
Concurrent Composition.
Towards Formal Semantics

CS 3BB4

Ryszard Janicki

Department of Computing and Software, McMaster University, Hamilton,
Ontario, Canada

Ryszard Janicki Concurrent Composition. Towards Formal Semantics 1/25

Concurrent Composition (Maker-User Example)
MAKER = make → ready → MAKER

USER = ready → use → USER

∥ MAKER USER = Maker ∥ USER

LTS:

Ryszard Janicki Concurrent Composition. Towards Formal Semantics 2/25

Modeling Interaction: Handshake

A handshake is an action acknowledged by another

2015 Concurrency: concurrent execution
9

©Magee/Kramer 2nd Edition

MAKERv2 = (make->ready->used->MAKERv2).
USERv2 = (ready->use->used ->USERv2).

||MAKER_USERv2 = (MAKERv2 || USERv2).

modelling interaction - handshake

A handshake is an action acknowledged by another:

Interaction
constrains the
overall
behaviour.

3 states
3 states

3 x 3
states?

4 states
make ready use

used

0 1 2 3

Ryszard Janicki Concurrent Composition. Towards Formal Semantics 3/25

More Then Two: Multi-party Synchronization

2015 Concurrency: concurrent execution
10

©Magee/Kramer 2nd Edition

modelling interaction - multiple processes

MAKE_A = (makeA->ready->used->MAKE_A).
MAKE_B = (makeB->ready->used->MAKE_B).
ASSEMBLE = (ready->assemble->used->ASSEMBLE).

||FACTORY = (MAKE_A || MAKE_B || ASSEMBLE).

Multi-party synchronization:

makeA

makeB makeA ready assemble

used
makeB

0 1 2 3 4 5

Ryszard Janicki Concurrent Composition. Towards Formal Semantics 4/25

Substitution

∥ MAKERS = MAKE A ∥ MAKE B
∥ FACTORY = MAKERS ∥ ASSEMBLE

⇓

∥ FACTORY = MAKE A ∥ MAKE B ∥ ASSEMBLE

IMPORTANT:

B = . . . C = . . . D = . . .
The following statement:

A = (a → (B ∥ C))|(b → c → (B ∥ D))

is ILLEGAL!

Paradigm: Concurrency = Composition of Sequential
Processes

Ryszard Janicki Concurrent Composition. Towards Formal Semantics 5/25

Semantics

What is the meaning of

P = P1 ∥ P2 ∥ . . . ∥ Pn ?

Precise semantics is needed in order to answer the
fundamental question of all models:

♣ What does it mean that P and Q are equivalent, written
P ≡ Q?

Obvious properties of equivalence for this model:

P ≡ Q =⇒ (a → P) ≡ (a → Q)
=⇒ (a → S | b → P) ≡ (a → S | b → Q)
=⇒ S ∥ P ≡ S ∥ Q

Equivalence must preserve model operations, otherwise a
model is useless!

Ryszard Janicki Concurrent Composition. Towards Formal Semantics 6/25

Trace Semantics

P ≡ Q ⇐⇒ Traces(P) = Traces(Q)

It works well for sequential processes and if non-determinism
is not allowed also for concurrent systems.

But when non-determinism is allowed, it does not preserve
∥-operator!

Ryszard Janicki Concurrent Composition. Towards Formal Semantics 7/25

Example

P1 = a → ((b → d → P1) | (c → e → P1))

P2 = (a → b → d → P2) | (a → c → e → P2))

Traces(P1) = Traces(P2) = Prefix((a(bd ∪ ce))∗)

Ryszard Janicki Concurrent Composition. Towards Formal Semantics 8/25

Example

P1 = a → ((b → d → P1) | (c → e → P1))

P2 = (a → b → d → P2) | (a → c → e → P2))

Q = b → c → f → Q

It can be verified that:

♣ Traces(P1 ∥ Q) = Traces(P2 ∥ Q) = Prefix((abdac(ef ∪fe))∗)
(however it is not immediately obvious!)

Ryszard Janicki Concurrent Composition. Towards Formal Semantics 9/25

Example

P1 = a → ((b → d → P1) | (c → e → P1))

P2 = (a → b → d → P2) | (a → c → e → P2))

Q = b → c → f → Q

♣ P1 ∥ Q never deadlocks

Ryszard Janicki Concurrent Composition. Towards Formal Semantics 10/25

Example

P1 = a → ((b → d → P1) | (c → e → P1))

P2 = (a → b → d → P2) | (a → c → e → P2))

Q = b → c → f → Q

♠ P2 ∥ Q deadlocks after firing ‘red’ a and placing a token in
the place 2!

Ryszard Janicki Concurrent Composition. Towards Formal Semantics 11/25

Example

♣ P1 ∥ Q never deadlocks

♠ P2 ∥ Q deadlocks in the marking {blue 0, black 2}
♡ Hence we should have P1 ∥ Q ̸≡ P2 ∥ Q, for any correctly

defined equivalence ≡
♢ As, Traces(P1 ∥ Q) = Traces(P2 ∥ Q) =

Prefix((a(bdac(fea ∪ eaf ∪ efa))∗,
they cannot be directly used as a description of full semantics!

Ryszard Janicki Concurrent Composition. Towards Formal Semantics 12/25

Example

Ryszard Janicki Concurrent Composition. Towards Formal Semantics 13/25

Bisimulation of Labeled Transition Systems

Let P and Q be Labeled Transition Systems and let p be a
state in P and q be a state in Q.

Definition (States bisimilarity)

We say that the states p and q are bisimilar, p ≈ q, ⇐⇒
whatever action can be executed at p it can also be executed
at q and vice versa.

Definition (LTS bisimilarity)

We say that two labeled transition systems P and Q are bisimilar,
P ≈ Q, ⇐⇒

each state pt reachable from the initial state by executing a
trace t in P, is bisimilar to an appropriate state qt that is
reachable from the initial state by the same trace t in Q.

Ryszard Janicki Concurrent Composition. Towards Formal Semantics 14/25

Bisimulation of Labeled Transition Systems

A1 and A2 are bisimilar, i.e. A1 ≈ A2

Clearly p1 ≈ q1 as only a comes out of both p1 and q1. Any
trace abk , where k ≥ 0 leads to p2 in A1 and to q2 in A2, and
only b can be executed in both p2 and q2. Hence p2 ≈ q2.
Similarly, any trace abk , where k ≥ 1 leads to p2 in A1 and to
q3 in A2, and only b can be executed in both p2 and q3, so
p2 ≈ q3 too. Thus A1 ≈ A2.

Obviously Traces(A1) = Traces(A2) = Prefix(ab∗).

Ryszard Janicki Concurrent Composition. Towards Formal Semantics 15/25

Bisimulation of Labeled Transition Systems

P1 and P2 are not bisimilar, i.e. P1 ̸≈ P2

Clearly p1 ≈ q1 as only a transition a can be executed in both
cases. After the trace a, P1 goes to the state p2, while P2 to
either q2 or q3. However p2 ̸≈ q2 and p2 ̸≈ q3. At p2 both b
and c can be executed, but at q2 we can execute only b, and
at q3 only c! Hence P1 ̸≈ P2.

Note that we have:
Traces(P1) = Traces(P2) = Prefix((a(bd ∪ ce))∗)

Ryszard Janicki Concurrent Composition. Towards Formal Semantics 16/25

Equivalence of LTS and FSP

Definition

Two Labeled Transition Systems S1 and S2 are equivalent if and
only if they are bisimilar, i.e.

S1 ≡ S2 ⇐⇒ S1 ≈ S2.

Definition

Two Finite State Processes P1 and P2 are equivalent (or bisimilar)
if and only if their Labeled Transition Systems are equivalent (or
bisimilar), i.e.

P1 ≡ P2 ⇐⇒ LTS(P1) ≡ LTS(P2) ⇐⇒ LTS(P1) ≈ LTS(P2).

The concept of bisimulation can be defined for FSPs directly,
without using LTS, but it will not be discussed in this course.

Ryszard Janicki Concurrent Composition. Towards Formal Semantics 17/25

FSP Vs Petri Nets: FSP

Consider the processes ||S1 and S2 defined as follows
P = (a → b → P)
Q = (c → b → Q)
||S1 = (P||Q).

S2 = (a → c → b → S2 | c → a → b → S2

Note the LTS for both ||S1 and S2 is exactly the same,
namely:

Question 5: Here, there is no danger in using an isomorphism between labeled transition systems to prove that
the behavior of these process is equivalent. Thence, it is necessary to prove that:

(i) The alphabet of S1 is equal to the alphabet of S2

Proof

Let α(P) denote the alphabet of a process P , then it is necessary to show that

α(S1) = α(S2)

= { definition of the alphabet of both processes }
{a, b, c} = {a, b, c}
= { logic }
True

(ii) The labeled transition system for S1 is isomprhic to the labeled transition system for S2

Proof

(a) By definition, the LTS for S1 is

GFED@ABC0

c
''

a

GFED@ABC1

a
''
GFED@ABC2

b

ee
GFED@ABC3

c

gg

(b) By definition, the minimized LTS for S2 is

GFED@ABC0

c
''

a

GFED@ABC1

a
''
GFED@ABC2

b

ee
GFED@ABC3

c

gg

Clearly, both LTS are isomorphic.

From (i) and (ii) it follows that S1 exhibits the same behavior as S2.

5

We can also easily show that ||S1 and S2 are bisimilar!

Hence, we can not make a distinction between concurrency
(||S1) and interleaving (S2).

Ryszard Janicki Concurrent Composition. Towards Formal Semantics 18/25

FSP Vs Petri Nets: Nets

The nets are different and behave differently.

If simultaneity is observed, the net ||S1 generate traces like
{a, c} → b → {a, c} → b → a → c → . . ., while S2 can only
generate traces like a → b → c → . . . and c → b → c →

Ryszard Janicki Concurrent Composition. Towards Formal Semantics 19/25

The reachability graph of S2 is always isomorphic to:

Question 5: Here, there is no danger in using an isomorphism between labeled transition systems to prove that
the behavior of these process is equivalent. Thence, it is necessary to prove that:

(i) The alphabet of S1 is equal to the alphabet of S2

Proof

Let α(P) denote the alphabet of a process P , then it is necessary to show that

α(S1) = α(S2)

= { definition of the alphabet of both processes }
{a, b, c} = {a, b, c}
= { logic }
True

(ii) The labeled transition system for S1 is isomprhic to the labeled transition system for S2

Proof

(a) By definition, the LTS for S1 is

GFED@ABC0

c
''

a

GFED@ABC1

a
''
GFED@ABC2

b

ee
GFED@ABC3

c

gg

(b) By definition, the minimized LTS for S2 is

GFED@ABC0

c
''

a

GFED@ABC1

a
''
GFED@ABC2

b

ee
GFED@ABC3

c

gg

Clearly, both LTS are isomorphic.

From (i) and (ii) it follows that S1 exhibits the same behavior as S2.

5

If simultaneity is allowed/observed, the reachability graph of
||S1 is isomorphic to

If simultaneity is not allowed/observed, the reachability graph
of ||S1 is isomorphic to that of S2.

This example indicates the main difference between
interleaving (i.e. FSPs) and true concurrency (i.e. Petri
Nets).

Ryszard Janicki Concurrent Composition. Towards Formal Semantics 20/25

Labelled Petri Nets

Left and right nets from page 11 (of this Lecture Notes) and
right net from page 12 do not satisfy the Petri net definition
from page 20 of Lecture Notes 3, as they have a in two boxes.

The nets from the point above are actually Labelled Petri
Nets, with transitions defined implicitly.

Definition

Let N = (P,T ,F ,Cinit) be an elementary net.

A marking M ⊆ P is reachable from the initial marking if
there is a firing sequence t1 . . . tn in N such that
Cinit [t1 . . . tn⟩C or C = Cinit .

The set of all markings reachable form Cinit will be denoted by
RN.

Ryszard Janicki Concurrent Composition. Towards Formal Semantics 21/25

Let A ⊆ T be a non-empty set such that for all distinct
t1, t2 ∈ A: (t•1 ∪ •t1) ∩ (t•2 ∪ •t2) = ∅.
Then A is enabled at a marking C if •A ⊆ C and A• ∩ C = ∅.
If A is enabled at a marking C , we will write enabledN(A,C).

If enabledN(A,C) then the whole set A can be fired
simultaneously.

Definition

A Labelled Elementary NET is a tuple

N = (P,T ,F ,Cinit ,L, ℓ)

such that

1 N = (P,T ,F ,Cinit) is an Elementary Net

2 L is a finite set of labels

3 ℓ : T → L is a mapping, called labelling such that

∀C ∈ RN.∀t1, t2 ∈ P. enabledN({t1, t2},C) =⇒ ℓ(t1) ̸= ℓ(t2).

Ryszard Janicki Concurrent Composition. Towards Formal Semantics 22/25

Definition

A Labelled Elementary NET is a tuple

N = (P,T ,F ,Cinit ,L, ℓ)

such that

1 N = (P,T ,F ,Cinit) is an Elementary Net

2 L is a finite set of labels

3 ℓ : T → L is a mapping, called labelling such that

∀C ∈ RN.∀t1, t2 ∈ P. enabledN({t1, t2},C) =⇒ ℓ(t1) ̸= ℓ(t2).

In other words, if two events can be fired simultaneusly, they
must have different labels.

Ryszard Janicki Concurrent Composition. Towards Formal Semantics 23/25

Example

N = (P,T ,F ,Cinit ,L, ℓ):

P = {p1, p2, p3, p4, p5}, T = {t1, t2, t3, t4},
F = {(p1, t2), (p2, t3), (p3, t4), (p4, t4), (p5, t1),

(t1, p1), (t1, p2), (t2, p3), (t3, p4), (t4, p5)},
Cinit = {p1, p2}, L = {a, b},
R = {{p1, p2}, {p1, p4}, {p2, p3}, {p3, p4}, {p5}}
ℓ(t1) = ℓ(t2) = a, ℓ(t3) = ℓ(t4) = b.
• t2 and t3 may be fired concurrently, so ℓ(t2) = a ̸= ℓ(t3) = b.

Ryszard Janicki Concurrent Composition. Towards Formal Semantics 24/25

Often, when it does not lead to any ambiguity or confusion,
we presenting a graph of a Petri net we use only labels and
transitions are unnamed, as for the nets on pages 11 and 12
of this Lecture Notes.

Ryszard Janicki Concurrent Composition. Towards Formal Semantics 25/25

