Elementary Petri Nets

SE 3BB4

Ryszard Janicki

Department of Computing and Software, McMaster University, Hamilton,
Ontario, Canada

Ryszard Janicki Elementary Petri Nets 1/26

From State Machines to Elementary Petri Nets

Elementary Petri Nets are directed bipartite graphs with
@ places, represented by circles or ovals (represent some type of
resource)
@ transitions, represented by rectangles or lines (consume and produce
resources)
@ arcs (from places to transitions or transitions to places)
tokens, placed in places
@ initial marking, tokens is some places

vend 15¢ candy S

state machines:
each transition
has exactly
one input and
one output

vend 20¢ candy L .
ven candy

Finite State Machine Petri Net

Ryszard Janicki Elementary Petri Nets 2/26

Modeling Concurrency

Elementary Petri Nets are directed bipartite graphs with
places, represented by circles or ovals (represent some type of

resource)

transitions, represented by rectangles or lines (consume and produce

resources)

arcs (from places to transitions or transitions to places)
tokens, placed in places
initial marking, tokens is some places

t1

Ryszard Janicki

concurrency

t4

Elementary Petri Nets 3/26

Firing Rules for Elementary Petri Nets
@ A'transition t can be fired It and only 1T 1t has tokens in all 1ts
input places and all output places are empty.
@ After firing t, all its input places become empty and all its
output places contain tokens.
OUTPUT PLACES

INPUT PLACES
Before fining t After firing t

t can not be fired
Ryszard Janicki Elementary Petri Nets 4/26

Modeling Mutual Exclusion

e Two computers, one printer/data base, etc.
@ Without any synchronization, individual viewpoints of
computers.

Example | _
2 i

% =
@ read read § E

idle

idle

I

write write
The token tells us the state of the process

Ryszard Janicki Elementary Petri Nets 5/26

Modeling Mutual Exclusion

e Two computers, one printer/data base, etc.
@ Without any synchronization, individual viewpoints of
computers.

Example | _
2 i

% =
@ read read § E

idle

idle

I

write write
The token tells us the state of the process

Ryszard Janicki Elementary Petri Nets 6/26

Modeling Mutual Exclusion

e Two computers, one printer/data base, etc.
@ Without any synchronization, individual viewpoints of
computers.

Example | _
2 i

% =
@ read read § E

idle

idle

I

write write
The token tells us the state of the process

Ryszard Janicki Elementary Petri Nets 7/26

Modeling Mutual Exclusion

e Two computers, one printer/data base, etc.
@ Without any synchronization, individual viewpoints of
computers.

Example | _
2 i

% =
@ read read § E

idle

idle

I

write write
The token tells us the state of the process

Ryszard Janicki Elementary Petri Nets 8/26

Modeling Mutual Exclusion

@ Two computers, one printer/data base, etc.

@ Without any synchronization, individual viewpoints of computers.

@ PROBLEM, both computers want to write but there is only one
printer/data base, etc.

Example |

ms
=%
@V@ read read

hyy

idle

write write

The token tells us the state of the process

Ryszard Janicki Elementary Petri Nets 9/26

Modeling Mutual Exclusion

e Two computers, one printer/data base, etc.
@ Synchronization is added.

Example |

read read

idle

Add a lock to ensure mutual exclusion

Ryszard Janicki Elementary Petri Nets 10/26

Modeling Mutual Exclusion

e Two computers, one printer/data base, etc.
@ Synchronization is added.

Example |

idle

Ryszard Janicki Elementary Petri Nets 11/26

Modeling Dataflow Computation

@ Petri nets allow modeling without decomposing the whole
system into sequential component!

o x=(a+b)/(a—b)

@ The two copy transitions can be removed, they represent
inputs from environment.

Ryszard Janicki Elementary Petri Nets 12/26

Modeling Communication Protocols

ready ready
to receive

receive
msg.
proc.2

msg.
received

received

Ryszard Janicki Elementary Petri Nets 13/26

Loading and Unloading Two Machines

Machine 1

Robot
Buffer

a Buffer State:

Space availability

Machine States:
Loading

Processing

Waiting for unloading

Unloading

Machine 2

Ryszard Janicki Elementary Petri Nets 14/26

Loading and Unloading Two Machines

Waiting
Loading Processing for Unloading
Unloading

N

Machine 1 O—t—0O—d > W
O—

Robot Buffer Available

Machine 2 ®—"_’O ’]l 'u >

_//

Ryszard Janicki Elementary Petri Nets 15/26

Composition of LTS (Maker-User Example)

MAKER = make — ready — MAKER
USER = ready — use — USER
|| MAKER _USER = Maker || USER

make

MAKER 0'

rreo.dd

Neady
USER,

WUse

LTS:

Ryszard Janicki Elementary Petri Nets 16/26

LTS via Elementary Petri Nets
© Represent each LTS as a Petri Net

MakeR @& @ make] (D

/rea.da g
user © ©
5

@ ‘Glue’ together both nets through the common transition ready.

MAKER USER

Ryszard Janicki Elementary Petri Nets 17/26

Reachability Graphs

@ Reachability graphs are finite state machines that represent
the behaviours of Petri nets.

@ Each state of the reachability graph represent a ‘marking’ of Petri
net.

@ Simultaneous executions (steps), like {make, use}, may be allowed.

%
— =K

E/cm?wifuj Net

Ryszard Janicki Elementary Petri Nets 18/26

Reachability Graphs and || operator

@ Reachability graphs are the same as final LTS obtained via
operator ‘||"!

@ Getting final LTS vis Petri nets is more natural than via
standard procedure!

MAKER. USER D)

| MAKER_JUSER

Readrab ‘\\43
Gmph

Ryszard Janicki Elementary Petri Nets 19/26

Formal Definition (1)

An Elementary Net is a tuple
N = (P, T,F, Cinit)

such that
@ P and T are finite and disjoint sets of places and transitions
represented, respectively, as circles and rectangles;

@ FC(Px T)U(T x P) is the flow relation of N - represented
as directed arcs between places and transitions;

© Cinit C P is the initial marking (or initial configuration) of N.

Ryszard Janicki Elementary Petri Nets 20/26

Pa P3

P = {p1, p2, P3; P4, ps },

T = {tl, to, t3, t4},

F= {(Pl, t2)7 (P2, t3)7 (P3, t4)7 (P4, t4)7 (P5, tl):
(tla pl)’ (tla P2)7 (t27 P3)7 (t37 P4)7 (t47 P5)}v

Cinit = {p1, P2}

Ryszard Janicki Elementary Petri Nets 21/26

Formal Definition (2)

@ Forevery x € PUT, the set *x = {y | (y,x) € F} denotes
the input nodes of x, and

o the set x* = {y | (x,y) € F} denotes the output nodes of x.

@ The dot-notation extends to sets in the natural way, e.g. the
set X* comprises all outputs of the nodes in X.

@ We often (but not always) assume that for every t € T, both
t and t are non-empty and disjoint.

Ryszard Janicki Elementary Petri Nets 22/26

*p1={t1}, °p2 = {t1}, °p3 = {2}, *pa = {13}, *p5 = {ta},
pi = {t}, p3 = {3}, p§ = {ta}, p; = {ta}, P53 = {ta},

*t1 ={ps}, o ={p1} *t3 = {p2}. *ta = {p3, pa},

t7 = {p1,p2}, t5 = {p3}, t3 = {pa}, t§ = {ps},

*{p1,pa} = {t1, 3}, *{p1, p2} = {t1},

{p1,pa}® = {to, ta}, {p1, P2}* = {t2, t3},

*{t1,t3} = {p2,ps}, *{t2, t3} = {p1, P2},

{t1,t3}* = {p1, p2, pa}, {t2, t3}* = {p3, pa}.

Ryszard Janicki Elementary Petri Nets

Interleaving Semantics

@ A transition t is enabled at a configuration C if *t C C and
t*NC=0.

@ An enabled transition t can fire leading to a new configuration
C'=(C*t)ute.

e We denote this by C[t)C’, or by C[t)nC', if C, C' and t may
belong to different nets.

e We will also write C[ty...t,)C" if C[t1)C1 ... Co1[tn)C’ for

some configurations Cy,..., Cy_1.
Definition
A firing sequence of an Elementary Petri Net is any sequence of
transitions tiy, ..., t, for which there are markings G, ..., C,
satisfying:

C,'n,'t[t1>C1[t2>C2 ... [t,,>C,,.

Ryszard Janicki Elementary Petri Nets 24/26

Step-sequence Semantics

@ Let AC T be a non-empty set such that for all distinct
t1, b € A

(ttUt) N (S Ut) = 0.
@ Then A is enabled at a marking C if *AC C and A*N C = ().

e We also denote this by C[A)C’, or C[A)NC’ when C, C" and
A may belong to different nets, where C' = (C \ *A) U A°.

Definition
A firing step sequence is a sequence of sets (or steps) Ai,..., A,
for which there are markings Gy, ..., C, satisfying:

Cinit[A1) C1[A2) Ca . . . [An) C.

Ryszard Janicki Elementary Petri Nets 25/26

P - P3

Ps

@ Some firing sequences: trt3tst; since

{p1, p2}[t2){ P2, P3}[t3){P3, Pa}[ta){ps }[t1){p1, P2},
t3trtaty since

{p1, p2}[t3){p1, pa}[t2){p3; pa}[ta){ps}[t1){p1, P2}
e A firing step-sequence: {tz, t3}{ts}{t1} since

{p1, p2}[{t2, t3}){p3, pa}[{ta}) {ps }[{t1}){p1, P2}

Ryszard Janicki Elementary Petri Nets

26/26

