Concurrent Processes

SE 3BB4

Ryszard Janicki

Department of Computing and Software, McMaster University, Hamilton,
Ontario, Canada

Ryszard Janicki Concurrent Processes 1/27

Concurrent Processes

@ Concurrent process is a composition of sequential processes.
@ Hidden assumption: Concurrent systems can be decomposed
into sequential systems.

@ Process (sequential): A sequence of action

0

@ Model of a process: Finite state machine

i}
© A possible implementation of processes: Threads in Java.

The approach 1,2,3 is not the only one, but we will concentrate on
it in this course.

Ryszard Janicki Concurrent Processes 2/27

Concepts:
Models:

Practice:

Processes - units of sequential execution

Finite State Processes (FSP)

To model processes as sequences of actions
Labelled Transition Systems (LTS)

To analyze,display and animate behaviour

Java threads

LTS - graphical form
FSP - algebraic form

Tool LTSA takes FSP and analyses them.

Different names for the same concepts:

LTS - automata, state machines

FSP - CSP (Communicating Sequential Processes), Processes
in Process Algebras

Ryszard Janicki Concurrent Processes

3/27

Modelling Processes

@ A process is the execution of a sequential program. It is
modeled as a finite state machine which transits from state to
state by executing a sequence of atomic actions.

on

a light switch
LTS

off

S
on>off2>on>off>on>o0ff> a sequence of

actions or frace

@ How can it be modelled by an algebraic expression?

Ryszard Janicki Concurrent Processes

4/21

FSP - action prefix

@ If x is an action and P is a process then
(x = P)

describes a process that initially engages in the action x and
then behaves exactly as described by P.

ONESHOT = (once -> STOP). ONESHOT state
once machine

m (terminating process)

@ Convention: actions begin with lowercase letters while
PROCESSES begin with uppercase letters

Ryszard Janicki Concurrent Processes 5/27

FSP -action prefix and recursion

Repetitive behaviour uses recursion: on
SWITCH = OFF,
OFF = (on -> ON),
ON = (off-> OFF).

off
Substituting to get a more succinct definition:

SWITCH = OFF,

OFF = (on ->(off->0FF)).
And again:

SWITCH = (on->0ff->SWITCH).

Ryszard Janicki Concurrent Processes 6/27

FSP model of a traffic light (in Europe)

FSP model of a traffic light :

TRAFFICLIGHT = (red->orange->green->orange
-> TRAFFICLIGHT).

LTS generated using L T5A:

red orange green
Trace: orange

red->orange—>green—>orange->red->orange->green ..

Ryszard Janicki Concurrent Processes 7/27

FSP - choice

@ If x and y are actions then
(x> Ply—Q)

describes a process which initially engages in either of the
actions x or y. After the first action has occurred, the
subsequent behavior is described by P if the first action was x
and Q if the first action was y.

FSP model of a drinks machine :

DRINKS = (red->coffee->DRINKS
|blue->tea->DRINKS

)-
LTS generated using L TSA:

blue

Possible traces?

tea

Ryszard Janicki Concurrent Processes 8/27

Non-deterministic choice

@ Process (x — P | x — Q) describes a process which engages
in x and then behaves as either P or Q.

COIN = (toss->HEADS]toss->TAILLS),
HEADS= (heads->COIN), toss
TAILS= (tails->COIN).

Tossing a
coin.

Possible traces?

tails

Ryszard Janicki Concurrent Processes 9/27

Modeling failure

@ How do we model an unreliable communication channel which
accepts in actions and if a failure occurs produces no output,
otherwise performs an out action?

Use non-determinism... in

CHAN = (in->CHAN
I in->out->CHAN out
)-

Ryszard Janicki Concurrent Processes

10/27

FSP -indexed processes and actions

@ Single slot buffer that inputs a value in the range 0 to 3 and
then outputs that value.

BUFF = (in[i:0..3]->out[i]-> BUFF).
equivalent to

BUFF = (in[0]->out[0]->BUFF indexed actions
|in[1]->out[1]->BUFF generate labels of
| in[2]->out[2]->BUFF the form
| in[3]->out[3]->BUFF action.index
).

or using a process parameter with default value:

BUFF(N=3) = (in[i:0..N]->out[i]-> BUFF).

Ryszard Janicki Concurrent Processes 11/27

More helpful syntax

in.1.1

Local indexed process
definitions are equivalent
to process definitions
for each index value

index expressions to
model calculation:

const N =1
range T = 0..N
range R = 0..2*N
out.2
SUM = (in[a:T][b:T]->TOTAL[a+b]),
TOTAL[s:R] = (out[s]->SUM).

e Notation: in[0][1] = in.0.1, out[2] = out.2, etc.

Ryszard Janicki Concurrent Processes 12/27

FSP - guarded actions

@ The choice (when B x — P |y — Q) means that when the
guard B is true then the actions x and y are both eligible to
be chosen, otherwise if B is false then the action x cannot be

chosen.

COUNTI[O1,
(when(i<N) inc->COUNT[i+1]
|when(i>0) dec->COUNT[i-1]

COUNT (N=3)
COUNT[i:0..N]

)-
inc inc inc
dec dec dec

@ It usually occurs in the form
(when B x — P | when =B y — Q), so the choice between
x — P and y — @ is exclusive.

Ryszard Janicki Concurrent Processes 13/27

@ A countdown timer which beeps after N ticks, or can be
stopped.

COUNTDOWN (N=3)

COUNTDOWNLi:0.-N]
(when(i>0) tick->COUNTDOWN[i-1]

|when(i==0)beep->STOP

| stop->STOP P

).

(start->COUNTDOWN[N]),

COUNTDOWN T COUNTDOWN|2] T COUNTDOWN([O0] STOP
COUNTDOWN(3] COUNTDOWN|1]
Ryszard Janicki Concurrent Processes

14/27

Limitations of (when B x — P |y — Q)

@ The domain of B must be finite. Otherwise we cannot create
any LTS.

COUNT (N=3)
COUNT[i:0. -N]

COUNT[O],
(when(i<N) inc->COUNT[i+1]
Jwhen(i>0) dec->COUNT[i-1]
)-

@ In this case the domains of (i < N) and (i > 0) consist of four

elements i = 0,1,2,3, so COUNT expands to:

COUNT = COUNTO
COUNTO = (inc — > COUNT1)
COUNT1 = (inc — > COUNT?2 | dec — > COUNTO)
COUNT2 = (inc — > COUNT3 | dec — > COUNT1)
COUNT3 = (dec — > COUNT?2)

@ so, the states correspond to the values 0,1,2,3, and LTS is:

inc inc inc
dec dec dec

Ryszard Janicki Concurrent Processes 15/27

LTS — FSP

A=(a—B|b— ()

B=(a— B|b— D)
T C=(d— A

D=(a—Clc— B)

Ryszard Janicki Concurrent Processes

16/27

FSP — LTS

A=(a—-b—>B|b—(a—c—A|b— B))
=(a—=c—(a—A|b— b))

often some parentheses can be omitted for readability, i.e., we may

write:

A=a—b—B|b—(a—c—A|b— B)

B=a—c—(a—A|b—B)

Bi=b—B = 020
Al=c— A K °
Dl—a—>A1]b—>B:>O<'~M
A—a—>81‘b—>D1
Bo=a—A|lb— B

Ar=c— B>

B:a—>A2

Ryszard Janicki Concurrent Processes 17/27

Process alphabets

@ The alphabet of a process is the set of actions in which it can
engage.

@ Process alphabets are implicitly defined by the actions in the
process definition.

@ Alphabet extension can be used to extend the implicit
alphabet of a process:

WRITER = (write[1] — write[3] — WRITER) + {write[0..3]}

Alphabet of WRITER is the set
{write[0..3]} = {write[0], write[1], write[2], write[3]}.

Ryszard Janicki Concurrent Processes 18/27

Implementing processes

Modeling processes as
finite state machines
using FSP/LTS.

L Implementing threads

in Java.

@ Process = models as FSP or LTS

@ Thread = implementation in Java

Ryszard Janicki Concurrent Processes 19/27

Concurrency, Parallelism: definitions

@ Concurrency: Logically simultaneous processing.Does not
imply multiple processing elements (PEs). Requires
interleaved execution on a single PE.

@ Parallelism: Physically simultaneous processing.Involves
multiple PEs and/or independent device operations.

The textbook uses the terms parallel and concurrent
interchangeably and generally do not distinguish between real and
pseudo-concurrent execution.

@ These are the authors definitions!
@ They are NOT universally accepted!

e WHAT ABOUT SIMULTANEITY AND
SIMULTANEQOUS EXECUTIONS?! They may make a
substantial difference!

Ryszard Janicki Concurrent Processes

20/27

Modeling Concurrency

n?

How should we model process execution speed?
Arbitrary speed (we abstract away time)

How do we model concurrency?
Arbitrary relative order of actions from different processes
(interleaving but preservation of each process order)

MANY CONSIDER THIS APPROACH AS AN
OVERSIMPLIFICATION!

@ What is the result?

n?

It provides a general model independent of scheduling
(asynchronous model of execution)

MANY CONSIDER THE LAST STATEMENT AS AN
UNJUSTIFIED OVERSTATEMENT!

Ryszard Janicki Concurrent Processes 21/27

Parallel composition - action interleaving

e If P and Q are processes then (P||Q) represents the
concurrent execution of P and Q. The operator || is the
parallel composition operator.

ITCH = (scratch->STOP).
CONVERSE = (think->talk->STOP). \§§<

| ICONVERSE_ITCH = (ITCH || CONVERSE). | (@lphabets

think>talk>scratch Possible traces as
th i nk%sc ratch%tal k a I"CSUH' of action
scratch>think>talk interleaving.

Ryszard Janicki Concurrent Processes 22/27

Parallel composition - action interleaving

scratch

think talk
ITCHm CQNVERSEm

2 states scratch 3 states

CONVERSE_ITCH

00) O (02 (12 & @) 10

from ITCH ~from CONVERSE 2 x 3 states

@ Transformation into LTS is NOT the best solution,
transformation into Petri nets is better!

Ryszard Janicki Concurrent Processes 23/27

Parallel composition: Algebraic Laws

o Commutativity: PlRQ=Q| P
@ Associativity: PIl(QRIR)=(P|QIR=P|Q|R

Problem: What these equalities mean?
@ The set if traces that is generated is the same for the left and
the right side, but is this sufficient?
@ Semantics is not defined! In a decent scientific paper such
“laws” would not survive!
e Semantics should be defined before!

@ LTS are also the same for the left and right side of equations?
Do they define semantics?

Example (Clock Radio)

CLOCK = tick — CLOCK
RADIO = on — off — RADIO
| CLOCK _RADIO = CLOCK | RADIO

T = - =

Ryszard Janicki Concurrent Processes 24/27

Modelling interaction - shared actions

@ If processes in a composition have actions in common, these
actions are said to be shared. Shared actions are the way that
process interaction is modeled. While unshared actions may
be arbitrarily interleaved, a shared action must be executed at
the same time by all processes that participate in the shared
action.

Example (Maker-user)
MAKER = make — ready — MAKER
USER = ready — use — USER
|| MAKER _USER = Maker || USER

Traces:
make — ready — use — make — ready — make — use — ...

Ryszard Janicki Concurrent Processes 25/27

Example (Maker-user)
MAKER = make — ready — MAKER
USER = ready — use — USER
|| MAKER_USER = Maker || USER

wm.kc

MAKER Q'O

treouid
Weady

USER ® Q)
R

LTS: i

MAKER. USER D)

Ryszard Janicki Concurrent Processes 26/27

Other models

e IT IS MUCH EASIER AND MORE INTUITIVE TO
REPRESENT SYSTEMS LIKE MAKER-USER WITH PETRI

NETS!

Ryszard Janicki Concurrent Processes 27/27

