
Message Passing
SE 3BB4

Ryszard Janicki

Department of Computing and Software, McMaster University, Hamilton,
Ontario, Canada

Ryszard Janicki Message Passing 1/8

Message Passing

Concurrency: message passing 2
©Magee/Kramer 2nd Edition

Message Passing

Concepts: synchronous message passing - channel
asynchronous message passing - port

- send and receive / selective receive
rendezvous bidirectional comms - entry

- call and accept ... reply

Models: channel : relabelling, choice & guards
port : message queue, choice & guards
entry : port & channel

Practice: distributed computing (disjoint memory)
threads and monitors (shared memory)

Ryszard Janicki Message Passing 2/8

Synchronous Message Passing - Channel

Concurrency: message passing 3
©Magee/Kramer 2nd Edition

10.1 Synchronous Message Passing - channel

Channel c
Sender
send(e,c)

Receiver
v=receive(c)

one-to-one

♦ send(e,c) - send the
value of the expression e
to channel c. The process
calling the send operation
is blocked until the
message is received from
the channel.

♦ v = receive(c) - receive
a value into local variable v
from channel c. The
process calling the receive
operation is blocked
waiting until a message is
sent to the channel.

cf. distributed assignment v = e

Popular notation: v = e, c!e ← send , c?v ← receive

Ryszard Janicki Message Passing 3/8

Model

Concurrency: message passing 8
©Magee/Kramer 2nd Edition

model

range M = 0..9 // messages with values up to 9

SENDER = SENDER[0], // shared channel chan
SENDER[e:M] = (chan.send[e]-> SENDER[(e+1)%10]).

RECEIVER = (chan.receive[v:M]-> RECEIVER).

// relabeling to model synchronization
||SyncMsg = (SENDER || RECEIVER)

/{chan/chan.{send,receive}}.
LTS?

How can this be
modeled directly
without the need
for relabeling?

message operation FSP model
send(e,chan) ?

v = receive(chan) ?

chan.[e]

chan.[v:M]Concurrency: message passing 8
©Magee/Kramer 2nd Edition

model

range M = 0..9 // messages with values up to 9

SENDER = SENDER[0], // shared channel chan
SENDER[e:M] = (chan.send[e]-> SENDER[(e+1)%10]).

RECEIVER = (chan.receive[v:M]-> RECEIVER).

// relabeling to model synchronization
||SyncMsg = (SENDER || RECEIVER)

/{chan/chan.{send,receive}}.
LTS?

How can this be
modeled directly
without the need
for relabeling?

message operation FSP model
send(e,chan) ?

v = receive(chan) ?

chan.[e]

chan.[v:M]

Wrong question! Why should we avoid relabeling?

Ryszard Janicki Message Passing 4/8

Multiple Channels: Dijkstra’s Guarded Commands

Concurrency: message passing 9
©Magee/Kramer 2nd Edition

selective receive

Channels
c1
c2
cn

How
should we deal
with multiple

channels?

Sender
send(e,c)Sender
send(e,c)Sender[n]

send(en,cn)

select
when G1 and v1=receive(chan1) => S1;

or
when G2 and v2=receive(chan2) => S2;

or
…

or
when Gn and vn=receive(chann) => Sn;

end

Select
statement...

How would we
model this in FSP?

If more than one of Gi ’s is true, the choice is
non-deterministic.

Ryszard Janicki Message Passing 5/8

Car Park

Concurrency: message passing 10
©Magee/Kramer 2nd Edition

selective receive

ARRIVALS CARPARK
CONTROL

DEPARTURESarrive depart

CARPARK

CARPARKCONTROL(N=4) = SPACES[N],
SPACES[i:0..N] = (when(i>0) arrive->SPACES[i-1]

|when(i<N) depart->SPACES[i+1]

).

ARRIVALS = (arrive->ARRIVALS).

DEPARTURES = (depart->DEPARTURES).

||CARPARK = (ARRIVALS||CARPARKCONTROL(4)
||DEPARTURES).

Implementation
using message
passing?

Interpret as
channels

I think it is wrong example, CARPARK is in my opinion a
shared memory problem, not distributed computing (i.e.
message passing) problem.

It show that we can model shared memory problem using
distributing computing tools, but this should always be rather
an exception, never the rule.

Ryszard Janicki Message Passing 6/8

Asynchronous Message Passing - Port

Concurrency: message passing 13
©Magee/Kramer 2nd Edition

10.2 Asynchronous Message Passing - port

Sender
send(e,c)
Sender

send(e,c)
Sender[n]

send(en,p)

Receiver
v=receive(p)

Port p

many-to-one

♦ send(e,p) - send the
value of the expression e to
port p. The process calling
the send operation is not
blocked. The message is
queued at the port if the
receiver is not waiting.

♦ v = receive(p) - receive
a value into local variable v
from port p. The process
calling the receive
operation is blocked if
there are no messages
queued to the port.

Ryszard Janicki Message Passing 7/8

FSP Model of Port

Concurrency: message passing 16
©Magee/Kramer 2nd Edition

port model

range M = 0..9 // messages with values up to 9
set S = {[M],[M][M]} // queue of up to three messages

PORT //empty state, only send permitted
= (send[x:M]->PORT[x]),

PORT[h:M] //one message queued to port
= (send[x:M]->PORT[x][h]

|receive[h]->PORT
),

PORT[t:S][h:M] //two or more messages queued to port
= (send[x:M]->PORT[x][t][h]

|receive[h]->PORT[t]
).

// minimise to see result of abstracting from data values
||APORT = PORT/{send/send[M],receive/receive[M]}.

LTS?
What happens if
send 4 values?

For this model forth sent will go to ERROR state.

For queue up to 3 messages, an LTS has 1111 states, for
queue up to 4 messages an LTS has 11111 states.

In general, for a range of x different values and queue up to n,
we need xn+1−1

x−1 states.

Is such an approach proper?

Ryszard Janicki Message Passing 8/8

