ It can be proved that L(M;) = L(M,), and clearly M, has less
states.

@ It can be proved that M, is the minimum state automaton
that is equivalent to My, i.e. L(My) = L(M>).
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Intuitions for Minimization

Consider the following two automata, both generating the
language ab*:

The states g1 and g, of the left automaton and equivalent, so
they, and appropriate arrows, can be glued together.
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Minimum State Deterministic Finite Automata

For every deterministic automaton My there is the minimum state
deterministic automaton M, such that L(M;) = L(M>).
The automaton My is unique up to the names of states.
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Non-deterministic Automata and Minimization Problem

@ The word ‘deterministic’ is important and cannot be omitted!

e Consider the following two non-deterministic automata, both
generating the language

L = {ab, ac, bc, ba, ca, cb}

@ Both automata above are minimum state and there is no way
to make them identical!
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Non-deterministic Automata and Minimization Problem

@ When talking about Minimum State Non-deterministic
automaton (usually when we discuss some application), we
usually mean the case as below (no non-deterministic splits):

@ If we forgot about red part, both automata are
non-deterministic and the black automaton on the right can
be interpreted as the minimum state automaton equivalent to
the blue automaton on the left.

@ However, to derive formally the back automaton on the right
from the blue on left we need to add the red parts.

Ryszard Janicki Automata: Short Course 44 /45



Non-deterministic Automata and Minimization Problem

o Labelled Transition Systems are almost always
non-deterministic and the statements ‘minimal’,
‘minimization’, etc., in the textbook, refer to the meaning
from the previous slide.
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