
Readers and Writers
SE 3BB4

Ryszard Janicki

Department of Computing and Software, McMaster University, Hamilton,
Ontario, Canada

Ryszard Janicki Readers and Writers 1/38

Readers and Writers

A shared database is accessed by two kinds of processes.
Readers execute transactions that examine the database
while Writers both examine and update the database. A
Writer must have exclusive access to the database; any
number of Readers may concurrently access it.
Events or actions of interest:
acquireRead , releaseRead , acquireWrite, releaseWrite
Processes: Readers,Writers,RW Lock
Properties: RW Safe,RW Progress

2015 Concurrency: safety & liveness properties
44

©Magee/Kramer 2nd Edition

readers/writers model

♦  Events or actions of interest?

acquireRead, releaseRead, acquireWrite, releaseWrite

♦  Identify processes.

Readers, Writers & the RW_Lock

♦  Identify properties.

RW_Safe

RW_Progress

♦ Define each process

and interactions

(structure).

writer[1..Nwrite]:
WRITER

reader[1..Nread]:
READER

READERS
_WRITERS acquireRead acquireWrite

READWRITELOCK

releaseRead releaseWrite

Ryszard Janicki Readers and Writers 2/38

2015 Concurrency: safety & liveness properties
45

©Magee/Kramer 2nd Edition

readers/writers model - READER & WRITER

set Actions =
 {acquireRead,releaseRead,acquireWrite,releaseWrite}

READER = (acquireRead->examine->releaseRead->READER)
 + Actions
 \ {examine}.

WRITER = (acquireWrite->modify->releaseWrite->WRITER)
 + Actions
 \ {modify}.

Alphabet extension is used to ensure that the other access actions cannot
occur freely for any prefixed instance of the process (as before).

Action hiding is used as actions examine and modify are not relevant
for access synchronisation.

Ryszard Janicki Readers and Writers 3/38

2015 Concurrency: safety & liveness properties
46

©Magee/Kramer 2nd Edition

readers/writers model - RW_LOCK

const False = 0 const True = 1
range Bool = False..True
const Nread = 2 // Maximum readers
const Nwrite= 2 // Maximum writers

RW_LOCK = RW[0][False],
RW[readers:0..Nread][writing:Bool] =

 (when (!writing)
 acquireRead -> RW[readers+1][writing]
 |releaseRead -> RW[readers-1][writing]
 |when (readers==0 && !writing)
 acquireWrite -> RW[readers][True]
 |releaseWrite -> RW[readers][False]
).

The lock
maintains a count
of the number of
readers, and a
Boolean for the
writers.

Ryszard Janicki Readers and Writers 4/38

Safety Property

2015 Concurrency: safety & liveness properties
47

©Magee/Kramer 2nd Edition

readers/writers model - safety

property SAFE_RW
 = (acquireRead -> READING[1]
 |acquireWrite -> WRITING
),
READING[i:1..Nread]
 = (acquireRead -> READING[i+1]
 |when(i>1) releaseRead -> READING[i-1]
 |when(i==1) releaseRead -> SAFE_RW
),
WRITING = (releaseWrite -> SAFE_RW).

We can check that RW_LOCK satisfies the safety property……

||READWRITELOCK = (RW_LOCK || SAFE_RW).

Safety Analysis ? LTS?
Note that we do not check this property for the whole system,
only for one component namely RW LOCK . This is
computationally simpler.

Ryszard Janicki Readers and Writers 5/38

Explicit Safety Property for 2 Readers and 2 Writers

2015 Concurrency: safety & liveness properties
48

©Magee/Kramer 2nd Edition

readers/writers model

An ERROR occurs if a reader or
writer is badly behaved
(release before acquire or
more than two readers).

We can now compose the
READWRITELOCK with
READER and WRITER
processes according to our
structure… …

||READERS_WRITERS
 = (reader[1..Nread] :READER
 || writer[1..Nwrite]:WRITER
 ||{reader[1..Nread],
 writer[1..Nwrite]}::READWRITELOCK).

Safety and
Progress
Analysis ?

acquireRead

releaseRead

acquireWrite

releaseWrite

releaseRead

releaseWrite

acquireRead

releaseRead

releaseWrite

acquireRead

releaseRead

releaseWrite

-1 0 1 2 3

An ERROR occurs if a reader or writer is badly behaved
(release before acquire or more than two readers).

However when composing with READWRITELOCK such bad
behaviour is not allowed.

2015 Concurrency: safety & liveness properties
48

©Magee/Kramer 2nd Edition

readers/writers model

An ERROR occurs if a reader or
writer is badly behaved
(release before acquire or
more than two readers).

We can now compose the
READWRITELOCK with
READER and WRITER
processes according to our
structure… …

||READERS_WRITERS
 = (reader[1..Nread] :READER
 || writer[1..Nwrite]:WRITER
 ||{reader[1..Nread],
 writer[1..Nwrite]}::READWRITELOCK).

Safety and
Progress
Analysis ?

acquireRead

releaseRead

acquireWrite

releaseWrite

releaseRead

releaseWrite

acquireRead

releaseRead

releaseWrite

acquireRead

releaseRead

releaseWrite

-1 0 1 2 3

Ryszard Janicki Readers and Writers 6/38

2015 Concurrency: safety & liveness properties
48

©Magee/Kramer 2nd Edition

readers/writers model

An ERROR occurs if a reader or
writer is badly behaved
(release before acquire or
more than two readers).

We can now compose the
READWRITELOCK with
READER and WRITER
processes according to our
structure… …

||READERS_WRITERS
 = (reader[1..Nread] :READER
 || writer[1..Nwrite]:WRITER
 ||{reader[1..Nread],
 writer[1..Nwrite]}::READWRITELOCK).

Safety and
Progress
Analysis ?

acquireRead

releaseRead

acquireWrite

releaseWrite

releaseRead

releaseWrite

acquireRead

releaseRead

releaseWrite

acquireRead

releaseRead

releaseWrite

-1 0 1 2 3

Neither deadlock nor safety violation.

It requires a tool to show it, the tool is not efficient (it
cannot be).

Try the tool for 10 readers and 10 writers!

It is always better if some properties can just be proved, not
only checked.

Problem with checking: one cannot checked the case of
n readers and m writers, only, say, 5 readers and 4
writers, etc.

Ryszard Janicki Readers and Writers 7/38

Liveness

2015 Concurrency: safety & liveness properties
49

©Magee/Kramer 2nd Edition

progress WRITE = {writer[1..Nwrite].acquireWrite}
progress READ = {reader[1..Nread].acquireRead}

readers/writers - progress

WRITE - eventually one of the writers will acquireWrite
READ - eventually one of the readers will acquireRead

||RW_PROGRESS = READERS_WRITERS
 >>{reader[1..Nread].releaseRead,
 writer[1..Nwrite].releaseWrite}.

Progress Analysis ? LTS?

Adverse conditions using action priority?
we lower the priority of the release actions for both readers and
writers.
I do not like it! Why not all?

Actually this problem shows well the limits of pure FSP model.

Ryszard Janicki Readers and Writers 8/38

No FAIR CHOICE assumption: both write and read can
starve.

FAIR CHOICE assumption: both write and read are live.

But waht in real world th assumption of FAIR CHOICE mean?

This is assumption about a possibility of clever
implementation.

Ryszard Janicki Readers and Writers 9/38

Simple use of priorities does not guarantee liveness.

We lower the priority of the release actions for both readers
and writers.

2015 Concurrency: safety & liveness properties
49

©Magee/Kramer 2nd Edition

progress WRITE = {writer[1..Nwrite].acquireWrite}
progress READ = {reader[1..Nread].acquireRead}

readers/writers - progress

WRITE - eventually one of the writers will acquireWrite
READ - eventually one of the readers will acquireRead

||RW_PROGRESS = READERS_WRITERS
 >>{reader[1..Nread].releaseRead,
 writer[1..Nwrite].releaseWrite}.

Progress Analysis ? LTS?

Adverse conditions using action priority?
we lower the priority of the release actions for both readers and
writers.

Progress violation: WRITE

Path to terminal set of states: reader .1.acquireRead

Actions in terminal set:
{reader .1.acquireRead , reader .1.releaseRead ,
reader .2.acquireRead , reader .2.releaseRead}
WRITER starvation: the number of readers never drops to
zero!

2015 Concurrency: safety & liveness properties
50

©Magee/Kramer 2nd Edition

readers/writers model - progress

Progress violation: WRITE
Path to terminal set of states:

 reader.1.acquireRead
Actions in terminal set:
{reader.1.acquireRead, reader.1.releaseRead,
 reader.2.acquireRead, reader.2.releaseRead}

Writer
starvation:
The number of
readers never
drops to zero.

reader.1.acquireRead

reader.2.acquireRead

writer.1.acquireWrite

writer.2.acquireWrite

writer.2.releaseWrite

writer.1.releaseWrite

reader.1.acquireRead

reader.1.releaseRead

reader.2.releaseRead

reader.2.acquireRead

0 1 2 3 4 5

Try the
Applet!

Ryszard Janicki Readers and Writers 10/38

WRITER Priority

Block readers if there is a writer waiting.

2015 Concurrency: safety & liveness properties
55

©Magee/Kramer 2nd Edition

readers/writers model - writer priority

RW_LOCK = RW[0][False][0],
RW[readers:0..Nread][writing:Bool][waitingW:0..Nwrite]
= (when (!writing && waitingW==0)
 acquireRead -> RW[readers+1][writing][waitingW]
 |releaseRead -> RW[readers-1][writing][waitingW]
 |when (readers==0 && !writing)
 acquireWrite-> RW[readers][True][waitingW-1]
 |releaseWrite-> RW[readers][False][waitingW]
 |requestWrite-> RW[readers][writing][waitingW+1]
).

Safety and Progress Analysis ?

2015 Concurrency: safety & liveness properties
56

©Magee/Kramer 2nd Edition

readers/writers model - writer priority

Progress violation: READ
Path to terminal set of states:

 writer.1.requestWrite
 writer.2.requestWrite

Actions in terminal set:
{writer.1.requestWrite, writer.1.acquireWrite,
 writer.1.releaseWrite, writer.2.requestWrite,
 writer.2.acquireWrite, writer.2.releaseWrite}

Reader
starvation:
if always a
writer
waiting.

No deadlocks/errors

property RW_SAFE:

progress READ and WRITE:

In practice, this may be satisfactory as is usually more read access than write, and
readers generally want the most up to date information.

Ryszard Janicki Readers and Writers 11/38

We have encountered many problems both with formulation
of the problem and solutions to it.

Let us try another formalism.

Ryszard Janicki Readers and Writers 12/38

Readers and Writers Again

We have n processes, n > 0, which may read and write in a
shared memory. Several precesses may be reading
concurrently, but when a process is writing, no other process
can be reading or writing. No priority is assumed.

Ryszard Janicki Readers and Writers 13/38

Readers and Writers: P/T Net Model

,

ltJV R.,I\NTS

• It SAt)E"t~ £. W~t rrlU ;

... F'''fO"'" II? I VI >0 I wL..icl.~ "I'e ~ d. """ w...;te. [~
fJ... &'-t(l'Ye.d W\e~o~. Se.\leYd.- I'>IOW'Y':Jt/:) W\~ foe 'Ve~I~~

CO\,o\ ct.4 "r'fe.~ +~) b~ wtte"" (J. f> ;YO<.fVY.) IS W'Yi f ("'0) lI\ 0

o+~&'(" r"fOC,.e/)') C4'1 be. ty~4d\~o o"{ (.fj'1'i.f-'i(j!

NO~~lO'V;+a i~ ~4A.fM W

Ryszard Janicki Readers and Writers 14/38

Place/Transitions Nets (P/T-Nets)
Firing rules:

Place/Transitions Nets (P/T-Nets)

Firing rules:

Different kind of simultaneity:

Ryszard Janicki Deadlock 22/36

Different kind of simultaneity:

Ryszard Janicki Readers and Writers 15/38

Incidence Matrix

P - places, T - transitions
-
~I Nt,oe Net: MI\TAJ ~

as

IN" a.,I\IJT -
!Z -t? I · 1:.2;. i::

- ~
0t

It
t: ...

~

-t:, W'\It. lo,

-

lL
..
l

I L..1=> -I -\ I I ,. I

w(l.

w~

I

I
, -

I , I -I

-l

fi..
W

I , -,
-, I'

I

-.. \ -
S -, " I " "

W(tt)Lf) - - '\@~[9

we 'J WIl) - \
19~
(J) ~ >l1J iN (t~l) --h

IN (t6) 5) - V\

~

Ryszard Janicki Readers and Writers 16/38

Multisets (Bags, Weighted Sets)

A multiset m, over a non-empty and finite set S is a function
m : S → N = {0, 1, 2, . . .}
m(s) is the number of appearances of s in m.

notation: M is usually represented by:∑
s∈S

m(s)s

S = {a, b, c , d , e},
m(a) = 3,m(b) = 1,m(c) = 0,m(d) = 183,m(e) = 4

m = 3a+ b + 4e + 183d

s ∈ m ⇐⇒ m(s) ̸= 0

m(s) is a coefficient

the empty multiset m = ∅ ⇐⇒ m(s) for each s ∈ S .

Ryszard Janicki Readers and Writers 17/38

Basic Definitions

Let x be a multiset (weighted set) of transitions, i.e.
x : T → N

x is positive iff x(t) > 0 for at least one t ∈ T , i.e. x ̸= ∅
Marking: m : P → N.
Marking is not interpreted as a multiset!

m ≥ m′ ⇐⇒ ∀p ∈ P. m(p) ≥ m′(p).

Assumption: Each place can hold an arbitrary number of
tokens.

Let W− be the following matrix:

∀(p, t) ∈ P × T . W−(p, t) =

{
−W (p, t) if W (p, t) < 0
0 if W (p, t) ≥ 0

A positive multiset of transitions x has concession in a
marking m iff m ≥ W− · x

↑
matrix multiplication

Ryszard Janicki Readers and Writers 18/38

Example (n = 15)

x = 10t1 + 3t2 has a concession in m0 = (15, 0, 0, 0, 0, 15),
since

W− · x =

1 1 0 0 0 0
0 0 1 0 0 0
0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1
0 0 0 15 0 0

 ·

10
3
0
0
0
0

 = (13, 0, 0, 0, 0, 0),

and m0 > (13, 0, 0, 0, 0, 0).

x = t4 does not have a concession in m = (8, 3, 1, 2, 0, 13), since

W− · x =

1 1 0 0 0 0
0 0 1 0 0 0
0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1
0 0 0 15 0 0

 ·

0
0
0
1
0
0

 = (0, 0, 1, 0, 0, 15),

and m and (0, 0, 1, 0, 0, 15) are incomparable.

Ryszard Janicki Readers and Writers 19/38

Firing

When x has concession, it may fire.

If x fires, w new marking:

m′ = m +W · x

is reached.

m′ is said to be directly reachable from m , i.e. m ⇒ m′

⇒∗=
⋃∞

i=0 ⇒i , or ⇒∗ is a reflexive and transitive closure of
⇒, is called reachability.

Ryszard Janicki Readers and Writers 20/38

Example

Let m0 = (15, 0, 0, 0, 0, 15) and x = 10t1 + 3t2.
We calculate m1 = m0 +W · x.
m1 = m0 +W · x =

(15, 0, 0, 0, 0, 15)+

−1 −1 0 1 1 0
1 0 −1 0 0 0
0 1 0 −1 0 0
0 0 1 0 −1 0
0 0 0 1 0 −1
0 0 −1 −15 1 15

 ·

10
3
0
0
0
0

 =

(15, 0, 0, 0, 0, 15) + (−13, 10, 3, 0, 0, 0) = (2, 10, 3, 0, 0, 15).

Ryszard Janicki Readers and Writers 21/38

Invariants

Let v be a multiset of places, i.e. v : P → N.
Note that m : P → N and v : P → N,but the interpretation is
different, marking is not interpreted as a multiset!

Theorem (Lautenbach 1979)

Let v be a multiset of places. If v ·W = 0 and m ⇒∗ m′ then

v ·m′ = v ·m.

Proof.

It suffices to show it for m ⇒ m′. v ·m′ = v · (m +W · x) =
v ·m+ v · (W · x) = v ·m+ (v ·W) · x = v ·m+ 0 · x = v ·m.

Definition

A multiset of places v is said to be an invariant iff v ·W = 0.

Each linear combination of invariants is itself an invariant.
Ryszard Janicki Readers and Writers 22/38

Multiplication of a Vector by an Array

Ryszard Janicki Readers and Writers 23/38

Invariants: Example
Example

Consider i1 = (1, 1, 1, 1, 1, 0), i2 = (0, 0, 0, 1, n, 1),
i3 = (−1,−1,−1, 0, n − 1, 1). We show that i1, i2 and i3 are
invariants.

i1 ·W =

1
1
1
1
1
0

 ·

−1 −1 0 1 1 0
1 0 −1 0 0 0
0 1 0 −1 0 0
0 0 1 0 −1 0
0 0 0 1 0 −1
0 0 −1 −n 1 n

 = (0, 0, 0, 0, 0, 0)

i2 ·W =

0
0
0
1
n
1

 ·

−1 −1 0 1 1 0
1 0 −1 0 0 0
0 1 0 −1 0 0
0 0 1 0 −1 0
0 0 0 1 0 −1
0 0 −1 −n 1 n

 = (0, 0, 0, 0, 0, 0)

i3 = i2 − i1.

Ryszard Janicki Readers and Writers 24/38

Invariant As an Expression

Definition

An invariant can also be defined as a formula obtained from
v ·m0 = v ·m, where v is an invariant, as defined previously, m0 is
the initial marking, and m is a marking variable.

Example

i1 = (1, 1, 1, 1, 1, 0), m0 = (n, 0, 0, 0, 0, n).
i1 ·m0 = (1, 1, 1, 1, 1, 0) · (n, 0, 0, 0, 0, n) = n
m = (m(LP),m(WR),m(WW),m(R),m(W),m(S))
i1 ·m =
(1, 1, 1, 1, 1, 0) · (m(LP),m(WR),m(WW),m(R),m(W),m(S)) =
m(LP) +m(WR) +m(WW) +m(R) +m(W).
i1 ·m0 = i1 ·m =⇒

m(LP) +m(WR) +m(WW) +m(R) +m(W) = n

The number of processes is an invariant.

Ryszard Janicki Readers and Writers 25/38

Example

i2 = (0, 0, 0, 1, n, 1), m0 = (n, 0, 0, 0, 0, n).
m = (m(LP),m(WR),m(WW),m(R),m(W),m(S))
i2 ·m0 = (0, 0, 0, 1, n, 1) · (n, 0, 0, 0, 0, n) = n
i2 ·m =
(0, 0, 0, 1, n, 1) · (m(LP),m(WR),m(WW),m(R),m(W),m(S)) =
m(R) + n ·m(W) +m(S).

i2 ·m0 = i2 ·m =⇒ m(R) + n ·m(W) +m(S) = n

When a process is writing, no other process can be
reading or writing.

The number of reading processes is between 0 and n.

If no process is reading and writing, m(S) = n.

t3 has concession if at least one process is waiting to read.

t4 has concession if at least one process is waiting to write.

Ryszard Janicki Readers and Writers 26/38

Example

i3 = (−1,−1,−1, 0, n − 1, 1), m0 = (n, 0, 0, 0, 0, n).
m = (m(LP),m(WR),m(WW),m(R),m(W),m(S))
i3 ·m0 = (−1,−1,−1, 0, n − 1, 1) · (n, 0, 0, 0, 0, n) = 0
i3 ·m = (−1,−1,−1, 0, n − 1, 1) ·
(m(LP),m(WR),m(WW),m(R),m(W),m(S)) =
−m(LP)−m(WR)−m(WW) + (n − 1)m(W) +m(S)

i3 ·m0 = i3 ·m =⇒
m(LP) +m(WR) +m(WW) = (n − 1)m(W) +m(S)

If no process is writing then m(WR) ≤ m(S).

t3 has concession if at least one process is waiting to read.

Ryszard Janicki Readers and Writers 27/38

Deadlock-freeness of Readers and Writers

Proposition

The Readers-Writers net cannot deadlock
(reach a marking where no transition has concession).

Proof.

If m(LP) +m(R) +m(W) > 0, it follows form the fact that
t1, t2, t5 or t6 has concession.
If m(LP) +m(R) +m(W) = 0, it follows from i1 and i2 as they
imply:

m(WR) +m(WW) = n

m(S) = n

so t3 or t4 have concession.

Ryszard Janicki Readers and Writers 28/38

Invariants for Coloured Petri Nets: Dining Philosophers

colour PH = with ph1 | ph2 | ph3 | ph4 | ph5
colour Fork = with f 1 | f 2 | f 3 | f 4 | f 5
LEFT : PH → FORK , RIGHT : PH → FORK
var x : PH
fun LEFT x = case of ph1 ⇒ f 2 | ph2 ⇒ f 3 | ph3 ⇒ f 4 |

ph4 ⇒ f 5 | ph5 ⇒ f 1
fun RIGHT x = case of ph1 ⇒ f 1 | ph2 ⇒ f 2 | ph3 ⇒ f 3 |

ph4 ⇒ f 4 | ph5 ⇒ f 5

Ryszard Janicki Readers and Writers 29/38

Firing

⇓
Firing occurrence: (take forks, x = ph1︸ ︷︷ ︸

binding

) + (take forks, x = ph3︸ ︷︷ ︸
binding

)

⇓

Ryszard Janicki Readers and Writers 30/38

Multisets (or Bags)

A multiset m, over a non-empty and finite set S is a function
m : S → N = {0, 1, 2, . . .}
m(s) is the number of appearances of s in m.

notation: M is usually represented by:∑
s∈S

m(s)s

S = {a, b, c , d , e},
m(a) = 3,m(b) = 1,m(c) = 0,m(d) = 183,m(e) = 4

m = 3a+ b + 4e + 183d

s ∈ m ⇐⇒ m(s) ̸= 0

m(s) is a coefficient

the empty multiset m = ∅ ⇐⇒ m(s) for each s ∈ S .

Ryszard Janicki Readers and Writers 31/38

Behaviours

Sequence:
(take forks, x = ph1)(take forks, x = ph3)(putdown forks, x = ph3)
Step-sequence:
{(take forks, x = ph1)(take forks, x = ph3)}{(putdown forks, x = ph3)}
Partial order:

Ryszard Janicki Readers and Writers 32/38

Invariants
Invariants are equations that characterize all reachable markings.

M(think) +M(eat) = ph1 + ph2 + ph3 + ph4 + ph5
Each philosopher is either thinking or eating but not both. Also
philosophers do not disappear and no new is born.

LEFT (M(eat)) + RIGHT (M(eat)) +M(free forks) =
f1 + f2 + f3 + f4 + f5
where LEFT (X) =

∑
x∈X LEFT (x),

RIGHT (X) =
∑

x∈X RIGHT (x)
No philosopher can be eating at the same time as on of his
neighbours.

Ryszard Janicki Readers and Writers 33/38

(i1) M(think) +M(eat) = PH

(i2) LEFT (M(eat)) + RIGHT (M(eat)) +M(free forks) = FORK

Proposition

The above Coloured Petri net cannot deadlock.

Proof.

Assume that M is reachable from the initial marking. Then M satisfies
(i1) and (i2).
If M(eat) ̸= ∅, i.e. phj ∈ M(eat), then (putdown fork, x = phj) can be
fired.
If M(eat) = ∅ it follows from (i1) and (i2) that

M(think) = PH and M(free forks) = FORK
Then (take forks, x = phi), any phi ∈ PM can be fired.

Ryszard Janicki Readers and Writers 34/38

How to Find Invariants?

Finding invariants can be reduced to finding non-negative
integer solutions of some matrix equation:

W · X = 0

where 0 is a vector of zeros,
W represents the structure of a net (incidence matrix),
X represents an invariant.

The number of invariants is infinite, but there is a finite
number of linearly independent invariants

Proper invariants are part of specification goals.

Checking if an equation is an invariant is easy!

Ryszard Janicki Readers and Writers 35/38

Writers Priority with Inhibitor Arcs

Ryszard Janicki Readers and Writers 36/38

Writers Priority with Selfloops

Ryszard Janicki Readers and Writers 37/38

Writers Priority without Selfloops

Ryszard Janicki Readers and Writers 38/38

