Concurrent Composition. Towards Formal Semantics CS 3BB4

Ryszard Janicki

Department of Computing and Software, McMaster University, Hamilton, Ontario, Canada

Concurrent Composition (Maker-User Example)

 $MAKER = make \rightarrow ready \rightarrow MAKER$

 $USER = ready \rightarrow use \rightarrow USER$

 $\parallel MAKER_USER = Maker \parallel USER$

Modeling Interaction: Handshake

• A handshake is an action acknowledged by another

MAKERv2 USERv2	<pre>= (make->ready->used->MAKERv2 = (ready->use->used ->USERv2)</pre>	2) 3 states 3 states	5
MAKER	$_USERv2 = (MAKERv2 USERv2).$	3 x 3	

イロト イヨト イヨト イヨト

More Then Two: Multi-party Synchronization

|| MAKERS = MAKE_A || MAKE_B || FACTORY = MAKERS || ASSEMBLE

FACTORY = MAKE_A || MAKE_B || ASSEMBLE
 IMPORTANT:

∜

 $B = \ldots C = \ldots D = \ldots$

The following statement:

$$A = (a \rightarrow (B \parallel C)) | (b \rightarrow c \rightarrow (B \parallel D))$$

is **ILLEGAL!**

 Paradigm: Concurrency = Composition of Sequential Processes

Semantics

• What is the meaning of

$$P=P_1 \parallel P_2 \parallel \ldots \parallel P_n ?$$

- Precise semantics is needed in order to answer the fundamental question of all models:
 - What does it mean that P and Q are equivalent, written P = Q?
- Obvious properties of equivalence for this model:

$$P \equiv Q \implies (a \to P) \equiv (a \to Q)$$

$$\implies (a \to S \mid b \to P) \equiv (a \to S \mid b \to Q)$$

$$\implies S \parallel P \equiv S \parallel Q$$

 Equivalence must preserve model operations, otherwise a model is useless!

A (1) × A (2) × A (2) ×

$P \equiv Q \iff Traces(P) = Traces(Q)$

- It works well for *sequential* processes and if non-determinism is not allowed also for concurrent systems.
- But when non-determinism is allowed, it **does not** preserve ||-operator!

イロト イヨト イヨト イヨト 二日

$$egin{aligned} P_1 &= a
ightarrow ((b
ightarrow d
ightarrow P_1) \mid (c
ightarrow e
ightarrow P_1)) \ P_2 &= (a
ightarrow b
ightarrow d
ightarrow P_2) \mid (a
ightarrow c
ightarrow e
ightarrow P_2)) \ Q &= b
ightarrow c
ightarrow f
ightarrow Q \end{aligned}$$

It can be verified that:

♣ Traces(P₁ || Q) = Traces(P₂ || Q) = Prefix((abdac(ef ∪ fe))*) (however it is not immediately obvious!)

・ロト ・回ト ・ヨト ・ヨト

э

$$egin{aligned} P_1 &= a
ightarrow ((b
ightarrow d
ightarrow P_1) \mid (c
ightarrow e
ightarrow P_1)) \ P_2 &= (a
ightarrow b
ightarrow d
ightarrow P_2) \mid (a
ightarrow c
ightarrow e
ightarrow P_2)) \ Q &= b
ightarrow c
ightarrow f
ightarrow Q \end{aligned}$$

10/25

$$egin{aligned} P_1 &= a
ightarrow ((b
ightarrow d
ightarrow P_1) \mid (c
ightarrow e
ightarrow P_1)) \ P_2 &= (a
ightarrow b
ightarrow d
ightarrow P_2) \mid (a
ightarrow c
ightarrow e
ightarrow P_2)) \ Q &= b
ightarrow c
ightarrow f
ightarrow Q \end{aligned}$$

• $P_2 \parallel Q$ deadlocks after firing 'red' *a* and placing a token in the place 2!

イロン イヨン イヨン イヨン

э

- **♣** $P_1 \parallel Q$ never deadlocks
- $P_2 \parallel Q$ deadlocks in the marking {blue 0, black 2}
- ♥ Hence we should have $P_1 \parallel Q \neq P_2 \parallel Q$, for any correctly defined equivalence ≡

Bisimulation of Labeled Transition Systems

• Let *P* and *Q* be Labeled Transition Systems and let *p* be a state in *P* and *q* be a state in *Q*.

Definition (States bisimilarity)

We say that the states p and q are bisimilar, $p \approx q$, \iff

whatever action can be executed at p it can also be executed at q and vice versa.

Definition (LTS bisimilarity)

We say that two labeled transition systems *P* and *Q* are bisimilar, $P \approx Q$, \iff

each state p_t reachable from the initial state by executing a trace t in P, is bisimilar to an appropriate state q_t that is reachable from the initial state by the same trace t in Q.

Bisimulation of Labeled Transition Systems

• A_1 and A_2 are *bisimilar*, i.e. $A_1 \approx A_2$

- Clearly $p_1 \approx q_1$ as only *a* comes out of both p_1 and q_1 . Any trace ab^k , where $k \ge 0$ leads to p_2 in A_1 and to q_2 in A_2 , and only *b* can be executed in both p_2 and q_2 . Hence $p_2 \approx q_2$. Similarly, any trace ab^k , where $k \ge 1$ leads to p_2 in A_1 and to q_3 in A_2 , and only *b* can be executed in both p_2 and q_3 , so $p_2 \approx q_3$ too. Thus $A_1 \approx A_2$.
- Obviously $Traces(A_1) = Traces(A_2) = Prefix(ab^*)$.

Bisimulation of Labeled Transition Systems

• P_1 and P_2 are **not** bisimilar, i.e. $P_1 \not\approx P_2$

- Clearly p₁ ≈ q₁ as only a transition a can be executed in both cases. After the trace a, P₁ goes to the state p₂, while P₂ to either q₂ or q₃. However p₂ ≈ q₂ and p₂ ≈ q₃. At p₂ both b and c can be executed, but at q₂ we can execute only b, and at q₃ only c! Hence P₁ ≈ P₂.
- Note that we have:

$$Traces(P_1) = Traces(P_2) = Prefix((a(bd \cup ce))^*)$$

Definition

Two Labeled Transition Systems S_1 and S_2 are equivalent if and only if they are *bisimilar*, i.e.

$$S_1 \equiv S_2 \iff S_1 \approx S_2.$$

Definition

Two Finite State Processes P_1 and P_2 are equivalent (or bisimilar) if and only if their Labeled Transition Systems are equivalent (or bisimilar), i.e.

$$P_1 \equiv P_2 \iff LTS(P_1) \equiv LTS(P_2) \iff LTS(P_1) \approx LTS(P_2).$$

• The concept of bisimulation can be defined for FSPs directly, without using LTS, but it will not be discussed in this course.

ヘロト ヘヨト ヘヨト ヘヨト

FSP Vs Petri Nets: FSP

- Consider the processes ||S1 and S2 defined as follows $P = (a \rightarrow b \rightarrow P)$ $Q = (c \rightarrow b \rightarrow Q)$ • ||S1 = (P||Q).
 - $S2 = (a \rightarrow c \rightarrow b \rightarrow S2 \mid c \rightarrow a \rightarrow b \rightarrow S2$
- Note the LTS for both ||S1 and S2 is exactly the same, namely:

- We can also easily show that ||S1 and S2 are bisimilar!
- Hence, we **can not** make a distinction between *concurrency* (||*S*1) and *interleaving* (*S*2).

FSP Vs Petri Nets: Nets

• The nets are different and behave differently.

If simultaneity is observed, the net ||S1 generate traces like
 {a, c} → b → {a, c} → b → a → c → ..., while S2 can only
 generate traces like a → b → c → ... and c → b → c →

(4月) トイヨト イヨト

• The reachability graph of S2 is always isomorphic to:

• If simultaneity is allowed/observed, the reachability graph of ||S1 is isomorphic to

- If simultaneity is not allowed/observed, the reachability graph of ||S1 is isomorphic to that of S2.
- This example indicates the main difference between interleaving (i.e. FSPs) and true concurrency (i.e. Petri Nets).

Labelled Petri Nets

- Left and right nets from page 11 (of this Lecture Notes) and right net from page 12 do not satisfy the Petri net definition from page 20 of Lecture Notes 3, as they have *a* in two boxes.
- The nets from the point above are actually Labelled Petri Nets, with transitions defined implicitly.

Definition

Let $N = (P, T, F, C_{init})$ be an elementary net.

- A marking $M \subseteq P$ is reachable from the initial marking if there is a firing sequence $t_1 \ldots t_n$ in N such that $C_{init}[t_1 \ldots t_n \rangle C$ or $C = C_{init}$.
- The set of all markings reachable form C_{init} will be denoted by \mathcal{R}_N .

- Let $A \subseteq T$ be a non-empty set such that for all distinct $t_1, t_2 \in A$: $(t_1^{\bullet} \cup {}^{\bullet}t_1) \cap (t_2^{\bullet} \cup {}^{\bullet}t_2) = \emptyset$.
- Then A is enabled at a marking C if $\bullet A \subseteq C$ and $A^{\bullet} \cap C = \emptyset$.
- If A is enabled at a marking C, we will write $enabled_N(A, C)$.
- If enabled_N(A, C) then the whole set A can be fired simultaneously.

Definition

A Labelled Elementary NET is a tuple

$$\mathsf{N} = (\mathsf{P}, \mathsf{T}, \mathsf{F}, \mathsf{C}_{\textit{init}}, \mathcal{L}, \ell)$$

such that

- $N = (P, T, F, C_{init})$ is an Elementary Net
- **2** \mathcal{L} is a finite set of *labels*
- $\textcircled{O} \ \ell: \ T \rightarrow \mathcal{L} \ \text{is a mapping, called } \textit{labelling such that}$

 $\forall C \in \mathcal{R}_{\mathsf{N}}. \forall t_1, t_2 \in P. \text{ enabled}_{\mathsf{N}}(\{t_1, t_2\}, C) \implies \ell(t_1) \neq \ell(t_2).$

Definition

A Labelled Elementary NET is a tuple

$$\mathbf{N} = (P, T, F, C_{init}, \mathcal{L}, \ell)$$

such that

- $N = (P, T, F, C_{init})$ is an Elementary Net
- **2** \mathcal{L} is a finite set of *labels*
- **③** $\ell : T \to \mathcal{L}$ is a mapping, called *labelling* such that

 $\forall C \in \mathcal{R}_{\mathsf{N}}. \forall t_1, t_2 \in P. \text{ enabled}_{\mathsf{N}}(\{t_1, t_2\}, C) \implies \ell(t_1) \neq \ell(t_2).$

• In other words, if two events can be fired simultaneusly, they must have different labels.

イロト 不得 トイヨト イヨト 二日

$\mathbf{N} = (P, T, F, C_{init}, \mathcal{L}, \ell):$

$$P = \{p_1, p_2, p_3, p_4, p_5\}, T = \{t_1, t_2, t_3, t_4\}, F = \{(p_1, t_2), (p_2, t_3), (p_3, t_4), (p_4, t_4), (p_5, t_1), (t_1, p_1), (t_1, p_2), (t_2, p_3), (t_3, p_4), (t_4, p_5)\}, C_{init} = \{p_1, p_2\}, \mathcal{L} = \{a, b\}, \mathcal{R} = \{\{p_1, p_2\}, \{p_1, p_4\}, \{p_2, p_3\}, \{p_3, p_4\}, \{p_5\}\} \\ \ell(t_1) = \ell(t_2) = a, \ \ell(t_3) = \ell(t_4) = b. \\ \bullet \ t_2 \ \text{and} \ t_3 \ \text{may be fired concurrently, so} \ \ell(t_2) = a \neq \ell(t_3) = b. \end{cases}$$

Dac

• Often, when it does not lead to any ambiguity or confusion, we presenting a graph of a Petri net we use only labels and transitions are unnamed, as for the nets on pages 11 and 12 of this Lecture Notes.

向下 イヨト イヨト