
Concurrent Processes
SE 3BB4

Ryszard Janicki

Department of Computing and Software, McMaster University, Hamilton,
Ontario, Canada

Ryszard Janicki Concurrent Processes 1/27

Concurrent Processes

Concurrent process is a composition of sequential processes.

Hidden assumption: Concurrent systems can be decomposed
into sequential systems.

1 Process (sequential): A sequence of action

↓
2 Model of a process: Finite state machine

↓
3 A possible implementation of processes: Threads in Java.

The approach 1,2,3 is not the only one, but we will concentrate on
it in this course.

Ryszard Janicki Concurrent Processes 2/27

Concepts: Processes - units of sequential execution

Models: Finite State Processes (FSP)
To model processes as sequences of actions
Labelled Transition Systems (LTS)
To analyze,display and animate behaviour

Practice: Java threads

—————————————————————————

LTS - graphical form

FSP - algebraic form

—————————————————————————

Tool LTSA takes FSP and analyses them.

Different names for the same concepts:
LTS - automata, state machines
FSP - CSP (Communicating Sequential Processes), Processes
in Process Algebras

Ryszard Janicki Concurrent Processes 3/27

Modelling Processes

A process is the execution of a sequential program. It is
modeled as a finite state machine which transits from state to
state by executing a sequence of atomic actions.

Concurrency: processes & threads 5
©Magee/Kramer 2nd Edition

modeling processes

A process is the execution of a sequential program. It is
modeled as a finite state machine which transits from
state to state by executing a sequence of atomic actions.

on

off

0 1
a light switch

LTS

a sequence of
actions or traceon off on off on off ……….

Can finite state models produce infinite traces?How can it be modelled by an algebraic expression?

Ryszard Janicki Concurrent Processes 4/27

FSP - action prefix

If x is an action and P is a process then

(x → P)

describes a process that initially engages in the action x and
then behaves exactly as described by P.

Concurrency: processes & threads 6
©Magee/Kramer 2nd Edition

FSP - action prefix

If x is an action and P a process then (x-> P)
describes a process that initially engages in the action
x and then behaves exactly as described by P.

ONESHOT = (once -> STOP). ONESHOT state
machine

(terminating process)

once

0 1

Convention: actions begin with lowercase letters
PROCESSES begin with uppercase letters

Convention: actions begin with lowercase letters while
PROCESSES begin with uppercase letters

Ryszard Janicki Concurrent Processes 5/27

FSP -action prefix and recursion

Concurrency: processes & threads 7
©Magee/Kramer 2nd Edition

FSP - action prefix & recursion

SWITCH = OFF,
OFF = (on -> ON),
ON = (off-> OFF).

Repetitive behaviour uses recursion:

Substituting to get a more succinct definition:

on

off

0 1

SWITCH = OFF,
OFF = (on ->(off->OFF)).

And again:

SWITCH = (on->off->SWITCH).

Ryszard Janicki Concurrent Processes 6/27

FSP model of a traffic light (in Europe)

Concurrency: processes & threads 9
©Magee/Kramer 2nd Edition

FSP - action prefix

FSP model of a traffic light :
TRAFFICLIGHT = (red->orange->green->orange

-> TRAFFICLIGHT).

LTS generated using LTSA:
red orange green

orange

0 1 2 3

Trace:
red orange green orange red orange green …

Ryszard Janicki Concurrent Processes 7/27

FSP - choice
If x and y are actions then

(x → P | y → Q)

describes a process which initially engages in either of the
actions x or y . After the first action has occurred, the
subsequent behavior is described by P if the first action was x
and Q if the first action was y .

Concurrency: processes & threads 11
©Magee/Kramer 2nd Edition

FSP - choice

FSP model of a drinks machine :
DRINKS = (red->coffee->DRINKS

|blue->tea->DRINKS
).

LTS generated using LTSA:

Possible traces?

red

blue

coffee

tea

0 1 2

Ryszard Janicki Concurrent Processes 8/27

Non-deterministic choice

Process (x → P | x → Q) describes a process which engages
in x and then behaves as either P or Q.

Concurrency: processes & threads 12
©Magee/Kramer 2nd Edition

Non-deterministic choice

Process (x-> P | x -> Q) describes a process which
engages in x and then behaves as either P or Q.

COIN = (toss->HEADS|toss->TAILS),
HEADS= (heads->COIN),
TAILS= (tails->COIN).

Tossing a
coin.

toss

toss

heads

tails

0 1 2

Possible traces?

Ryszard Janicki Concurrent Processes 9/27

Modeling failure

How do we model an unreliable communication channel which
accepts in actions and if a failure occurs produces no output,
otherwise performs an out action?

Concurrency: processes & threads 13
©Magee/Kramer 2nd Edition

Modeling failure

How do we model an unreliable communication channel
which accepts in actions and if a failure occurs produces
no output, otherwise performs an out action?

Use non-determinism...

CHAN = (in->CHAN
|in->out->CHAN
).

in

in

out

0 1

Ryszard Janicki Concurrent Processes 10/27

FSP -indexed processes and actions

Single slot buffer that inputs a value in the range 0 to 3 and
then outputs that value.

Concurrency: processes & threads 14
©Magee/Kramer 2nd Edition

FSP - indexed processes and actions

Single slot buffer that inputs a value in the range 0 to 3
and then outputs that value:

BUFF = (in[i:0..3]->out[i]-> BUFF).
equivalent to

or using a process parameter with default value:

BUFF = (in[0]->out[0]->BUFF
|in[1]->out[1]->BUFF
|in[2]->out[2]->BUFF
|in[3]->out[3]->BUFF
).

indexed actions
generate labels of
the form
action.index

BUFF(N=3) = (in[i:0..N]->out[i]-> BUFF).

Ryszard Janicki Concurrent Processes 11/27

More helpful syntax

Concurrency: processes & threads 15
©Magee/Kramer 2nd Edition

FSP - indexed processes and actions

const N = 1
range T = 0..N
range R = 0..2*N

SUM = (in[a:T][b:T]->TOTAL[a+b]),
TOTAL[s:R] = (out[s]->SUM).

index expressions to
model calculation:

in.0.0

in.0.1
in.1.0

in.1.1

out.0

out.1

out.2

0 1 2 3

Local indexed process
definitions are equivalent
to process definitions
for each index value

Notation: in[0][1] = in.0.1, out[2] = out.2, etc.

Ryszard Janicki Concurrent Processes 12/27

FSP - guarded actions

The choice (when B x → P | y → Q) means that when the
guard B is true then the actions x and y are both eligible to
be chosen, otherwise if B is false then the action x cannot be
chosen.

Concurrency: processes & threads 16
©Magee/Kramer 2nd Edition

FSP - guarded actions

The choice (when B x -> P | y -> Q) means that
when the guard B is true then the actions x and y are
both eligible to be chosen, otherwise if B is false then
the action x cannot be chosen.

COUNT (N=3) = COUNT[0],
COUNT[i:0..N] = (when(i<N) inc->COUNT[i+1]

|when(i>0) dec->COUNT[i-1]
).

inc inc

dec

inc

dec dec

0 1 2 3

It usually occurs in the form
(when B x → P | when ¬B y → Q), so the choice between
x → P and y → Q is exclusive.

Ryszard Janicki Concurrent Processes 13/27

A countdown timer which beeps after N ticks, or can be
stopped.

Concurrency: processes & threads 17
©Magee/Kramer 2nd Edition

FSP - guarded actions

A countdown timer which beeps after N ticks, or can be
stopped.
COUNTDOWN (N=3) = (start->COUNTDOWN[N]),
COUNTDOWN[i:0..N] =

(when(i>0) tick->COUNTDOWN[i-1]
|when(i==0)beep->STOP
|stop->STOP
).

start

stop

tick

stop

tick

stop

tick beep
stop

0 1 2 3 4 5
COUNTDOWN ↑ COUNTDOWN[2] ↑ COUNTDOWN[0] STOP

COUNTDOWN[3] COUNTDOWN[1]

Ryszard Janicki Concurrent Processes 14/27

Limitations of (when B x → P | y → Q)

The domain of B must be finite. Otherwise we cannot create
any LTS.

Concurrency: processes & threads 16
©Magee/Kramer 2nd Edition

FSP - guarded actions

The choice (when B x -> P | y -> Q) means that
when the guard B is true then the actions x and y are
both eligible to be chosen, otherwise if B is false then
the action x cannot be chosen.

COUNT (N=3) = COUNT[0],
COUNT[i:0..N] = (when(i<N) inc->COUNT[i+1]

|when(i>0) dec->COUNT[i-1]
).

inc inc

dec

inc

dec dec

0 1 2 3
In this case the domains of (i < N) and (i > 0) consist of four
elements i = 0, 1, 2, 3, so COUNT expands to:

COUNT = COUNT0
COUNT0 = (inc − > COUNT1)
COUNT1 = (inc − > COUNT2 | dec − > COUNT0)
COUNT2 = (inc − > COUNT3 | dec − > COUNT1)
COUNT3 = (dec − > COUNT2)

so, the states correspond to the values 0, 1, 2, 3, and LTS is:

Concurrency: processes & threads 16
©Magee/Kramer 2nd Edition

FSP - guarded actions

The choice (when B x -> P | y -> Q) means that
when the guard B is true then the actions x and y are
both eligible to be chosen, otherwise if B is false then
the action x cannot be chosen.

COUNT (N=3) = COUNT[0],
COUNT[i:0..N] = (when(i<N) inc->COUNT[i+1]

|when(i>0) dec->COUNT[i-1]
).

inc inc

dec

inc

dec dec

0 1 2 3

Ryszard Janicki Concurrent Processes 15/27

LTS → FSP

A = (a → B | b → C)
B = (a → B | b → D)
C = (d → A)
D = (a → C | c → B)

=⇒

Ryszard Janicki Concurrent Processes 16/27

FSP → LTS

A = (a → b → B | b → (a → c → A | b → B))
B = (a → c → (a → A | b → b))
often some parentheses can be omitted for readability, i.e., we may
write:
A = a → b → B | b → (a → c → A | b → B)
B = a → c → (a → A | b → B)
———————————————————————————–

B1 = b → B
A1 = c → A
D1 = a → A1 | b → B
A = a → B1 | b → D1

B2 = a → A | b → B
A2 = c → B2

B = a → A2

=⇒

=⇒

Ryszard Janicki Concurrent Processes 17/27

Process alphabets

The alphabet of a process is the set of actions in which it can
engage.

Process alphabets are implicitly defined by the actions in the
process definition.

Alphabet extension can be used to extend the implicit
alphabet of a process:

WRITER = (write[1] → write[3] → WRITER) + {write[0..3]}

Alphabet of WRITER is the set
{write[0..3]} = {write[0],write[1],write[2],write[3]}.

Ryszard Janicki Concurrent Processes 18/27

Implementing processes

Concurrency: processes & threads 22
©Magee/Kramer 2nd Edition

2.2 Implementing processes

Modeling processes as
finite state machines
using FSP/LTS.

Implementing threads
in Java.

Note: to avoid confusion, we use the term process when referring to
the models, and thread when referring to the implementation in Java.

Process =⇒ models as FSP or LTS

Thread =⇒ implementation in Java

Ryszard Janicki Concurrent Processes 19/27

Concurrency, Parallelism: definitions

Concurrency: Logically simultaneous processing.Does not
imply multiple processing elements (PEs). Requires
interleaved execution on a single PE.

Parallelism: Physically simultaneous processing.Involves
multiple PEs and/or independent device operations.

The textbook uses the terms parallel and concurrent
interchangeably and generally do not distinguish between real and
pseudo-concurrent execution.

These are the authors definitions!

They are NOT universally accepted!

WHAT ABOUT SIMULTANEITY AND
SIMULTANEOUS EXECUTIONS?! They may make a
substantial difference!

Ryszard Janicki Concurrent Processes 20/27

Modeling Concurrency

How should we model process execution speed?
Arbitrary speed (we abstract away time)

How do we model concurrency?
Arbitrary relative order of actions from different processes
(interleaving but preservation of each process order)

!!? MANY CONSIDER THIS APPROACH AS AN
OVERSIMPLIFICATION!

What is the result?
It provides a general model independent of scheduling
(asynchronous model of execution)

!!? MANY CONSIDER THE LAST STATEMENT AS AN
UNJUSTIFIED OVERSTATEMENT!

Ryszard Janicki Concurrent Processes 21/27

Parallel composition - action interleaving

If P and Q are processes then (P||Q) represents the
concurrent execution of P and Q. The operator || is the
parallel composition operator.

Concurrency: concurrent execution 5
©Magee/Kramer 2nd Edition

parallel composition - action interleaving

If P and Q are processes then (P||Q) represents the
concurrent execution of P and Q. The operator || is
the parallel composition operator.

ITCH = (scratch->STOP).
CONVERSE = (think->talk->STOP).

||CONVERSE_ITCH = (ITCH || CONVERSE).
Disjoint

alphabets

think talk scratch
think scratch talk
scratch think talk

Possible traces as
a result of action
interleaving.

Ryszard Janicki Concurrent Processes 22/27

Parallel composition - action interleaving

Concurrency: concurrent execution 6
©Magee/Kramer 2nd Edition

parallel composition - action interleaving

(0,0) (0,1) (0,2) (1,2) (1,1) (1,0)

from CONVERSEfrom ITCH

2 states 3 states

ITCH

scratch

0 1
CONVERSE

think talk

0 1 2

CONVERSE_ITCH

scratch

think

scratch

talk scratch

talk think

0 1 2 3 4 5

2 x 3 states

Transformation into LTS is NOT the best solution,
transformation into Petri nets is better!

Ryszard Janicki Concurrent Processes 23/27

Parallel composition: Algebraic Laws

Commutativity: P ∥ Q = Q ∥ P

Associativity: P ∥ (Q ∥ R) = (P ∥ Q) ∥ R = P ∥ Q ∥ R

———————————————————————————–
Problem: What these equalities mean?

The set if traces that is generated is the same for the left and
the right side, but is this sufficient?

Semantics is not defined! In a decent scientific paper such
“laws” would not survive!

Semantics should be defined before!

LTS are also the same for the left and right side of equations?
Do they define semantics?

Example (Clock Radio)

CLOCK = tick → CLOCK

RADIO = on → off → RADIO

∥ CLOCK RADIO = CLOCK ∥ RADIO

Ryszard Janicki Concurrent Processes 24/27

Modelling interaction - shared actions

If processes in a composition have actions in common, these
actions are said to be shared. Shared actions are the way that
process interaction is modeled. While unshared actions may
be arbitrarily interleaved, a shared action must be executed at
the same time by all processes that participate in the shared
action.

Example (Maker-user)

MAKER = make → ready → MAKER

USER = ready → use → USER

∥ MAKER USER = Maker ∥ USER

Traces:
make → ready → use → make → ready → make → use → . . .

Ryszard Janicki Concurrent Processes 25/27

Example (Maker-user)

MAKER = make → ready → MAKER

USER = ready → use → USER

∥ MAKER USER = Maker ∥ USER

LTS:

Ryszard Janicki Concurrent Processes 26/27

Other models

IT IS MUCH EASIER AND MORE INTUITIVE TO
REPRESENT SYSTEMS LIKE MAKER-USER WITH PETRI
NETS!

Ryszard Janicki Concurrent Processes 27/27

