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Sequences

Alphabet: an arbitrary (usually �nite) set of elements, often
denoted by the symbol Σ.
Sequence:

an element x = (a1, a2, . . . , ak) ∈ Σk , where Σk is a Cartesian
product of Σ's.
For convenience we write x = a1a2 . . . ak .

a function ϕ : {1, . . . , k} → Σ, such that
ϕ(1) = a1, . . . , ϕ(k) = ak .

♣ The two above de�nitions are in a sense identical since:
Σ× . . .× Σ︸ ︷︷ ︸

n

≡ {f | f : {1, . . . , k} → Σ}.

Frequently a sequence is considered as a primitive unde�ned
concept that is understood and does not need any
explanation.

Ryszard Janicki Automata: Short Course 2 / 45



Sequences and strings

If the elements of Σ are symbols, then a �nite sequence of
symbols is often called a string or a word.

♣ In concurrency theory sequences are often called traces (for
example in the textbook for this course).

The length of a sequence x , denoted |x |, is the number of
elements composing the sequence. For example |aba| = 3,
|aabbc| = 5.

The empty sequence, ε, is the sequence consisting of zero
symbols, i.e. |ε| = 0.

A pre�x of a sequence is any number of leading symbols of
that sequence, and a su�x is any number of trailing symbols
(any number means `zero included'). For example a sequence
(word, trace) abca has the following pre�xes: ε, a, ab, abc,
abca, and the following su�xes: abca, bca, ca, a, ε.
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Concatenation

Concatenation (operation)
Let x = a1 . . . ak , y = b1 . . . bl . Then

x ◦ y = a1 . . . akb1 . . . bl .

We usually write xy instead of x ◦ y .
Properties of concatenation:

1 x(yz) = (xy)z
2 εx = xε = x

Fact. A triple (Σ, ◦, ε) is a monoid (recall 2LC3).

Power operator: x0 = ε, x1 = x and xk = x . . . x︸ ︷︷ ︸
k

.

Recursive de�nition of power:
x0 = ε
xk+1 = xkx .

Ryszard Janicki Automata: Short Course 4 / 45



Σ∗ and Formal Language

Let Σ be a �nite alphabet. Then we de�ne Σ∗ as:

Σ∗ = {a1 . . . ak | ai ∈ Σ ∧ k ≥ 0},

i.e. the set of all sequences, including ε, built from the
elements of Σ.

For example
{a, b}∗ = {ε, a, b, aa, ab, ba, bb, aaa, aba, aab, ...}, all
sequences built from a and b.

∅∗ = {ε}
If Σ ̸= ∅ then |Σ∗| = ∞.

A (formal) language over Σ is any subset of Σ∗, including the
empty set ∅ and Σ∗.

For example {ab, cba, ba, bbbb} ⊆ {a, b, c}∗ is a �nite
language, while
{abc, ba, ab, abb, abbb, . . . , abk , . . .} ⊆ {a, b}∗ in an in�nite
language.
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Automata or State Machines

There is a set of states Q.
Q may be �nite, then we have �nite state machines.

There is a set of actions/operations that allow to move from
one state to another state.

There is a transition function/relation that allow movement
from one state to another state using actions/operations.

There is an initial state.

There might be �nal states.

The concept of a current state may easily be introduced.

The set of actions/operations is �nite.

There is a concept of nondeterministic choice.
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(Finite) Automata or (Finite) State Machines: an example
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Automata: Non-determinism
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Deterministic Automata

De�nition

A deterministic (�nite) automaton (state machine) is a
5-tuple:

M = (Σ,Q, δ, s0,F ),

where: Σ is the alphabet (�nite) (input alphabet),
Q is the set of states (�nite),
δ : Q × Σ → Q is the transition function,
s0 ∈ Q is the initial state,
F ⊆ Q is the set of �nal states.

De�nition (δ̂ function, also often denoted as δ∗)

We extend the function δ to δ̂ : Q × Σ∗ → Q as follows:

∀q ∈ Q. δ̂(q, ε) = q

∀q ∈ Q.∀x ∈ Σ∗.∀a ∈ Σ. δ̂(q, xa) = δ(δ̂(q, x), a).

Ryszard Janicki Automata: Short Course 9 / 45



δ̂ function, also often denoted as δ∗

De�nition

We extend the function δ to δ̂ : Q × Σ∗ → Q as follows:

∀q ∈ Q. δ̂(q, ε) = q

∀q ∈ Q.∀x ∈ Σ∗.∀a ∈ Σ. δ̂(q, xa) = δ(δ̂(q, x), a).

The above de�nition of δ̂ is recursive and the recursion is on
the length of x .

Intuitively δ(q, a) is the state that can be reached from q in
one step, while δ̂(q, x) is the state that can be reached from q
in |x | steps by using δ in each step.

For example δ̂(q, abcd) = δ(δ(δ(δ(q, a), b), c), d).

We usually write δ instead of δ̂ when it does not lead to any
misunderstanding.

For example δ(q, abcd) = δ(δ(δ(δ(q, a), b), c), d).
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Language Accepted/Generated by an Automaton

De�nition (Language)

For every automaton M, the set

L(M) = {x | δ̂(s0, x) ∈ F}

is called the language accepted/generated by M.

The language is just a set of all sequences (words, traces) that
can be derived by starting from the initial state travelling
trough automaton (using δ as next state function) and ending
in some �nal state.

It is possible to leave a �nal state!

In concurrency we often do not have �nal states! In such a
case we assume that each state is a �nal state, i.e. F = Q!
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Deterministic Automaton: an Example

Consider the following deterministic automaton M

We have: Σ = {a, b}, Q = {s0, s1, s2, s3}, F = {s2, s3} and
the below table shows the transition function δ.

δ a b

s0 s1 s2
s1 s3 s1
s2 s1 s3
s3 s2 s1

For example ab, bbaa /∈ L(M), while aaa, abbbaab ∈ L(M).
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Problems!

(1) We cannot specify:

The meaning is pretty simple: ��rst execute a and next execute

any number of b, including none.� However, for the �rst de�nition
we have δ(s0, a) = s1 and δ(s1, b) = s1, but what about
δ(s0, b) =? and δ(s1, a) =?. For the second de�nition we have
a(s0) = s1 and b(s1) = s1 but still b(s0) =? and a(s1) =?.

UGLY SOLUTION
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Ugly Solution

UGLY SOLUTION

This solution is good for illustration, problematics for real
systems as we have to introduce entities that may not exist in
the real system!

The standard solution involves the concept of
non-determinism.
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Non-determinism: Problem #1

Notation for `power set': 2Q = P(Q) = {X | X ⊆ Q}, and
clearly ∅ ∈ 2Q .

Problem #1: How to model the below situation?

The standard solution
δ(s, a) = {s1, . . . , sk}, which implies δ : Q × Σ → 2Q ,
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Non-determinism: Problem #2

Consider the following automaton:

Which is true? ab ∈ L(M) or ab /∈ L(M)?

Usually it is assumed that ab ∈ L(M). It is called angelic
semantics.
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Angelic vs Demonic Semantics

Angelic: At each state an angel will tell you where to go, so if
there is a good choice you will make it. The only bad case is
when all choices are bad.

Demonic: At each state a demon will tell you where to go, so
if there is a bad choice you will make it. The only good case
is when all choices are good.

Demonic semantics is much less popular. It is relatively new
and was motivated by fault tolerant systems. In this class we
will use only angelic semantics. I have mentioned demonic, to
show that non-determinism is more complex than the one
presented in most textbooks.
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Angelic vs Demonic Semantics - An Example

Consider the three automata below:

Let LA(M1), i = 1, 2, 3 denote a language de�ned by Mi

under angelic semantics, and let LD(M1), i = 1, 2, 3 denote a
language de�ned by Mi under demonic semantics. Note that
LA(M1) = LD(M1) = ∅, LA(M2) = {ab}, LD(M2) = ∅ and
LA(M3) = LD(M3) = {ab}.
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De�nition (Non-deterministic Automaton)

A non-deterministic (�nite) automaton (state machine) is a
5-tuple:

M = (Σ,Q, δ, s0,F ),

where: Σ is the alphabet (�nite) (input alphabet),
Q is the set of states (�nite),
δ : Q × Σ → 2Q is the transition function,
s0 ∈ Q is the initial state,
F ⊆ Q is the set of �nal states.

De�nition (non-deterministic δ̂ function)

We extend the function δ to δ̂ : Q × Σ∗ → 2Q as follows:

∀q ∈ Q. δ̂(q, ε) = {q}
∀q ∈ Q.∀x ∈ Σ∗.∀a ∈ Σ. δ̂(q, xa) =

⋃
s∈δ̂(q,x) δ(s, a).

Sometimes, by a small abuse of notation, we write
δ̂(q, xa) = δ(δ̂(q, x), a).
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Language De�ned by a Non-deterministic Automaton

De�nition (Angelic semantics)

For every automaton M, the set

L(M) = {x | δ̂(s0, x) ∩ F ̸= ∅}

is called the language accepted/generated by M.

De�nition (Demonic semantics)

For every automaton M, the set

L(M) = {x | δ̂(s0, x) ⊆ F}

is called the language accepted/generated by M.

We will not consider demonic semantics in this course.
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Non-determinism: Example 1

Consider the following example:

Standard model: Σ = {a, b}, Q = {s0, s}, F = {s1}.
δ(s0, a) = {s1}, δ(s0, b) = ∅,
δ(s1, a) = ∅, δ(s1, b) = {s1}.
In this case we do not have `splits' like the one from page 15,
all outcomes of the function δ are either singletons or empty
set, so intuitively this is rather a deterministic system.

However formally the automaton is non-deterministic.
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Non-determinism: Example 2

Consider the following example:

Classical model: Σ = {a, b, c}, Q = {q0, q1, q2, q3},
F = {q3}.
δ(q0, a) = {q1, q2}, δ(q0, b) = δ(q0, c) = ∅,
δ(q1, a) = {q3}, δ(q1, b) = ∅, δ(q1, c) = {q1},
δ(q2, a) = {q3}, δ(q2, b) = {q2}, δ(q2, c) = ∅,
δ(q3, a) = δ(q3, b) = δ(q3, c) = ∅
`Local' model: Σ = {a, b, c}, Q = {q0, q1, q2, q3}, F = {q3}.
a = {(q0, q1), (q0, q2), (q1, q3), (q2, q3)}, b = {(q2, q2)},
c = {(q1, q1)}.
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Another Approach to Non-determinism

De�nition

An automaton (state machine) is a 5-tuple:

M = (Σ,Q, δ, s0,F ),

where: Σ is the alphabet (�nite),
Q is the set of states (�nite),
δ : Q × Σ → 2Q is the transition function,
s0 ∈ Q is the initial state,
F ⊆ Q is the set of �nal states.

De�nition

M is deterministic i� ∀q ∈ Q.∀a ∈ Σ. |δ(q, a)| ≤ 1

M is strictly deterministic i� ∀q ∈ Q.∀a ∈ Σ. |δ(q, a)| = 1

These de�nitions are often used in the papers that deal with
applications rather than theory.
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Labelled Transition Systems

Transition (from Collins Dictionary):
�a passing or change from one place, state, condition, etc., to

another.�

Consider the case: ia i i- -s1 s2 a s3

Can �a� be called a transition?

Transitions, state and labels:

Transitions are unique: t1 ⇐⇒ ia i-s1 s2

Transitions (labelled) are usually needed and used for
modelling concurrency.
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Non-determinism vs Determinism: Example

Does non-determinism increases the descriptive power?

NO. See an example below and Theorem on next page.
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Non-determinism vs Determinism

Theorem

Let L be a language accepted by a non-deterministic �nite
automaton M, i.e. L = L(M). There exists a deterministic �nite
automaton M ′ such that L(M ′) = L.
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Invisible (silent) Actions or ε-moves

In many cases we need to model invisible actions!

De�nition

A non-deterministic automaton with ε-moves is:
M = (Q,Σ, δ, q0,F ),

where: Q,Σ, q0,F are as usual, and:
δ : Q × (Σ ∪ {ε}) → 2Q .

Problem: ε has two interpretations:
1 Do nothing,
2 Go to another state by executing invisible (silent) action.
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Removal of ε-moves

Theorem

If L is accepted by a nondeterministic automaton with ε-moves,

then L is also accepted by a nondeterministic automaton without
ε-moves.
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Removal of ε-moves: An example

We may then transform the non-deterministic automaton
from the right hand side into appropriate deterministic one.
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Equivalence of Finite Automata

De�nition

Two automata M1 and M2 are equivalent if and only if
L(M1) = L(M2).

Conclusion

Non-deterministic automata, nondeterministic automata with

ε-moves, and deterministic automata are all equivalent.

Equivalence means only the same language, other properties
may di�er.

For example the concept of 'demonic semantics' does not
make much sense for deterministic automata as we do not
have non-deterministic choices.

For any deterministic automaton M, if all states are �nite then
then L(M) = Σ∗, so this concept also has very little sense.
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No Final States

No �nal states is equivalent to all states are �nal, i.e.
F = ∅ ≡ F = Q.

But this makes sense only for nondeterministic automata.
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Modelling Dynamic Systems With Automata: Hotel
Reservation

No arrow to initial state and no arrow from �nal state.
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Road Deicing

Neither initial nor �nal state speci�ed.
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Simpli�ed Home Security

Neither initial nor �nal state speci�ed.
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Modelling Dynamic Systems With Automata

FOR THIS KIND OF APPLICATIONS AUTOMATA
ARE USUALLY NONDETERMINISTIC, or deterministic
in the sense of the de�nition from page 23.
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Regular Expressions: Intuition

(0 ∪ 1)0∗ → {0, 00, 000, . . . , 1, 10, 100, 1000, . . .}
`zero or one followed by any number of zeros,
including none'

ab∗ → {a, ab, abb, abbb, . . .}
(a ∪ b)∗ → {a, b}∗

`all strings (including ε) that can be
built from a and b'

(a ∪ ε)(b ∪ ε) =
ab ∪ εb ∪ aε ∪ εε =
ab ∪ b ∪ a ∪ ε → {ε, a, b, ab}
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De�nition (Formal De�nition of Regular Expressions)

Let Σ be an alphabet. A string R built from the elements of
Σ ∪ {ε, ∅, (, ),∪,∗ } is a regular expression, if it is de�ned by the
following rules:

1 ∅, ε and each a ∈ Σ are regular expressions.

2 (R1 ∪ R2) is a regular expression if R1 and R2 are regular
expressions.

3 (R1R2) is a regular expression if R1 and R2 are regular
expressions.

4 (R)∗ is a regular expression if R is a regular expression.

5 There are no other regular expressions.

The set of all regular expressions over the alphabet Σ will be
denoted by Rex(Σ).

We usually skip some parenthesis.

Rules: ∗ �rst, followed by concatenation, and �nally ∪, unless
parentheses say di�erently.
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Languages De�ned by Regular Expressions

De�nition (Interpretation)

Let L : Rex(Σ) → 2Σ
∗
be the following function called

interpretation:

1 L(∅) = ∅, L(ε) = ε, L(a) = {a}
2 L((R1 ∪ R2)) = L(R1) ∪ L(R2)

3 L((R1R2)) = L(R1)L(R2)

4 L((R)∗) = L(R)∗

De�nition (Language)

For every regular expression R, L(R) is a language de�ned by R.

A class of all languages de�ned by regular expressions will be
denoted by LREX .
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Languages De�ned by Regular Expressions: Examples

L((0 ∪ 1)0∗) = {0, 00, 000, . . . , 1, 10, 100, 1000, . . .}
L(ab∗) = {a, ab, abb, abbb, abbbb, . . .}
L((a ∪ ε)(b ∪ ε)) = {ε, a, b, ab}
We customarily often identify a regular expression R with
L(R) but technically R is not L(R).

♣ A question: What is the relationship between LR and LREX ?

Theorem

LR = LREX
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Minimization of Deterministic Finite Automata

Consider the following two deterministic automata:

M1 M2

It can be proved that L(M1) = L(M2), and clearly M2 has less
states.

It can be proved that M2 is the minimum state automaton
that is equivalent to M1, i.e. L(M1) = L(M2).
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Intuitions for Minimization

Consider the following two automata, both generating the
language ab∗:

The states q1 and q2 of the left automaton and equivalent, so
they, and appropriate arrows, can be glued together.
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Minimum State Deterministic Finite Automata

Theorem

For every deterministic automaton M1 there is the minimum state

deterministic automaton M2 such that L(M1) = L(M2).
The automaton M2 is unique up to the names of states.
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Non-deterministic Automata and Minimization Problem

The word `deterministic' is important and cannot be omitted!

Consider the following two non-deterministic automata, both
generating the language

L = {ab, ac , bc, ba, ca, cb}

Both automata above are minimum state and there is no way
to make them identical!
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Non-deterministic Automata and Minimization Problem

When talking about Minimum State Non-deterministic
automaton (usually when we discuss some application), we
usually mean the case as below (no non-deterministic splits):

If we forgot about red part, both automata are
non-deterministic and the black automaton on the right can
be interpreted as the minimum state automaton equivalent to
the blue automaton on the left.

However, to derive formally the back automaton on the right
from the blue on left we need to add the red parts.
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Non-deterministic Automata and Minimization Problem

Labelled Transition Systems are almost always
non-deterministic and the statements `minimal',
`minimization', etc., in the textbook, refer to the meaning
from the previous slide.
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