Solutions to Some Problems

CS 25D3

Ryszard Janicki

Department of Computing and Software, McMaster University, Hamilton,
Ontario, Canada

Ryszard Janicki Solutions to Some Problems 1/49

‘Hungry' and 'Simple Minded’ but outside control, i.e. ‘Butler’

@ No more than 4 philosophers are sitting at the table.

FORK = (get — put — FORK)
PHIL = (think — sitdown — right.get — left.get — eat —
right.put — left.put — getup — PHIL)
BUTLER(K = 4) = COUNTI[0]
COUNTVi : 1..4] = (when(i < K) sitdown — COUNT[i + 1] |
getup — COUNTi — 1]
|| DINERS(N = 5) = (forall[i : 1..N]
(philli] = PHIL || {philli].right, phil[i ® 1].left} :: FORK)

| {philli : ..N]} BUTLER(K = 4))
—_——
{phil[1],phil[2],phil[3],phil[4],phil[5] }
Ryszard Janicki Solutions to Some Problems

2/49

‘Butler’ Solution

@ '‘Butler’ solution works. No deadlock and no starvation.

@ FORK's are passive processes (monitors), hence they always
can be presented as:
FORK = (get — put — FORK)

@ PHILOSOPHER's are active processes.

Ryszard Janicki Solutions to Some Problems 3/49

Coloured Petri Nets

colour PH = with phl | ph2 | ph3 | ph4 | ph5

colour Fork = with f1| f2| f3 | f4]| fb

LEFT : PH — FORK, RIGHT : PH — FORK

var x : PH

fun LEFT x = case of phl = f2 | ph2 = 3| ph3 = 4|

phd = f5| ph5 = f1

fun RIGHT x = case of phl = f1 | ph2 = f2| ph3 = 3|

phd = f4 | ph5 = 5

Ryszard Janicki Solutions to Some Problems 4/49

@ Provide a Coloured Petri Net solution to Dining
Philosophers with a butler. Prove that this solution is
deadlock-free.

Solution:

colour PH = with phl | ph2 | ph3 | ph4 | ph

colour FORK = with f1 | f2 | f3 | f4 | {5

colour TOKENS = with t

var x : PH

var i: TOKENS

fun LF x = case of phl = f2 | ph2 = f3 | ph3 = f4 | ph4 = f5 |
ph5 = f1

fun RF x = case of phl = f1 | ph2 = f2 | ph3 = 3 | ph4 = 4 |
ph5 = f5

Ryszard Janicki Solutions to Some Problems 5/49

tfa kz_fvfjd_ﬁnk

Ryszard Janicki Solutions to Some Problems 6/49

Interpretation of places:

pl - thinking room

p2 - philosophers without forks in the dining room

p3 - philosophers with left forks in the dining room

p4 - philosophers that are eating

p5 - philosophers that finished eating and still with right forks in the
dining room

p6 - unused forks p7 - butler or counter

Ryszard Janicki Solutions to Some Problems 7/49

Invariants

invl m(pl) + m(p2) + m(p3) + m(p4) + m(p5) =
phl + ph2 + ph3 + ph4 + phb

inv2 [m(p7)| + [m(p2)| + |m(p3)| + |m(p4)| + |m(p5)| = 4
inv3 LF(m(p4)) + RF(m(p4)) + m(p6) = f1 + f2+ f3 + f4+ f4 + f5

Ryszard Janicki Solutions to Some Problems 8/49

Now consider two cases:

o

2]

m(p4) + m(p5) # 0. Then either return_left_fork or
return_right_fork_and _exit_dining _room can be fired.

m(p4) + m(p5) = 0. Then from invariant [inv3] we have :
LF(m(p3)) + m(p6) = f1+ f2+ 3+ f4+ f4+ f5 and from
invariant [inv1]:
m(pl) + m(p2) + m(p3) = phl + ph2 + ph3 + ph4 + phb.
From the definitions of LF(x) and RF(x) we have

LF(x) # RF(x) for all x = phl, ph2, ph3, ph4, ph5. Hence if
m(p3) # 0 then take_right_fork can be fired. Similarly if
m(p2) # 0 then take_left_fork can be fired. If
m(pl) # phl+ ph2+ ph3+ ph4 + ph5, then either m(p3) # 0
or m(p2) # 0. If m(pl) = phl + ph2 + ph3 + ph4 + ph5 then
m(p2) = 0, and from invariant [inv2] |m(p7)| = 4, so
enter_dining _room can be fired.

Ryszard Janicki Solutions to Some Problems 9/49

'Hungry' and ‘Asymmetrically Simple Minded’, or ‘Some

Discipline Added’

@ Philosophers 1, 3 and 5 always perform ‘left.get — right.get’,
while 2 and 4 always perform ‘right.get — left.get’.
FORK = (get — put — FORK)
PHIL = (when(i =1V i =3V i =b5) think — left.get —
right.get — eat — left.put — right.put — PHIL
| when(i =2V i = 4) think — right.get —
left.get — eat — right.put — left.put — PHIL)
|| DINERS(N = 5) = forall[i : 1..N]
(phil[i] - PHIL || {phil[i].right, phil[i © 1].left} :: FORK)
@ Works! Neither deadlock nor starvation.

@ The Labelled Transition System is very big!

Ryszard Janicki Solutions to Some Problems 10/49

Asymmetrically Simple Minded Philosophers

e Notation: for getj,putj, i - philosopher number, j - fork number
FORK; = (get} — puti — FORK; | get? — put? — FORK})
FORK, = (get? — put3 — FORK; | get} — puti — FORK>)
FORK3 = (get3 — put} — FORK3 | get; — put? — FORK3)
FORK, = (gety — put; — FORKy | get? — put3 — FORKj)
FORKs = (get? — putz — FORKs | getd — put — FORKs)

PHILy = (think; — getd — geti — eat; — puti — put} — PHIL;)
PHILy = (think, — gets — gets — eaty — puts — put? — PHILy)
PHIL3 = (thinks — get; — get3 — eats — put; — put; — PHIL3)
PHILy = (thinks, — get; — gets — eatsy — puti — puts — PHILy)
PHILs = (thinks — get? — get? — eats — put; — puty — PHILs)
| DINERS = (FORKy || ... || FORKs || PHILy || ... || PHILs)

Ryszard Janicki Solutions to Some Problems 11/49

Solutions with Petri Nets

@ Solutions with Elementary Petri Nets.

Now we may transform each individual FSP into an appropriate
Elementary Petri Net. To simplify net solution (and make it more in ‘net
spirit"), we may model ‘think’ and ‘eat’ by places instead of transitions.
For example the nets corresponding to FORK; and PHIL; may look as

follows:
Ciw—j Pl =&

Forl (

P\q(th Pl»\le,az;(1
p“'élmkl

\iLI
e J’T
PHIL ([

Now we just need to compose the nets for FORKjy, ..., FORKs,
PHILy, ..., PHILs, by gluing together the same actions. The solution fits

Ryszard Janicki Solutions to Some Problems

Solution with Coloured Petri nets

colour PH = with phl | ph2 | ph3 | ph4 | ph5

colour Fork = with f1 | f2 | f3 | f4 | f5

FirstF : PH — FORK, SecondF : PH — FORK

FirstFR : PH — FORK, SecondFR : PH — FORK

var x: PH

‘for philosophers 1, 3 and 5, left fork is first, for philosophers 2 and
4, right fork is first’

fun FirstF x = case of phl = f2 | ph2 = f2 | ph3 = f4 | ph4 =

f5 | ph5 = 5
fun SecondF x = case of phl = f1 | ph2 = f3 | ph3 = f3 | ph4 =
f3 | ph5 = f1
fun FirstFR x = case of phl = 2 | ph2 = 2 | ph3 = f4 | ph4 =
f5 | ph5 = 5

fun SecondFR x = case of phl = f1 | ph2 = f3 | ph3 = f3 | ph4
= f3 | ph5 = f1

Ryszard Janicki Solutions to Some Problems 13/49

Fiagt FGO

Ryszard Janicki Solutions to Some Problems 14/49

Invariants

Secoud FGS)

(i1) m(think) + m(onefork) + m(eat) + m(oneforkleft) = PH
(i2) FirstF (m(onefork)) + SecondF (m(eat)) + m(freeforks) = Fork.

Ryszard Janicki Solutions to Some Problems 15/49

Model Checking and Temporal Logic

@ The model checker outputs the answer “yes” if M satisfies ¢
and “no” otherwise; in the latter case, most model checkers
also produce a trace of system behaviour which causes this
failure.

@ There are many temporal logics, we concentrate on CTL
(Computation Tree Logic) and LTL (Linear Time Logic).

@ Time could be continuous or discrete, we concentrate on
discrete time.

@ M is not a description of an actual physical system. Models
are abstractions that omit lots of real features of a physical
systems. We have similar situation in calculus, mechanics,
etc., where we have straight lines, perfect circles, no friction,
etc.

Ryszard Janicki Solutions to Some Problems 16/49

Typical Models of Time

o Linear Time: used for Linear Temporal Logic (LTL)

° ® ° ®-----—--

start

@ Branching time: used for CTL, CTL* logics, etc.

ﬁt —————————
start

Ryszard Janicki Solutions to Some Problems 17/49

Definition

A model M = (S,—, L) for CTL is a set of states S endowed
witha transition relation — (a binary relation on S), such that
every s € S has some s’ € S with s — s’ and a labeling function
L:S — 2Atoms,

O
L(so) = {p,a}, L(s1) = {q,r}, L(s2) = {r}

Ryszard Janicki Solutions to Some Problems 18/49

No deadlock

Definition

“No deadlock” iff for every s € S there is at least one s’ € S
such that s — s,

A system with a deadlock A system without a deadlock, sy is

a “deadlock” state

T = = = =

Ryszard Janicki Solutions to Some Problems 19/49

Examples of CTL Formulas

@ An upwards traveling elevator at the second floor does not

change its direction when it has passengers wishing to go to
the fifth floor:

AG(floor = 2 A direction = up N\ ButtonPressed5 =
Aldirection = up U floor = 5])
@ The elevator can remain idle on the third floor with its doors

closed:

AG((floor = 3 A idle N door = closed) =
EG(floor = 3 A idle A\ door = closed))

e 'floor = 2, 'direction = up', ButtonPressed5’,
"door = closed’, etc. are names of atomic formulas.

Ryszard Janicki Solutions to Some Problems 20/49

Semantics: lllustrations

Sy SI S2 S3 S4 S5 S ST S S9 SI0

v

®
each of the states from s3 to sq satisfies @ U W

o If the given set of states is finite, then we may compute the
set of all states satisfying ®.

e If M is obvious, we will write s = ®.

Ryszard Janicki Solutions to Some Problems 21/49

Typical Models of Time

o Linear Time: used for Linear Temporal Logic (LTL)

° ® ° ®-----—--

start

@ Branching time: used for CTL, CTL* logics, etc.

ﬁt —————————
start

Ryszard Janicki Solutions to Some Problems 22/49

LTL Syntax

Gi=L| T p|(-®) [(®AD)[(®VP)](®=)]
(GO) [(FP) | (XP) [(®UP)|(® W O)[(PRP)
where p ranges over atomic formulas/descriptions.
o 1 - false, T - true
o GO, FO, XD, dU P, d W P, d R D are temporal
connections.
@ X means “neXt moment in time”
@ F means “some Future moments"”
@ G means “all future moments (Globally)”
@ U means “Until”
@ W means “Weak-until”
@ R means “Release”
@ An LTL formula is evaluated on a path, or a set of paths.
@ A set of paths satisfies ® if every path in the set satisfies ®.
o Consider the path 7 £ S1 — S — ...
We write 7 for the suffix starting at s;, i.e. 7' is
Si — Sit1 — Si42 — ...

Ryszard Janicki Solutions to Some Problems 23/49

Practical Patterns of LTL Specifications (1)

What kind of practically relevant properties can we check with
formulas of LTL?

Suppose atomic descriptions include some words as busy,
requested, ready, etc.

@ It is impossible to get a state where started holds but ready
does not hold:
G—(started N —ready)

e For any state, if a request (of some resource) occurs, then it
will eventually be acknowledged:
G(requested = F acknowledged)

@ A certain process is enabled infinitely often on every
computation path:

GF enabled
@ On all path, a certain process will eventually be permanently
deadlocked:

FG deadlock

Ryszard Janicki Solutions to Some Problems 24/49

Impossible LTL Specifications

There are some things which are not possible to say in LTL,
however. One big class of such things are statements which assert
the existence of a path, such as these ones:

e For any state it is possible to get a restart state (i.e., there is
a path from all states to a state satisfying restart).

@ The lift can remain idle on the third floor with its doors closed
(i.e., from the state in which it is on the third floor, there is a
path along it stays there).

LTL cannot express these because it cannot directly assert the

existence of path. CTL has operators for quantifying over paths,
and can express these properties.

Ryszard Janicki Solutions to Some Problems 25/49

CTL vs LTL

@ It is possible to get a state where started holds but ready does

not hold:
CTL: EF (started N —ready)
LTL: G—(started N —ready)

e For any state, if a request (of some resource) occurs, then it
will eventually be acknowledged:
CTL: AG(requested = AF acknowledged)
LTL: G(requested = F acknowledged)

@ A certain process is enabled infinitely often on every
computation path:
CTL: AG(AF enabled)
LTL: GF enabled

@ Whatever happens, a certain process will eventually be
permanently deadlocked:
CTL: AF(AG deadlock)
LTL: FG deadlock

Ryszard Janicki Solutions to Some Problems 26/49

CTL* Logic

It allows nested modalities and boolean connectives before
applying the path quantifiers E and A.

o A[(pUr)V (g U r)]: along all paths, either p is true until r,
or g is true until r.

ZAl(pVq) Ur]
It can be expressed in CTL, but it is not easy.

e A[X pV X X p]: along all paths, p is true in the next state, or
the next but one.
ZAX pV AXAX p
It cannot be expressed in CTL.

@ E[GF pJ: there is a path along which p is infinitely often true.
% EGEF p
It cannot be expressed in CTL.

Ryszard Janicki Solutions to Some Problems 27/49

CTL* Syntax

The syntax of CTL* involves two classes of formulas:

o state formulas, which are evaluated in states:
Pu=L[T[p|(=®P)](PAP)|(PVP)][(P =)| Ale] | E[q]

where p is any atomic formula and « is any path formula.
o path formulas, which are evaluated along paths:

a=¢|(-a)|(ana)|(aVa)|(a=a)|
(@Ua) | (Ga)|(Fa)l(Xa)

where ® is any state formula.

Ryszard Janicki Solutions to Some Problems 28/49

LTL, CTL vs CTL*

@ LTL is a subset of CTL*.
Although the syntax of LTL does not include A, E, the
semantic viewpoint of LTL is that we consider all path.
Therefore, the LTL formula « is equivalent to the CTL*
formula Ala].

@ CTL is a subset of CTL*.
CTL is a fragment of CTL* in which we restrict the form of
path formulas to:

az=(PUP)|(GP)|(FP)|(XP)

Ryszard Janicki Solutions to Some Problems 29/49

LTL, CTL vs CTL*

CTL*

Ryszard Janicki Solutions to Some Problems 30/49

Problem: Express in LTL and CTL: ‘Whenever p is followed by g
(after some finite amount of steps), then the system enters an
‘interval’ in which no r occurs until t'.

Solution:

The process of translating informal requirements into formal
specifications is subject to various pitfalls.

One of them is simply ambiguity.

For example it is unclear whether “after some finite steps”
means “at least one, but finitely many”, or whether zero steps
are allowed as well.

It may also be debatable what “then” exactly means in “
then the system enters..."”.

We chose to solve this problem for the case when zero steps
are not admissible, mostly since “followed b"” suggest a real
state transition to tale place.

Ryszard Janicki Solutions to Some Problems 31/49

Problem: Express in LTL and CTL: ‘Whenever p is followed by g
(after some finite amount of steps), then the system enters an
‘interval’ in which no r occurs until t'.

Solution (continued):
The LTL formula is the following

G(p = XG(—qV —rUt)),
while an equivalent CTL formula is:
AG(p = AXAG(—qV A-rUt])).

It says: At any state, if p is true, then at any state which one can
reach with at least one state transition from here, either g is false,
or r is false until t becomes true (for all continuations of the
computation path).

This is evidently the property we intended to model.

Various other “equivalent” solutions can be given.

Ryszard Janicki Solutions to Some Problems 32/49

Problem: Express in LTL and CTL: ‘Between the events g and r,
p is never true'

Solution:
@ Ambiguities: Is the case when r or g never happens allowed?
@ We assume that it is not.
@ What exactly “between” means?

@ We assume “between” is “closed interval” so p is false in the
state that holds g and in the state that holds r.

LTL: G(Fg A Fr A (=g V (—pUr))

CTL: AG(AFg N AFr) NAG(q = A(—pUr))

Ryszard Janicki Solutions to Some Problems 33/49

Problem: Consider the CTL formula

AG(p = AF(s N AX(AF t))).
Explain what exactly it expresses in terms of the order of
occurrences of events p, s and t.

Solution:

@ For every history, if p occurs then p may occur simultaneously
with s (as “future includes present”) or s occurs after p, and
t always occurs after p.

@ If p does not occur in a history, then any order between s and
t is allowed.

Ryszard Janicki Solutions to Some Problems 34/49

Problem: ~ Which of the following pairs of CTL formulas are
equivalent? Prove either case.

(a) EF ® and EG ¢
(b) EF &V EF W and EF(d v W)
(c) AF &V AF V and AF(® V V)

@ For non-equivalence, we need to show a counterexample.

Ryszard Janicki Solutions to Some Problems

35/49

Problem (a): EF & # EG .

Consider the below model:
S
S:D St S&

We have sp = EF r since L(s1) = {r}, but
so = EG rsince r ¢ L(sp) Ar ¢ L(s1).

Ryszard Janicki Solutions to Some Problems 36/49

Problem (b): We have s = EF ® V EF V iff s = EF($ V V).

Proof.

(=) First assume that s = EF ® vV EF V.

Then, without loss of generality, we may assume that s = EF ¢
(the other case is shown in the same manner).

This means that there is a future state s, reachable from s, such
that s, = ®. But then s, = ® v ¥ follows.

But this means that there is a state reachable form s which
satisfies ® vV V.

Thus s = EF(® V V).

(<) Assume s = EF(® VvV V).

Then there exists a state s,,,, reachable from s, such that

Sm = @V Psi.

Without loss of generality, we may assume that s, = ®.

But then we can conclude that s = EF®, as s, is reachable from
s.

Therefore, we also have s = EF & Vv EF V.

Ryszard Janicki Solutions to Some Problems 37/49

Problem (c): While we have that s = (AF ® V AF W implies
s = AF(® Vv V) the converse is not true.

Proof:
Consider the modeJ:

Clearly i = AF(p V q) since L(s)N{p,q} # () and

L(t)N{p,q} # 0.
But i = AF p, see the path i -t -t —t — ..., and

i = AF q, see the path i s - s —s— ...

Ryszard Janicki Solutions to Some Problems 38/49

Problem: Use the definition of |= to explain why s = AG AF ¢

means “® is true infinitely often along every paths starting at s ”.

Solution:

@ s = AG AF ® means that for every s’ reachable from s, i.e.
s —* ', we have s’ = AF ®.

e s’ = AF ® means that for each path starting from s’, there
exists s” reachable from s’, i.e. s' —* s” such that s” = ®.

o For a given path 7 starting from s, let nextg®(s) be the state
s¢ such that s¢ = ® and n such that s —" sg is minimal, i.e.
the distance between s and nextg®(s) is minimal.

@ In general nextg®(s) may not exists, but is that case for each
s’ such that s —* &', for nexty” (s') always does exist.

o Define s* = nexty(s), s> = nexty (s1), s° = nexty?(s), .. .

@ Such a sequence always exists no matter which path 75 we
chose and this sequence is always infinite.

Ryszard Janicki Solutions to Some Problems 39/49

Problem: The meaning of temporal operators AU, EU, AG,
EG, AF, and EF was defined to be such that “the future includes
the present”. For example, EF p is true for a state if p is true for
that state already. Often one would like corresponding operators
such the “the future excludes the present”. For instance newAG ¢
could be defined as AX(AG ¢).
Define newEG, newAF , newAU, newEU.
Solutions:

newkEG ¢ : EX(AG ®)

newAF & : AX(AF o)

@ As for the U connective, we basically want to maintain the
nature of the ®; U &, pattern, but what changes is that we
ban the extreme case of having ®, at the first state.

@ Thus we have to make sure that ®4 is true in the current
state and conjoin this with the shifted AU, respectively EU
operators.
newAU : &1 A AX(A[®1 U 93))
newEU : &3 N EX(E[®1 U $3))

Ryszard Janicki Solutions to Some Problems 40/49

Problem: Sometimes, in formal logic, we are forced to prove
things that intuitively look obvious.

Show that a CTL formula & is true on infinitely many states of a
computation path so — s; — sp — ... iff for all n > 0 there is
some m > n such that s, = ®.

Solution:
(=) Let ® is true on infinitely many states of a computation
path so — s1 — s — Suppose that the negation of our claim

is true. This means that there exists some n > 0 such that for all
m > n we have s [~ ®. But then ® could only be true on finitely
many states of that path, namely at most at the states
S0,51,52,...57—1-

(<) Suppose that for every n > 0, there is some m > n with

Sm = ®. Assume that @ is only true at finitely many states of that
path. The there has to be a maximal number ng such that no s,
with m > ng satisfies ®. But this is a contradiction to the
assumption “for all n > 0", so in particular ng.

Ryszard Janicki Solutions to Some Problems 41/49

Problem: Show that the following CTL* formulas are not
equivalent: A[X pV XX p] and AX pV AX AX p.

Solution.

One can show that A[X pV XX p] implies AX pV AX AX p
(standard proof, | will omit).

Consider the model:

s = A[X pV XX p] since every path has to turn left, i.e. X p, or

right. i.e. XX p.
s = AX p (right turn), see the path s — s, — s3 — ...

s = AXAX p (left turn), see the path s — 51 > s — s — ..

Ryszard Janicki Solutions to Some Problems

42/49

Problem: Invent CTL formulas equivalent for the following CTL*
formulas

(a) E[FpA(qUr)]
(b) AlF p = Fd]

Solutions:
(a) E[F pA(q U r)]is equivalent to
ElgU (pAElqUr]]VIqU(rAEF p).
(b) A[F p = F q] is equivalent to =E[F p A G—q],
which we can write as =~E[-q U (p A EG —q], which is in CTL.

Ryszard Janicki Solutions to Some Problems 43/49

Dining Philosophers

@ Five philosophers sit around a circular table. Each philosopher
spends his life alternately thinking and eating. To eat, a philosopher
needs two forks, but unfortunately there are only five forks on the
circulr table and each philosopher is only allowed to use the two
forks nearest to him.

Ryszard Janicki Solutions to Some Problems 44/49

Finite Automata vs Kripke Structures

@ For Finite Automata, transitions are actions, while states do
not have standard interpretations.

initial S, e S <«
state —— °

Fival stet®

@ For Kripke Structures, transitions are just changes of states:

@ Orthogonal interpretations!

Ryszard Janicki Solutions to Some Problems 45/49

Petri Nets with All Actions in Places

Example |

read read

Add a lock to ensure mutual exclusion

@ Reachability graphs for Petri nets with actions in places
correspond intuitively to Kripke structures!

Ryszard Janicki Solutions to Some Problems 46/49

Kripke Structure for Dining Philosophers

@ Atomic Predicates(for various cases):
Ph; T - philosopher i is thinking
Ph;F; - philosopher i has fork j
PhiF¢; «y - philosopher i has forks j and k
Ph;E - philosopher i is eating
Ph; TD - philosopher i has a ticket to dining room
Ph;D - philosopher i is in dining room
F; - fork i is free
Tic; - i tickets remain
tic; - ticket number 7 not taken

@ Some properties of atomic predicates.
PhiFyj iy = PhiFyejy for all j, k, and always j # k.
For standard version Ph;F; implies i =jVj=i+1 mod 5.

For standard version Ph;fy; s, implies i =j Ak =i+1 mod 5.
For each state s, if PhiFj € L(s) and Fy € L(s) then j # k.
For each state s, if Ph;F; € L(s) and PhF; € L(s) then
i#EkNj#I

Ryszard Janicki Solutions to Some Problems 47/49

States(for Model Checking the states are global)

If sp is the initial state than

L(so) = {Ph1T,PhyT,Ph3T, PhsT,PhsT, Fi,Fy, F3, Fa, Fs}.
For ‘deadlock’ state sq,

L(sq4) = {Ph1F1, PhaFy, Ph3F3, PhyFy, PhsFs}

A legal state s with 2 philosophers eating and 3 philosophers
thinking, L(s) = {Ph1E, Ph3E, Phy T, PhyT,PhsT, F5}

States are standardly defined by their labels, i.e. atomic
predicates that hold in them.

Extra atomic control predicates may be added, as turn0, turnl
for mutual exclusion solution.

States that are ‘impossible’ as s with
L(s) = {PhiE, Ph3E,Phy T,Phs T, PhsT, F4, F5} are
allowed, and often useful!

Ryszard Janicki Solutions to Some Problems 48/49

@ Transitions
For example sy — s1, when
L(SO) = {Ph1T7 Ph2T7 Ph3T7 Ph4T7 Ph5T7 Fl)F27 F37 F47F5}
and
L(s1) = {Ph1F1,PhyT,PhsT, PhyT,PhsT, Fy, F3, Fy, F5}

For example sy — s1, when sy as above and
L(Sl) = {Ph1F12, Ph2 T, Ph3 T, Ph4 T, Ph5 T, F3, F4, F5}, for a
version with simultaneous pick up of two forks.

@ We need some simple programming language to represent
states and transitions, so we can program an appropriate
Kripke structure.

Ryszard Janicki Solutions to Some Problems 49/49

