Elementary Petri Nets

SE 3BB4

Ryszard Janicki

Department of Computing and Software, McMaster University, Hamilton,
Ontario, Canada

Ryszard Janicki Elementary Petri Nets 1/26



From State Machines to Elementary Petri Nets

Elementary Petri Nets are directed bipartite graphs with
@ places, represented by circles or ovals (represent some type of
resource)
@ transitions, represented by rectangles or lines (consume and produce
resources)
@ arcs (from places to transitions or transitions to places)
tokens, placed in places
@ initial marking, tokens is some places
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Finite State Machine Petri Net

Ryszard Janicki Elementary Petri Nets 2/26



Modeling Concurrency

Elementary Petri Nets are directed bipartite graphs with
places, represented by circles or ovals (represent some type of

resource)

transitions, represented by rectangles or lines (consume and produce

resources)

arcs (from places to transitions or transitions to places)
tokens, placed in places
initial marking, tokens is some places
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Firing Rules for Elementary Petri Nets
@ A'transition t can be fired It and only 1T 1t has tokens in all 1ts
input places and all output places are empty.
@ After firing t, all its input places become empty and all its
output places contain tokens.
OUTPUT PLACES

INPUT PLACES
Before fining t After firing t

t can not be fired
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Modeling Mutual Exclusion

e Two computers, one printer/data base, etc.
@ Without any synchronization, individual viewpoints of
computers.

Example | _
2 i

% =
@ read read § E

idle

idle

I

write write
The token tells us the state of the process
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Modeling Mutual Exclusion

@ Two computers, one printer/data base, etc.

@ Without any synchronization, individual viewpoints of computers.

@ PROBLEM, both computers want to write but there is only one
printer/data base, etc.

Example |

ms
=%
@V@ read read

hyy

idle

write write

The token tells us the state of the process
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Modeling Mutual Exclusion

e Two computers, one printer/data base, etc.
@ Synchronization is added.

Example |

read read

idle

Add a lock to ensure mutual exclusion
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Modeling Mutual Exclusion

e Two computers, one printer/data base, etc.
@ Synchronization is added.

Example |

idle
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Modeling Dataflow Computation

@ Petri nets allow modeling without decomposing the whole
system into sequential component!

o x=(a+b)/(a—b)

@ The two copy transitions can be removed, they represent
inputs from environment.
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Modeling Communication Protocols

ready ready
to receive

receive
msg.
proc.2

msg.
received

received
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Loading and Unloading Two Machines

Machine 1

Robot
Buffer

a Buffer State:

Space availability

Machine States:
Loading

Processing

Waiting for unloading

Unloading

Machine 2
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Loading and Unloading Two Machines

Waiting
Loading  Processing for Unloading
Unloading

N

Machine 1 O—t—0O—d > W
O—

Robot Buffer Available

Machine 2 ®—"_’O ’]l 'u >

\_//
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Composition of LTS (Maker-User Example)

MAKER = make — ready — MAKER
USER = ready — use — USER
|| MAKER _USER = Maker || USER

make

MAKER 0'

rreo.dd

Neady
USER,

WUse

LTS:
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LTS via Elementary Petri Nets
© Represent each LTS as a Petri Net

MakeR @& @ make] (D

/rea.da g
user © ©
5

@ ‘Glue’ together both nets through the common transition ready.

MAKER USER
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Reachability Graphs

@ Reachability graphs are finite state machines that represent
the behaviours of Petri nets.

@ Each state of the reachability graph represent a ‘marking’ of Petri
net.

@ Simultaneous executions (steps), like {make, use}, may be allowed.

%
— =K

E/cm?wifuj Net
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Reachability Graphs and || operator

@ Reachability graphs are the same as final LTS obtained via
operator ‘||"!

@ Getting final LTS vis Petri nets is more natural than via
standard procedure!

MAKER. USER D)

| MAKER_JUSER

Readrab ‘\\43
Gmph
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Formal Definition (1)

An Elementary Net is a tuple
N = (P, T,F, Cinit)

such that
@ P and T are finite and disjoint sets of places and transitions
represented, respectively, as circles and rectangles;

@ FC(Px T)U(T x P) is the flow relation of N - represented
as directed arcs between places and transitions;

© Cinit C P is the initial marking (or initial configuration) of N.
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Pa P3

P = {p1, p2, P3; P4, ps },

T = {tl, to, t3, t4},

F= {(Pl, t2)7 (P2, t3)7 (P3, t4)7 (P4, t4)7 (P5, tl):
(tla pl)’ (tla P2)7 (t27 P3)7 (t37 P4)7 (t47 P5)}v

Cinit = {p1, P2}
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Formal Definition (2)

@ Forevery x € PUT, the set *x = {y | (y,x) € F} denotes
the input nodes of x, and

o the set x* = {y | (x,y) € F} denotes the output nodes of x.

@ The dot-notation extends to sets in the natural way, e.g. the
set X* comprises all outputs of the nodes in X.

@ We often (but not always) assume that for every t € T, both
*t and t* are non-empty and disjoint.
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*p1={t1}, °p2 = {t1}, °p3 = {2}, *pa = {13}, *p5 = {ta},
pi = {t}, p3 = {3}, p§ = {ta}, p; = {ta}, P53 = {ta},

*t1 ={ps}, o ={p1} *t3 = {p2}. *ta = {p3, pa},

t7 = {p1,p2}, t5 = {p3}, t3 = {pa}, t§ = {ps},

*{p1,pa} = {t1, 3}, *{p1, p2} = {t1},

{p1,pa}® = {to, ta}, {p1, P2}* = {t2, t3},

*{t1,t3} = {p2,ps}, *{t2, t3} = {p1, P2},

{t1,t3}* = {p1, p2, pa}, {t2, t3}* = {p3, pa}.

Ryszard Janicki Elementary Petri Nets



Interleaving Semantics

@ A transition t is enabled at a configuration C if *t C C and
t*NC=0.

@ An enabled transition t can fire leading to a new configuration
C'=(C\*t)ute.

e We denote this by C[t)C’, or by C[t)nC', if C, C' and t may
belong to different nets.

e We will also write C[ty...t,)C" if C[t1)C1 ... Co1[tn)C’ for

some configurations Cy,..., Cy_1.
Definition
A firing sequence of an Elementary Petri Net is any sequence of
transitions tiy, ..., t, for which there are markings G, ..., C,
satisfying:

C,'n,'t[t1>C1[t2>C2 ... [t,,>C,,.
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Step-sequence Semantics

@ Let AC T be a non-empty set such that for all distinct
t1, b € A

(ttUt) N (S Ut) = 0.
@ Then A is enabled at a marking C if *AC C and A*N C = ().

e We also denote this by C[A)C’, or C[A)NC’ when C, C" and
A may belong to different nets, where C' = (C \ *A) U A°.

Definition
A firing step sequence is a sequence of sets (or steps) Ai,..., A,
for which there are markings Gy, ..., C, satisfying:

Cinit[A1) C1[A2) Ca . . . [An) C.
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P - P3

Ps

@ Some firing sequences: trt3tst; since

{p1, p2}[t2){ P2, P3}[t3){P3, Pa}[ta){ps }[t1){p1, P2},
t3trtaty since

{p1, p2}[t3){p1, pa}[t2){p3; pa}[ta){ps}[t1){p1, P2}
e A firing step-sequence: {tz, t3}{ts}{t1} since

{p1, p2}[{t2, t3}){p3, pa}[{ta}) {ps }[{t1}){p1, P2}
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