
Elementary Petri Nets
SE 3BB4

Ryszard Janicki

Department of Computing and Software, McMaster University, Hamilton,
Ontario, Canada

Ryszard Janicki Elementary Petri Nets 1/26



From State Machines to Elementary Petri Nets
Elementary Petri Nets are directed bipartite graphs with

places, represented by circles or ovals (represent some type of
resource)

transitions, represented by rectangles or lines (consume and produce
resources)

arcs (from places to transitions or transitions to places)

tokens, placed in places

initial marking, tokens is some places

6

Some definitions
source transition: no inputs
sink transition: no outputs
self-loop: a pair (p,t) s.t. p is both an input and an 
output of t
pure PN: no self-loops
ordinary PN: all arc weights are 1’s
infinite capacity net: places can accommodate an 
unlimited number of tokens
finite capacity net: each place p has a maximum 
capacity K(p)
strict transition rule: after firing, each output place can’t 
have more than K(p) tokens
Theorem: every pure finite-capacity net can be 
transformed into an equivalent infinite-capacity net

Modeling FSMs

15

2010

5

10

vend 15¢ candy

10

5
5

10

5

vend 20¢ candy

0

5

Ryszard Janicki Formal Methods 10 / 30

7

Modeling FSMs

5 10

vend 15¢ candy

10

5

5

10

5

vend 20¢ candy

state machines:
each transition
has exactly
one input and
one output

Modeling FSMs

5 10

vend

10

5

5

10

5

vend

conflict,
decision
or choice

Ryszard Janicki Formal Methods 11 / 30Finite State Machine Petri Net
Ryszard Janicki Elementary Petri Nets 2/26



Modeling Concurrency

Elementary Petri Nets are directed bipartite graphs with
places, represented by circles or ovals (represent some type of
resource)
transitions, represented by rectangles or lines (consume and produce
resources)
arcs (from places to transitions or transitions to places)
tokens, placed in places
initial marking, tokens is some places

8

Modeling concurrency

t2

t3

t1 t4
marked graph:
each place has
exactly one
incoming arc 
and one 
outgoing
arc.

Modeling concurrency

t2

t3

t1 t4

concurrency

Ryszard Janicki Formal Methods 14 / 30

Ryszard Janicki Elementary Petri Nets 3/26



Firing Rules for Elementary Petri Nets
A transition t can be fired if and only if it has tokens in all its
input places and all output places are empty.

After firing t, all its input places become empty and all its
output places contain tokens.

Before fining t After firing t

t can not be fired
Ryszard Janicki Elementary Petri Nets 4/26



Modeling Mutual Exclusion

Two computers, one printer/data base, etc.
Without any synchronization, individual viewpoints of
computers.

Example 1
read

write

idle

write

read

idle

The token tells us the state of the process

17

20

Ryszard Janicki Elementary Petri Nets 5/26



Modeling Mutual Exclusion

Two computers, one printer/data base, etc.
Without any synchronization, individual viewpoints of
computers.

Example 1
read

write

idle

write

read

idle

The token tells us the state of the process

18

21

Ryszard Janicki Elementary Petri Nets 6/26



Modeling Mutual Exclusion

Two computers, one printer/data base, etc.
Without any synchronization, individual viewpoints of
computers.

Example 1
read

write

idle

write

read

idle

The token tells us the state of the process

19

22

Ryszard Janicki Elementary Petri Nets 7/26



Modeling Mutual Exclusion

Two computers, one printer/data base, etc.
Without any synchronization, individual viewpoints of
computers.

Example 1
read

write

idle

write

read

idle

The token tells us the state of the process

20

23

Ryszard Janicki Elementary Petri Nets 8/26



Modeling Mutual Exclusion
Two computers, one printer/data base, etc.
Without any synchronization, individual viewpoints of computers.
PROBLEM, both computers want to write but there is only one
printer/data base, etc.

Example 1
read

write

idle

write

read

idle

The token tells us the state of the process

21

24

Ryszard Janicki Elementary Petri Nets 9/26



Modeling Mutual Exclusion

Two computers, one printer/data base, etc.

Synchronization is added.

Example 1
read

write

idle

write

read

idle

Add a lock to ensure mutual exclusion
22

25

Ryszard Janicki Elementary Petri Nets 10/26



Modeling Mutual Exclusion

Two computers, one printer/data base, etc.

Synchronization is added.

Example 1
read

write

idle

write

idle

23

26

Ryszard Janicki Elementary Petri Nets 11/26



Modeling Dataflow Computation

Petri nets allow modeling without decomposing the whole
system into sequential component!

x = (a+ b)/(a− b)

9

Modeling dataflow 
computation

x = (a+b)/(a-b)
a

a

b

b

a+b

a-b

+

-

/

!=0

=0

x

NaN

copy

copy

Modeling communication 
protocols

ready
to send

wait
for ack.

ack.
received

msg.
received

ack.
sent

ready
to receive

buffer
full

buffer
fullsend

msg.

receive
ack.

receive
msg.

send
ack.

proc.1 proc.2

Ryszard Janicki Formal Methods 15 / 30

The two copy transitions can be removed, they represent
inputs from environment.

Ryszard Janicki Elementary Petri Nets 12/26



Modeling Communication Protocols

9

Modeling dataflow 
computation

x = (a+b)/(a-b)
a

a

b

b

a+b

a-b

+

-

/

!=0

=0

x

NaN

copy

copy

Modeling communication 
protocols

ready
to send

wait
for ack.

ack.
received

msg.
received

ack.
sent

ready
to receive

buffer
full

buffer
fullsend

msg.

receive
ack.

receive
msg.

send
ack.

proc.1 proc.2

Ryszard Janicki Formal Methods 16 / 30

Ryszard Janicki Elementary Petri Nets 13/26



Loading and Unloading Two Machines
An Example

Edward Lin, University of Maryland 20

An Example

Machine States:
Loading
Processing
Waiting for unloading
Unloading

Machine 1

Machine 2

Robot

Buffer

Buffer State:
Space availability

Ryszard Janicki Formal Methods 17 / 25
Ryszard Janicki Elementary Petri Nets 14/26



Loading and Unloading Two Machines

Ryszard Janicki Elementary Petri Nets 15/26



Composition of LTS (Maker-User Example)

MAKER = make → ready → MAKER

USER = ready → use → USER

∥ MAKER USER = Maker ∥ USER

LTS:

Ryszard Janicki Elementary Petri Nets 16/26



LTS via Elementary Petri Nets
1 Represent each LTS as a Petri Net

2 ‘Glue’ together both nets through the common transition ready .

Ryszard Janicki Elementary Petri Nets 17/26



Reachability Graphs

Reachability graphs are finite state machines that represent
the behaviours of Petri nets.

Each state of the reachability graph represent a ‘marking’ of Petri
net.

Simultaneous executions (steps), like {make, use}, may be allowed.

Ryszard Janicki Elementary Petri Nets 18/26



Reachability Graphs and ∥ operator

Reachability graphs are the same as final LTS obtained via
operator ‘∥’ !
Getting final LTS vis Petri nets is more natural than via
standard procedure!

Ryszard Janicki Elementary Petri Nets 19/26



Formal Definition (1)

Definition

An Elementary Net is a tuple

N = (P,T ,F ,Cinit)

such that

1 P and T are finite and disjoint sets of places and transitions
represented, respectively, as circles and rectangles;

2 F ⊆ (P × T ) ∪ (T × P) is the flow relation of N - represented
as directed arcs between places and transitions;

3 Cinit ⊆ P is the initial marking (or initial configuration) of N.

Ryszard Janicki Elementary Petri Nets 20/26



Example

P = {p1, p2, p3, p4, p5},
T = {t1, t2, t3, t4},
F = {(p1, t2), (p2, t3), (p3, t4), (p4, t4), (p5, t1),

(t1, p1), (t1, p2), (t2, p3), (t3, p4), (t4, p5)},
Cinit = {p1, p2}.

Ryszard Janicki Elementary Petri Nets 21/26



Formal Definition (2)

For every x ∈ P ∪ T , the set •x = {y | (y , x) ∈ F} denotes
the input nodes of x , and

the set x• = {y | (x , y) ∈ F} denotes the output nodes of x .

The dot-notation extends to sets in the natural way, e.g. the
set X • comprises all outputs of the nodes in X .

We often (but not always) assume that for every t ∈ T , both
•t and t• are non-empty and disjoint.

Ryszard Janicki Elementary Petri Nets 22/26



Example

•p1 = {t1}, •p2 = {t1}, •p3 = {t2}, •p4 = {t3}, •p5 = {t4},
p•1 = {t2}, p•2 = {t3}, p•3 = {t4}, p•4 = {t4}, p•2 = {t1},
•t1 = {p5}, •t2 = {p1}, •t3 = {p2}, •t4 = {p3, p4},
t•1 = {p1, p2}, t•2 = {p3}, t•3 = {p4}, t•4 = {p5},
•{p1, p4} = {t1, t3}, •{p1, p2} = {t1},
{p1, p4}• = {t2, t4}, {p1, p2}• = {t2, t3},
•{t1, t3} = {p2, p5}, •{t2, t3} = {p1, p2},
{t1, t3}• = {p1, p2, p4}, {t2, t3}• = {p3, p4}.

Ryszard Janicki Elementary Petri Nets 23/26



Interleaving Semantics

A transition t is enabled at a configuration C if •t ⊆ C and
t• ∩ C = ∅.
An enabled transition t can fire leading to a new configuration
C ′ = (C \ •t) ∪ t•.

We denote this by C [t⟩C ′, or by C [t⟩NC ′, if C , C ′ and t may
belong to different nets.

We will also write C [t1 . . . tn⟩C ′ if C [t1⟩C1 . . .Cn−1[tn⟩C ′ for
some configurations C1, . . . ,Cn−1.

Definition

A firing sequence of an Elementary Petri Net is any sequence of
transitions t1, . . . , tn for which there are markings C1, . . . ,Cn

satisfying:
Cinit [t1⟩C1[t2⟩C2 . . . [tn⟩Cn.

Ryszard Janicki Elementary Petri Nets 24/26



Step-sequence Semantics

Let A ⊆ T be a non-empty set such that for all distinct
t1, t2 ∈ A:

(t•1 ∪ •t1) ∩ (t•2 ∪ •t2) = ∅.

Then A is enabled at a marking C if •A ⊆ C and A• ∩ C = ∅.
We also denote this by C [A⟩C ′, or C [A⟩NC ′ when C , C ′ and
A may belong to different nets, where C ′ = (C \ •A) ∪ A•.

Definition

A firing step sequence is a sequence of sets (or steps) A1, . . . ,An

for which there are markings C1, . . . ,Cn satisfying:

Cinit [A1⟩C1[A2⟩C2 . . . [An⟩Cn.

Ryszard Janicki Elementary Petri Nets 25/26



Example

Some firing sequences: t2t3t4t1 since
{p1, p2}[t2⟩{p2, p3}[t3⟩{p3, p4}[t4⟩{p5}[t1⟩{p1, p2},
t3t2t4t1 since
{p1, p2}[t3⟩{p1, p4}[t2⟩{p3, p4}[t4⟩{p5}[t1⟩{p1, p2}.
A firing step-sequence: {t2, t3}{t4}{t1} since
{p1, p2}[{t2, t3}⟩{p3, p4}[{t4}⟩{p5}[{t1}⟩{p1, p2}.

Ryszard Janicki Elementary Petri Nets 26/26


