
Timed Systems
SE 3BB4

Ryszard Janicki

Department of Computing and Software, McMaster University, Hamilton,
Ontario, Canada

Ryszard Janicki Timed Systems 1/27

Timed vs. Real-Time Systems

So far we have not been concerned with passage of time: the
correctness of the models/implementations depended on the
order of actions, but not their duration.

With timed systems, the correctness does depend on
performing actions by specific times. We make the simplifying
assumption that program execution proceeds sufficiently
quickly such that, when related to the time between external
events, it can be ignored.

With real-time systems, we do take the duration of program
execution into account, and we typically specify and
subsequently guarantee an upper bound to execution time.
Real-time systems are beyond the scope of this chapter.

Ryszard Janicki Timed Systems 2/27

Modeling Timed Systems

To model time, we adopt a discrete model of time.

Passage of time is signaled by successive ‘tick’s of a clock
shared by all processes that need to be aware of passing of
time.

Consider detection of double mouse clicks within D ticks:
DOUBLECLICK (D = 3) =

(tick → DOUBLECLICK | click → PERIOD[1]),
PERIOD[t : 1..D] =

(when (t == D) tick → DOUBLECLICK
| when (t < D) tick → PERIOD[t + 1]
| click → doubleclick → DOUBLECLICK)

Ryszard Janicki Timed Systems 3/27

Timing Consistency

Producer produces item every Tp seconds and consumer
consumes item every Tc seconds.

CONSUMER(Tc = 3) =
(item → DELAY [1]|tick → CONSUMER),

DELAY [t : 1..Tc] = (when(t == Tc)tick → CONSUMER
| (when (t < Tc) tick → DELAY [t + 1]).

PRODUCER(Tp = 3) = (item → DELAY [1]),
DELAY [t : 1..Tp] = (when(t == Tp)tick → PRODUCER

| when (t < Tp) tick → DELAY [t + 1]).

∥ SAME = (PRODUCER(2) ∥ CONSUMER(2)).
∥ SLOWER = (PRODUCER(3) ∥ CONSUMER(2)).
∥ FASTER = (PRODUCER(2) ∥ CONSUMER(3)).

Ryszard Janicki Timed Systems 4/27

Maximal Progress

We use a store for items to connect producer and consumer.

STORE (N = 3) = STORE [0],
STORE [i : 0..N] =

(put → STORE [i + 1] | when(i > 0)get → STORE [i − 1]).

∥ SYS = (PRODUCER(1)/{put/item}
∥ CONSUMER(1)/{get/item}
∥ STORE).

If items are consumed at the same rate as they are produced,
then surely the store should not overflow? False!

The trace: put → tick → put → tick → put → tick → put
leads to store overflow as consumer always chooses tick over
get action and store overflows.

To ensure maximal progress of other actions, we have to make
the tick action low priority.

∥ NEW SYS = SYS >> {tick}.

Ryszard Janicki Timed Systems 5/27

Ensuring Progression of Time

The following process violates the TIME progress property:

Concurrency: timed systems 8 8
©Magee/Kramer 2nd Edition

ensuring progression of time

PROG = (start -> LOOP | tick -> PROG),
LOOP = (compute -> LOOP | tick -> LOOP).

||CHECK = PROG>>{tick}.
progress TIME = {tick}.

The following process violates the TIME progress property:

To fix this, we can include an action that terminates the
loop and forces a tick action.

PROG = (start -> LOOP | tick -> PROG),
LOOP = (compute -> LOOP

 |tick -> LOOP
 |end -> tick -> PROG
).

To fix this, we can include an action that terminates the loop
and forces a tick action.

Concurrency: timed systems 8 8
©Magee/Kramer 2nd Edition

ensuring progression of time

PROG = (start -> LOOP | tick -> PROG),
LOOP = (compute -> LOOP | tick -> LOOP).

||CHECK = PROG>>{tick}.
progress TIME = {tick}.

The following process violates the TIME progress property:

To fix this, we can include an action that terminates the
loop and forces a tick action.

PROG = (start -> LOOP | tick -> PROG),
LOOP = (compute -> LOOP

 |tick -> LOOP
 |end -> tick -> PROG
).

Ryszard Janicki Timed Systems 6/27

Modeling Output in an Interval

Produce an output at any time after Min ticks and before
Max ticks.

Concurrency: timed systems 9 9
©Magee/Kramer 2nd Edition

Modeling output in an interval

OUTPUT(Min=1,Max=3) =
 (start -> OUTPUT[1]
 |tick -> OUTPUT
),

OUTPUT[t:1..Max] =
 (when (t>Min && t<=Max) output -> OUTPUT
 |when (t<Max) tick -> OUTPUT[t+1]
).

Produce an output at any time after Min ticks and before
Max ticks.

LTS? Trace…

Ryszard Janicki Timed Systems 7/27

Modeling Timeout

We use of timeout to detect the loss of a message or failure in a
distributed system. Use a separate TIMEOUT process

TIMEOUT (D = 1) =
(setT0 → TIMEOUT [0] | tick , resetT0 → TIMEOUT),

TIMEOUT [t : 0..D] =
(when (t < D) tick → TIMEOUT [t + 1]
| when(t == D)timeout → TIMEOUT
| resetT0 → TIMEOUT).

REC = (start → setT0 → WAIT),
WAIT = (timeout → REC | receive → resetT0 → REC).

∥ RECEIVER(D = 2) = (REC ∥ TIMEOUT (D)) >>
{receive, timeout, start, tick}@{receive, timeout, start, tick}.

Interface actions depend on the system into which RECEIVER is
placed – so we should not apply maximal progress to these actions
within the RECEIVER process but later at the system level.

Consequently, we give interface actions the same priority as the tick
action.

Ryszard Janicki Timed Systems 8/27

Place/Transition Nets (Readers and Writers)

,

ltJV R.,I\NTS

• It SAt)E"t~ £. W~t rrlU ;

... F'''fO"'" II? I VI >0 I wL..icl.~ "I'e ~ d. """ w...;te. [~
fJ... &'-t(l'Ye.d W\e~o~. Se.\leYd.- I'>IOW'Y':Jt/:) W\~ foe 'Ve~I~~

CO\,o\ ct.4 "r'fe.~ +~) b~ wtte"" (J. f> ;YO<.fVY.) IS W'Yi f ("'0) lI\ 0

o+~&'(" r"fOC,.e/)') C4'1 be. ty~4d\~o o"{ (.fj'1'i.f-'i(j!

NO~~lO'V;+a i~ ~4A.fM W

Ryszard Janicki Timed Systems 9/27

Place/Transition Nets (Readers and Writers)

P - places, T - transitions
-
~I Nt,oe Net: MI\TAJ ~

as

IN" a.,I\IJT -
!Z -t? I · 1:.2;. i::

- ~
0t

It
t: ...

~

-t:, W'\It. lo,

-

lL
..
l

I L..1=> -I -\ I I ,. I

w(l.

w~

I

I
, -

I , I -I

-l

fi..
W

I , -,
-, I'

I

-.. \ -
S -, " I " "

W(tt)Lf) - - '\@~[9

we 'J WIl) - \
19~
(J) ~ >l1J iN (t~l) --h

IN (t6) 5) - V\

~

Ryszard Janicki Timed Systems 10/27

Timed Petri Nets
Single time values assigned to transitions (Deterministic
Timed Transitions Petri Nets):

Executing transition t lasts τt .
If firing a transition is considered instantaneous, it must be
delayed by τt .

Time intervals assigned to transitions (Non-Deterministic
Timed Transitions Petri Nets):

Executing transition t lasts τ , where τ ′t ≤ τ ≤ τ ′′t .
If firing a transition is considered instantaneous, it is delayed
by τ , where τ ′t ≤ τ ≤ τ ′′t .

Ryszard Janicki Timed Systems 11/27

Timed Petri Nets

Time values are assigned to places (Deterministic Timed
Places Petri Nets):

A token deposited in p is available only after τ .

Time values are assigned to arcs (Deterministic Timed Arcs
Petri Nets):

Moving through arrow takes time.

Ryszard Janicki Timed Systems 12/27

Deterministic Timed Transitions Petri Nets

Deterministic Timed Petri Nets (or DTTPNs) are
Place/Transition Nets with an additional function

τ : T → Reals+,

that associates transitions with deterministic time delays.

A transition t in a Deterministic Timed Transitions Petri Net
can fire at time τ if and only if

1 for any input place p of this transition, there have been the
number of tokens bigger than or equal to the weight of the
directed arc connecting p to t in the input place continuously
for the time interval [τ − τ(t), τ];

2 after the transition fires, each of its output places, p, will
receive the number of tokens equal to the weight of the
directed arc connecting t to p at time τ .

Ryszard Janicki Timed Systems 13/27

Decision-Free Deterministic Timed Transitions Nets

A Petri Nets is decision-free if each place has has exactly one
input arc and one output arc i.e.

∀p ∈ P. |{t | W (p, t) > 0}| = |{t | W (p, t) < 0}| = 124-14 Handbook of Dynamic System Modeling

p1
p2 p5

p3 p4

p6
p8

t1

t2

t3

t4t6

t5 p7

FIGURE 24.9 Petri net model of a simple communication protocol.

t1: The sender sends a message to the buffer. Time delay: 1 time unit.
t2: The receiver gets the messages from the buffer. Time delay: 1 time unit.
t3: The receiver sends back an ACK to the buffer. Time delay: 1 time unit.
t4: The receiver processes the message. Time delay: 4 time units.
t5: The sender receives the ACK. Time delay: 1 time unit.
t6: The sender processes a new message. Time delay: 3 time units.

There are three circuits in the model. The cycle time of each circuit is calculated as follows:

circuit p1t1p3t5p8t6p1 : C1 = T1

N1
= 1 + 1 + 3

1
= 5

circuit p1t1p2t2p4t3p7t5p8t6p1 : C2 = T2

N2
= 1 + 1 + 1 + 1 + 3

1
= 7

circuit p5t2p4t3p6t4p5 : C3 = T3

N3
= 1 + 1 + 4

1
= 6

After enumerating all circuits in the net, we know the minimum cycle time of the protocol between the
two processes is 7 time units.

24.8.2 Stochastic Timed Petri Nets
STPNs are Petri nets in which stochastic firing times are associated with transitions. An STPN is essen-
tially a high-level model that generates a stochastic process. STPN-based performance evaluation basically
comprises modeling the given system by an STPN and automatically generating the stochastic process that
governs the system behavior. This stochastic process is then analyzed using known techniques. STPNs are
a graphical model and offer great convenience to a modeler in arriving at a credible, high-level model of
a system.

The simplest choice for the individual distributions of transition firing times is negative exponential
distribution. Because of the memoryless property of this distribution, the stochastic process associated
with the STPN is a continuous-time homogeneous Markov chain (Ethier, 2005) with state space in one-
to-one correspondences with marking in R(M0), the set of all reachable markings. The transition rate
matrix of the Markov chain can be easily constructed from the reachability graph given the firing rates
of the transitions of the STPN. Exponential timed stochastic Petri nets, often called stochastic Petri nets
(SPNs), were independently proposed by Natkin (1980) and Molloy (1981), and their capabilities in the
performance analysis of real systems have been investigated by many authors.

Ryszard Janicki Timed Systems 14/27

Minimum Cycle/Maximum Performance

An important application of DTPN is to calculate the circle
time of a Petri net model. For a decision-free Petri, the
minimum cycle time (maximum performance) C is given by

C = max{Tk

Nk
, k = 1, 2, . . . , q},

where

Tk =
∑

ti∈LT
k
τ(ti) - the sum of the execution times of the

transitions in circuit k (i.e. the set LTk),
Nk =

∑
pi∈LP

k
M(pi) - the total number of tokens in the places

in circuit k (i.e. the set LPk),
q - the number of circuits in the net.

Ryszard Janicki Timed Systems 15/27

Example (Communication Protocol)

Consider the communication protocol between two processes,
one indicated as the sender, and the other as the receiver.

The sender sends messages to a buffer, while the receiver
picks up messages from the buffer.

When it gets a message, the receiver sends an ACK back to
the sender.

After receiving the ACK from the receiver, the sender begins
processing and sending a new message.

Suppose that the sender takes 1 time unit to send a message
to the buffer, 1 time unit to receiver the ACK, and 3 time
units to process a new message.

The receiver takes 1 time unit to get the messages from the
buffer, 1 time unit to send back an ACK to the buffer, and 4
time units to process a received message.

Ryszard Janicki Timed Systems 16/27

24-14 Handbook of Dynamic System Modeling

p1
p2 p5

p3 p4

p6
p8

t1

t2

t3

t4t6

t5 p7

FIGURE 24.9 Petri net model of a simple communication protocol.

t1: The sender sends a message to the buffer. Time delay: 1 time unit.
t2: The receiver gets the messages from the buffer. Time delay: 1 time unit.
t3: The receiver sends back an ACK to the buffer. Time delay: 1 time unit.
t4: The receiver processes the message. Time delay: 4 time units.
t5: The sender receives the ACK. Time delay: 1 time unit.
t6: The sender processes a new message. Time delay: 3 time units.

There are three circuits in the model. The cycle time of each circuit is calculated as follows:

circuit p1t1p3t5p8t6p1 : C1 = T1

N1
= 1 + 1 + 3

1
= 5

circuit p1t1p2t2p4t3p7t5p8t6p1 : C2 = T2

N2
= 1 + 1 + 1 + 1 + 3

1
= 7

circuit p5t2p4t3p6t4p5 : C3 = T3

N3
= 1 + 1 + 4

1
= 6

After enumerating all circuits in the net, we know the minimum cycle time of the protocol between the
two processes is 7 time units.

24.8.2 Stochastic Timed Petri Nets
STPNs are Petri nets in which stochastic firing times are associated with transitions. An STPN is essen-
tially a high-level model that generates a stochastic process. STPN-based performance evaluation basically
comprises modeling the given system by an STPN and automatically generating the stochastic process that
governs the system behavior. This stochastic process is then analyzed using known techniques. STPNs are
a graphical model and offer great convenience to a modeler in arriving at a credible, high-level model of
a system.

The simplest choice for the individual distributions of transition firing times is negative exponential
distribution. Because of the memoryless property of this distribution, the stochastic process associated
with the STPN is a continuous-time homogeneous Markov chain (Ethier, 2005) with state space in one-
to-one correspondences with marking in R(M0), the set of all reachable markings. The transition rate
matrix of the Markov chain can be easily constructed from the reachability graph given the firing rates
of the transitions of the STPN. Exponential timed stochastic Petri nets, often called stochastic Petri nets
(SPNs), were independently proposed by Natkin (1980) and Molloy (1981), and their capabilities in the
performance analysis of real systems have been investigated by many authors.

Petri Nets for Dynamic Event-Driven System Modeling 24-13

Bause and Kritzinger, 2002), in which time variables are associated with transitions, are the two most
widely used extended Petri nets.

24.8.1 Deterministic Timed Petri Nets
The introduction of deterministic time labels into Petri nets was first attempted by Ramchandani (1974).
In his approach, the time labels were placed at each transition, denoting the fact that transitions are often
used to represent actions, and actions take time to complete. The obtained extended Petri nets are called
deterministic timed Petri nets (DTPNs). (Ramamoorthy and Ho, 1980) used such an extended model to
analyze system performance. The method is applicable to a restricted class of systems called decision-free
nets. This class of nets involves neither decisions nor nondeterminism. In structural terms, each place is
connected to the input of no more than one transition, and to the output of no more than one transition.

A DTPN is a six-tuple (P, T , I , O, M0, τ), where (P, T , I , O, M0) is a Petri net and τ : T → R+ a function
that associates transitions with deterministic time delays.

A transition ti in a DTPN can fire at time τ if and only if

(1) for any input place p of this transition, there have been the number of tokens equal to the weight of
the directed arc connecting p to ti in the input place continuously for the time interval [τ − τi, τ],
where τi is the associated firing time of transition ti;

(2) after the transition fires, each of its output places, p, will receive the number of tokens equal to
the weight of the directed arc connecting ti to p at time τ.

An important application of DTPN is to calculate the cycle time of a Petri net model. For a decision-
free Petri net where every place has exactly one input arc and one output arc, the minimum cycle time
(maximum performance) C is given by

C = max

{
Tk

Nk
: k = 1, 2, �, q

}

where Tk = ∑
ti∈Lk

τi is the sum of the execution times of the transitions in circuit k; Nk = ∑
pi∈Lk

M(pi)
the total number of tokens in the places in circuit k; and q the number of circuits in the net.

Example 6
A communication protocol.

Consider the communication protocol between two processes, one indicated as the sender and the other
as the receiver. The sender sends messages to a buffer, while the receiver picks up messages from the
buffer. When it gets a message, the receiver sends an acknowledgment (ACK) back to the sender. After
receiving the ACK from the receiver, the sender begins processing and sending a new message. Suppose
that the sender takes 1 time unit to send a message to the buffer, 1 time unit to receive the ACK, and 3
time units to process a new message. Then, the receiver takes 1 time unit to get the messages from the
buffer, 1 time unit to send back an ACK to the buffer, and 4 time units to process a received message.
The DTPN model of this protocol is shown in Figure 24.9. The legends of places and transitions and
timing properties are as follows:

p1: The sender ready.
p2: Message in the buffer.
p3: The sender waiting for ACK.
p4: Message received.
p5: The receiver ready.
p6: ACK sent.
p7: ACK in the buffer.
p8: ACK received.

24-14 Handbook of Dynamic System Modeling

p1
p2 p5

p3 p4

p6
p8

t1

t2

t3

t4t6

t5 p7

FIGURE 24.9 Petri net model of a simple communication protocol.

t1: The sender sends a message to the buffer. Time delay: 1 time unit.
t2: The receiver gets the messages from the buffer. Time delay: 1 time unit.
t3: The receiver sends back an ACK to the buffer. Time delay: 1 time unit.
t4: The receiver processes the message. Time delay: 4 time units.
t5: The sender receives the ACK. Time delay: 1 time unit.
t6: The sender processes a new message. Time delay: 3 time units.

There are three circuits in the model. The cycle time of each circuit is calculated as follows:

circuit p1t1p3t5p8t6p1 : C1 = T1

N1
= 1 + 1 + 3

1
= 5

circuit p1t1p2t2p4t3p7t5p8t6p1 : C2 = T2

N2
= 1 + 1 + 1 + 1 + 3

1
= 7

circuit p5t2p4t3p6t4p5 : C3 = T3

N3
= 1 + 1 + 4

1
= 6

After enumerating all circuits in the net, we know the minimum cycle time of the protocol between the
two processes is 7 time units.

24.8.2 Stochastic Timed Petri Nets
STPNs are Petri nets in which stochastic firing times are associated with transitions. An STPN is essen-
tially a high-level model that generates a stochastic process. STPN-based performance evaluation basically
comprises modeling the given system by an STPN and automatically generating the stochastic process that
governs the system behavior. This stochastic process is then analyzed using known techniques. STPNs are
a graphical model and offer great convenience to a modeler in arriving at a credible, high-level model of
a system.

The simplest choice for the individual distributions of transition firing times is negative exponential
distribution. Because of the memoryless property of this distribution, the stochastic process associated
with the STPN is a continuous-time homogeneous Markov chain (Ethier, 2005) with state space in one-
to-one correspondences with marking in R(M0), the set of all reachable markings. The transition rate
matrix of the Markov chain can be easily constructed from the reachability graph given the firing rates
of the transitions of the STPN. Exponential timed stochastic Petri nets, often called stochastic Petri nets
(SPNs), were independently proposed by Natkin (1980) and Molloy (1981), and their capabilities in the
performance analysis of real systems have been investigated by many authors.

Ryszard Janicki Timed Systems 17/27

24-14 Handbook of Dynamic System Modeling

p1
p2 p5

p3 p4

p6
p8

t1

t2

t3

t4t6

t5 p7

FIGURE 24.9 Petri net model of a simple communication protocol.

t1: The sender sends a message to the buffer. Time delay: 1 time unit.
t2: The receiver gets the messages from the buffer. Time delay: 1 time unit.
t3: The receiver sends back an ACK to the buffer. Time delay: 1 time unit.
t4: The receiver processes the message. Time delay: 4 time units.
t5: The sender receives the ACK. Time delay: 1 time unit.
t6: The sender processes a new message. Time delay: 3 time units.

There are three circuits in the model. The cycle time of each circuit is calculated as follows:

circuit p1t1p3t5p8t6p1 : C1 = T1

N1
= 1 + 1 + 3

1
= 5

circuit p1t1p2t2p4t3p7t5p8t6p1 : C2 = T2

N2
= 1 + 1 + 1 + 1 + 3

1
= 7

circuit p5t2p4t3p6t4p5 : C3 = T3

N3
= 1 + 1 + 4

1
= 6

After enumerating all circuits in the net, we know the minimum cycle time of the protocol between the
two processes is 7 time units.

24.8.2 Stochastic Timed Petri Nets
STPNs are Petri nets in which stochastic firing times are associated with transitions. An STPN is essen-
tially a high-level model that generates a stochastic process. STPN-based performance evaluation basically
comprises modeling the given system by an STPN and automatically generating the stochastic process that
governs the system behavior. This stochastic process is then analyzed using known techniques. STPNs are
a graphical model and offer great convenience to a modeler in arriving at a credible, high-level model of
a system.

The simplest choice for the individual distributions of transition firing times is negative exponential
distribution. Because of the memoryless property of this distribution, the stochastic process associated
with the STPN is a continuous-time homogeneous Markov chain (Ethier, 2005) with state space in one-
to-one correspondences with marking in R(M0), the set of all reachable markings. The transition rate
matrix of the Markov chain can be easily constructed from the reachability graph given the firing rates
of the transitions of the STPN. Exponential timed stochastic Petri nets, often called stochastic Petri nets
(SPNs), were independently proposed by Natkin (1980) and Molloy (1981), and their capabilities in the
performance analysis of real systems have been investigated by many authors.

Ryszard Janicki Timed Systems 18/27

Deterministic Timed Places Petri Nets

Deterministic Timed Places Petri Nets (or DTPPNs) are
Place/Transition Nets with an additional function

τ : P → Reals+,

that associates places with deterministic time delays.

In a DTPPN, a token in a place, with an associated delay
time, can be available or not available to enable its output
transition.

A token deposited in a place becomes available on;y after the
period of the delay time.

Therefor, for a DTPPN, the firing rules are the following:
1 At any time instance, a transition t becomes enabled if each

input place contains the number of available tokens bigger than
or equal to the weight of the directed arc connecting p to q.

2 Once transition t is enabled (i.e. after a delay τ), it fires
immediately using standard rules for P/T nets.

Ryszard Janicki Timed Systems 19/27

Example (Production System)

The production line consists of two machines M1 and M2, two
robot arms R1 and R2, and two conveyors.

Each machine is served by a dedicated robot that performs
loading and unloading tasks.

One conveyor is used to transport workpieces, a maximum of
two each time.

The other conveyor is used to transport empty pallets.

There are three pallets available in the system. Each
workpiece is machined on M1 and then M2.

It takes 10 time units on M1 and 20 time units on M2.

Assume that loading, unloading and conveyors’ transportation
time is negligible for our analyses, as we only care about times
on machines M1 and M2.

Ryszard Janicki Timed Systems 20/27

Ryszard Janicki Timed Systems 21/27

Production System with DTTPNs

Example (Production System (with loading and unloading times))

The production line consists of two machines M1 and M2, two
robot arms R1 and R2, and two conveyors.

Each machine is served by a dedicated robot that performs
loading and unloading tasks.

One conveyor is used to transport workpieces, a maximum of
two each time.

The other conveyor is used to transport empty pallets.

There are three pallets available in the system. Each
workpiece is machined on M1 and then M2.

It takes 10 time units on M1 and 20 time units on M2.

The loading and unloading tasks require 1 time unit.

The conveyors’ transportation time is negligible.

Ryszard Janicki Timed Systems 22/27

Ryszard Janicki Timed Systems 23/27

The net is decision-free and there are 6 circuits in the model:
p7t1p2t2p7: C1 =

1+10
1 = 11

p10t1p2t2p3t3p10: C2 =
1+10+1

1 = 12
p8t3p4t4p8: C3 =

1+1
2 = 1

p9t4p5t5p9: C4 =
1+20
1 = 21

p11t4p5t5p6t6p11: C5 =
1+20+1

1 = 22
p1t1p2t2p3t3p4t4p5t5p6t6p1: C6 =

1+10+1+1+20+1
3 = 34

3 = 11.3333
The minimum cycle time of this schema is 22.

Ryszard Janicki Timed Systems 24/27

Types of Petri Nets with Time

Timed Petri Nets

Deterministic Timed Transitions Petri Nets
Non-deterministic Timed Transitions Petri Nets
Deterministic Timed Places Petri Nets
Deterministic Timed Arcs Petri Nets

Time Petri Nets (different than Timed Petri Nets).

Compositional Time Petri Nets

Stochastic Times Petri Nets

Generalized Stochastic Times Petri Nets

Coloured Time Petri Nets

Few other models

Ryszard Janicki Timed Systems 25/27

Alphabet Extension: Processes

Let: P = (a → b → P), Q = (c → d → Q) and
Qa = (c → d → Q) + {b}.

alphabet(P) = {a, b}, alphabet(Q) = {c , d},
alphabet(Qa) = {b, c , d}, so alphabet(P) ∩ alphabet(Q) = ∅, while
alphabet(P) ∩ alphabet(Qa) = {b}.

Define ||PQ = P||A and PQa = P||Qa.

Labelled Transition Systems are:

P Q = Qa ||PQ ||PQa

Clearly ||PQ ̸≡ ||PQa !

Ryszard Janicki Timed Systems 26/27

Alphabet Extension: Properties

Let property P = (a → b → P) and
property Pc = (a → b → P) + {c}.

Labelled Transition Systems are:

P Pc

Clearly P ̸≡ Q !

Ryszard Janicki Timed Systems 27/27

