Timed Systems

SE 3BB4

Ryszard Janicki

Department of Computing and Software, McMaster University, Hamilton,
Ontario, Canada

Ryszard Janicki Timed Systems 1/27

Timed vs. Real-Time Systems

@ So far we have not been concerned with passage of time: the
correctness of the models/implementations depended on the
order of actions, but not their duration.

@ With timed systems, the correctness does depend on
performing actions by specific times. We make the simplifying
assumption that program execution proceeds sufficiently
quickly such that, when related to the time between external
events, it can be ignored.

@ With real-time systems, we do take the duration of program
execution into account, and we typically specify and
subsequently guarantee an upper bound to execution time.
Real-time systems are beyond the scope of this chapter.

Ryszard Janicki Timed Systems 2/27

Modeling Timed Systems

@ To model time, we adopt a discrete model of time.

@ Passage of time is signaled by successive 'tick’s of a clock
shared by all processes that need to be aware of passing of
time.

@ Consider detection of double mouse clicks within D ticks:
DOUBLECLICK(D = 3) =
(tick - DOUBLECLICK | click — PERIODI1]),
PERIOD[t : 1..D] =
(when (t == D) tick — DOUBLECLICK
| when (t < D) tick — PERIOD[t + 1]
| click — doubleclick - DOUBLECLICK)

Ryszard Janicki Timed Systems 3/27

Timing Consistency

@ Producer produces item every Tp seconds and consumer
consumes item every Tc seconds.

CONSUMER(Tc =3) =
(item — DELAY[1]|tick — CONSUMER),
DELAY[t : 1..Tc] = (when(t == Tc)tick — CONSUMER
| (when (t < Tc) tick — DELAY[t + 1]).
PRODUCER(Tp = 3) = (item — DELAY1]),
DELAY([t : 1..Tp] = (when(t == Tp)tick — PRODUCER
| when (t < Tp) tick — DELAY[t + 1]).

| SAME = (PRODUCER(2) || CONSUMER(2)).
| SLOWER = (PRODUCER(3) | CONSUMER(2)).
| FASTER = (PRODUCER(2) || CONSUMER(3)).

Ryszard Janicki Timed Systems 4/27

Maximal Progress

@ We use a store for items to connect producer and consumer.
STORE(N = 3) = STORE|0],
STORE[i : 0..N] =
(put — STORE[i + 1] | when(i > 0)get — STORE[i — 1]).

|| SYS = (PRODUCER(1)/{put/item}
|| CONSUMER(1)/{get/item}
|| STORE).

@ If items are consumed at the same rate as they are produced,
then surely the store should not overflow? False!

@ The trace: put — tick — put — tick — put — tick — put
leads to store overflow as consumer always chooses tick over
get action and store overflows.

@ To ensure maximal progress of other actions, we have to make

the tick action low priority.
|| NEW_SYS = SYS >> {tick}.

Ryszard Janicki Timed Systems 5/27

Ensuring Progression of Time

@ The following process violates the TIME progress property:

PROG
LOOP

(start -> LOOP | tick -> PROG),
(compute -> LOOP | tick -> LOOP).

| ICHECK = PROG>>{tick}.
progress TIME = {tick}.

@ To fix this, we can include an action that terminates the loop
and forces a tick action.

PROG (start -> LOOP | tick -> PROG),
LOOP = (compute -> LOOP

|tick -> LOOP

|end -> tick -> PROG

).

Ryszard Janicki Timed Systems 6/27

Modeling Output in an Interval

@ Produce an output at any time after Min ticks and before
Max ticks.

OUTPUT (Min=1,Max=3) =
(start -> OUTPUT[1]
|tick -> OUTPUT
),

OUTPUT[t:1..Max] =
(when (t>Min && t<=Max) output -> OUTPUT
|when (t<Max) tick -> OUTPUT[t+1]
).

Ryszard Janicki Timed Systems 7/27

Modeling Timeout

@ We use of timeout to detect the loss of a message or failure in a
distributed system. Use a separate TIMEOUT process
TIMEOUT(D =1) =
(setTO — TIMEOUTIOQ] | tick, resetTO — TIMEOUT),
TIMEOUT]t : 0..D] =
(when (t < D) tick - TIMEOUT [t + 1]
| when(t == D)timeout — TIMEOUT
| resetTO — TIMEOUT).
REC = (start — setT0 — WAIT),
WAIT = (timeout — REC | receive — resetTO — REC).

| RECEIVER(D = 2) = (REC || TIMEOUT (D)) >>
{receive, timeout, start, tick }@{ receive, timeout, start, tick}.

@ Interface actions depend on the system into which RECEIVER is
placed — so we should not apply maximal progress to these actions
within the RECEIVER process but later at the system level.

@ Consequently, we give interface actions the same priority as the tick
action.

Ryszard Janicki Timed Systems 8/27

Place/Transition Nets (Readers and Writers)

Ryszard Janicki

Timed Systems

LP ~ locel pvoww
WR ~ LJaA‘{‘lua ™ vead
Wi ~ waitin To wvite
R ~ veadin

W o~ wwitia

S - Sawc)a'vou'nh{'\"’"‘

9/27

Place/Transition Nets (Readers and Writers)

@ P - places, T - transitions

INVAR)VANTS

1{t-\ *L\ts fal®%| % w]] 6] G
ce[=t] =V} i np! -

wa|) -1\ ! -

ww] -\ \ -1

2 1 \ =3 e aE

5 AR o e 18

‘ ST 5 \—n\ t{nfn B

ﬂ)E] \»J(":.)L?) =-|
E.]-—a P w({,)wa) l E@)

@[t OB
@J—@ w (te, 5) =

Ryszard Janicki Timed Systems 10/27

Al a.l\cudl.

=3

Timed Petri Nets

@ Single time values assigned to transitions (Deterministic
Timed Transitions Petri Nets):

O

pm O
o Executing transition t lasts 7.
e If firing a transition is considered instantaneous, it must be
delayed by ;.
e Time intervals assigned to transitions (Non-Deterministic
Timed Transitions Petri Nets):

a
™

o Executing transition t lasts 7, where 7/ < 7 < 7/’.
e If firing a transition is considered instantaneous, it is delayed
by 7, where 7/ <7 < 7/’

Ryszard Janicki Timed Systems 11/27

Timed Petri Nets

e Time values are assigned to places (Deterministic Timed
Places Petri Nets):

o A token deposited in p is available only after 7.

e Time values are assigned to arcs (Deterministic Timed Arcs
Petri Nets):

CP g s :4/
TF [:] Tf

t ¥
e Moving through arrow takes time.

Ryszard Janicki Timed Systems 12/27

Deterministic Timed Transitions Petri Nets

@ Deterministic Timed Petri Nets (or DTTPNs) are
Place/Transition Nets with an additional function

7: T — Reals™,

that associates transitions with deterministic time delays.

@ A transition t in a Deterministic Timed Transitions Petri Net
can fire at time 7 if and only if

@ for any input place p of this transition, there have been the
number of tokens bigger than or equal to the weight of the
directed arc connecting p to t in the input place continuously
for the time interval [— 7(t), 7];

@ after the transition fires, each of its output places, p, will
receive the number of tokens equal to the weight of the
directed arc connecting t to p at time 7.

Ryszard Janicki Timed Systems 13/27

Decision-Free Deterministic Timed Transitions Nets

@ A Petri Nets is decision-free if each place has has exactly one
input arc and one output arc i.e.

Vpe P [{t[W(p,t) >0} =[{t| W(p,t) <0} =1

P t Pe Ps

Ps

Ryszard Janicki Timed Systems 14/27

Minimum Cycle/Maximum Performance

@ An important application of DTPN is to calculate the circle
time of a Petri net model. For a decision-free Petri, the
minimum cycle time (maximum performance) C is given by

C—max{N k=1,2,...,q},
where
Zt eLy 7(t;) - the sum of the execution times of the

transitions in circuit k (i.e. the set L]),
Ny = ZpieLE M(p;) - the total number of tokens in the places

in circuit k (i.e. the set LF),
g - the number of circuits in the net.

Ryszard Janicki Timed Systems 15/27

Example (Communication Protocol)

Consider the communication protocol between two processes,
one indicated as the sender, and the other as the receiver.

The sender sends messages to a buffer, while the receiver
picks up messages from the buffer.

When it gets a message, the receiver sends an ACK back to
the sender.

After receiving the ACK from the receiver, the sender begins
processing and sending a new message.

Suppose that the sender takes 1 time unit to send a message
to the buffer, 1 time unit to receiver the ACK, and 3 time
units to process a new message.

The receiver takes 1 time unit to get the messages from the
buffer, 1 time unit to send back an ACK to the buffer, and 4
time units to process a received message.

Ryszard Janicki Timed Systems

16/27

P1 t P2 Ps

Pg ts

p1: The sender ready.

P2: Message in the buffer.

p3: The sender waiting for ACK.
Pa: Message received.

ps: The receiver ready.

ps: ACK sent.

p7: ACK in the buffer.

ps: ACK received.

t1: The sender sends a message to the buffer. Time delay: 1 time unit.

ty: The receiver gets the messages from the buffer. Time delay: 1 time unit.

t3: The receiver sends back an ACK to the buffer. Time delay: 1 time unit.
t4: The receiver processes the message. Time delay: 4 time units.

t5: The sender receives the ACK. Time delay: 1 time unit.

t¢: The sender processes a new message. Time delay: 3 time units.

Ryszard Janicki Timed Systems

17/27

There are three circuits in the model. The circle time of each circuit is calculated as follows:

= I, 14143
circuit pyt, pyts petepy 1€, =—-=———=5,
N, 1
. T 1+1+1+1+43
circuit pyty poty Pots Pots Pyt Py < C, :N_zzf:’fr,
7
circuit pst, puty Pty ps :Cy = —= :M: 6.
A 1

After enumerating all circuits in the net, we know the minimum cycle time of the protocol between the two
processes is# time units.

Ryszard Janicki Timed Systems 18/27

Deterministic Timed Places Petri Nets

@ Deterministic Timed Places Petri Nets (or DTPPNs) are
Place/Transition Nets with an additional function

T: P — Reals™,
that associates places with deterministic time delays.

@ In a DTPPN, a token in a place, with an associated delay
time, can be available or not available to enable its output
transition.

@ A token deposited in a place becomes available on;y after the
period of the delay time.

@ Therefor, for a DTPPN, the firing rules are the following:

© At any time instance, a transition t becomes enabled if each
input place contains the number of available tokens bigger than
or equal to the weight of the directed arc connecting p to q.

@ Once transition t is enabled (i.e. after a delay 7), it fires
immediately using standard rules for P/T nets.

Ryszard Janicki Timed Systems 19/27

Example (Production System)

@ The production line consists of two machines M1 and M2, two
robot arms R1 and R2, and two conveyors.

@ Each machine is served by a dedicated robot that performs
loading and unloading tasks.

@ One conveyor is used to transport workpieces, a maximum of
two each time.

@ The other conveyor is used to transport empty pallets.

@ There are three pallets available in the system. Each
workpiece is machined on M1 and then M2.

o |t takes 10 time units on M1 and 20 time units on M2.

@ Assume that loading, unloading and conveyors’ transportation
time is negligible for our analyses, as we only care about times
on machines M1 and M2.

v

Ryszard Janicki Timed Systems 20/27

Place Description Time Delay
P1 Workpieces and pallets abailable 0
P2 M1 processing a workpiece 10
P3 Workpicee available for processing at M2 0
Pa M2 processing a workpiece 20
Ps M1 available 0
Ps Conveyor slots available 0
Pz M2 available 0
Ps R1 available 0
Po R2 available 0

Transition Description
t) R1 moves a workpiece to M1
t R1 moves a workpiece from M1 to a conveyor
t3 R2 moves a workpiece to M2
ty R1 moves a workpiece from M1 to a conveyor

Ryszard Janicki

Timed Systems

21/27

Production System with DTTPNs

Example (Production System (with loading and unloading times))

@ The production line consists of two machines M1 and M2, two
robot arms R1 and R2, and two conveyors.

@ Each machine is served by a dedicated robot that performs
loading and unloading tasks.

@ One conveyor is used to transport workpieces, a maximum of
two each time.

@ The other conveyor is used to transport empty pallets.

@ There are three pallets available in the system. Each
workpiece is machined on M1 and then M2.

o |t takes 10 time units on M1 and 20 time units on M2.

@ The loading and unloading tasks require 1 time unit.

@ The conveyors' transportation time is negligible.

Ryszard Janicki Timed Systems 22/27

Place Description

P1 Workpieces and pallets abailable

P2 M1 processing a workpiece

P3 A workpiece ready for unloading from M1

P4 Workpicee available for processing at M2

Ps M2 processing a workpiece

Ps A workpiece ready for unloading from M2

P71 MI available

Ps Conveyor slots available

P9 M2 available

Pio R1 available

P11 R2 available]
Transition Description Time Delay

t R1 moves a workpiece to M1 1

ty M1 ends the processing of a workpiece 10

ty R1 moves a workpiece from M1 to a conveyor 1

ty R2 moves a workpiece to M2 1

ts M2 ends the processing of a workpiece 20

te R2 moves a final workpiece from M2 1

Ryszard Janicki Timed Systems

23/27

The net is decision-free and there are 6 circuits in the model:
prtipatopr: Cp = 10 =11

pi1otip2tap3t3pio: G = % =12
pstspatapg: C3 =1L =1
potapstspy: Cp = 20 =21

pi1tapstspetopr: Cs = F2EL =22
pitipatopstspatapstspetepy: Co = THOHTIE0EL — 31 — 17 3333
The minimum cycle time of this schema is 22.

Ryszard Janicki Timed Systems 24/27

Types of Petri Nets with Time

@ Timed Petri Nets
o Deterministic Timed Transitions Petri Nets
o Non-deterministic Timed Transitions Petri Nets
o Deterministic Timed Places Petri Nets
o Deterministic Timed Arcs Petri Nets
Time Petri Nets (different than Timed Petri Nets).

e Compositional Time Petri Nets

Stochastic Times Petri Nets
Generalized Stochastic Times Petri Nets
Coloured Time Petri Nets

Few other models

Ryszard Janicki Timed Systems 25/27

Alphabet Extension: Processes

@ let: P=(a—b—P),Q=(c—d— Q) and
QRQa=(c—d— Q)+ {b}.

@ alphabet(P) = {a, b}, alphabet(Q) = {c, d},
alphabet(Qa) = {b, ¢, d}, so alphabet(P) N alphabet(Q) = 0, while
alphabet(P) N alphabet(Qa) = {b}.

@ Define ||PQ = P||A and PQa = P||Qa.

@ Labelled Transition Systems are:

P QR = Qa [|PQ \PQa
o Clearly ||PQ # ||PQa !

Ryszard Janicki Timed Systems 26/27

Alphabet Extension: Properties

e Let property P=(a— b — P) and
property Pc = (a— b — P)+ {c}.
@ Labelled Transition Systems are:

b c =
i
2D
a
P Pc
@ Clearly P£ Q!

Ryszard Janicki Timed Systems 27/27

