Deadlock SE 3BB4

Ryszard Janicki

Department of Computing and Software, McMaster University, Hamilton, Ontario, Canada

Deadlock

Concepts: system deadlock: no further progress

four necessary & sufficient conditions

Models: deadlock - no eligible actions

Practice: blocked threads

Aim: deadlock avoidance - to design systems where deadlock cannot occur.

Deadlock: four necessary and sufficient conditions

Serially reusable resources:

the processes involved share resources which they use under mutual exclusion.

♦ Incremental acquisition:

processes hold on to resources already allocated to them while waiting to acquire additional resources.

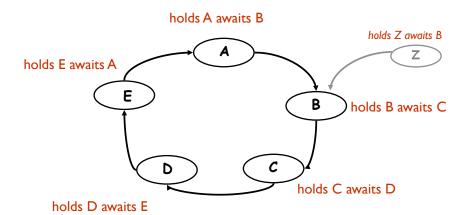
♦ No pre-emption:

once acquired by a process, resources cannot be pre-empted (forcibly withdrawn) but are only released voluntarily.

♦ Wait-for cycle:

a circular chain (or cycle) of processes exists such that each process holds a resource which its successor in the cycle is waiting to acquire.

Wait-for cycle



Deadlock may arise from the parallel composition of interacting processes.

```
RESOURCE = (get->put->RESOURCE).
         SYS
                          P = (printer.get->scanner.get
p:P
               printer:
               RESOURCE
                               ->copy
                               ->printer.put->scanner.put
  scanne
                               ->P).
                          Q = (scanner.get->printer.get
q:Q
               scanner:
   printer
               RESOURCE
                               ->copy
                               ->scanner.put->printer.put
  scanne
               bud
                               ->Q) .
                          ||SYS = (p:P||q:Q
Deadlock Trace?
                                ||{p,q}::printer:RESOURCE
                                | | {p,q}::scanner:RESOURCE
Avoidance?
```

```
\begin{array}{l} p:P = \left(p.printer.get_{\bullet} \rightarrow p.scanner.get \rightarrow p.copy \rightarrow \\ p.printer.put \rightarrow p.scanner.put \rightarrow p:P\right) \\ q:Q = \left(q.scanner.get_{\bullet} \rightarrow q.printer.get \rightarrow q.copy \rightarrow \\ q.scanner.put \rightarrow q.printer.put \rightarrow q:Q\right) \\ \{p,q\}::printer:RESOURCE = \left(p.printer.get_{\bullet} \rightarrow p.printer.put \rightarrow pqpR\right) \\ \{p,q\}::scanner:RESOURCE = \left(p.scanner.get \rightarrow q.printer.put \rightarrow pqpR\right) \\ \{p,q\}::scanner:RESOURCE = \left(p.scanner.get \rightarrow p.scanner.put \rightarrow pqsR\right) \\ q.scanner.get_{\bullet} \rightarrow q.scanner.put \rightarrow pqsP) \end{array}
```

Deadlock sequence: $p.printer.get \rightarrow q.scanner.get$

● - denote states where processes deadlock

Ryszard Janicki Deadlock

5/36

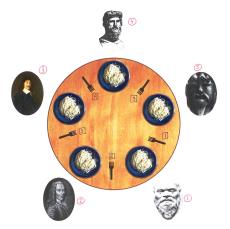
A Possible Solutions

- Acquire resources in the same order, i.e. printers always before scanners.
- Timeout:

 No deadlock but the sequence: printer.get → timeout → printer.put → can be repeated infinite number of times! NOBODY COPIES ANYTHING!

Dining Philosophers

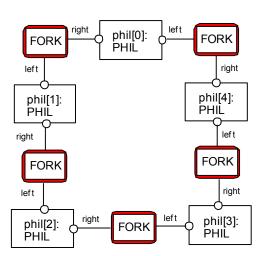
 Five philosophers sit around a circular table. Each philosopher spends his life alternately thinking and eating. To eat, a philosopher needs two forks, but unfortunately there are only five forks on the circular table and each philosopher is only allowed to use the two forks nearest to him.



Dining Philosophers - model structure diagram

Each FORK is a shared resource with actions get and put.

When hungry, each PHIL must first get his right and left forks before he can start eating.



Hungry, Simple Minded Philosophers

```
• i \oplus 1 = if \ i < 5 \ then \ i + 1 \ else \ 1
FORK = (get \rightarrow put \rightarrow FORK)
PHIL = (think \rightarrow right.get \rightarrow left.get \rightarrow eat \rightarrow right.put \rightarrow think \rightarrow right.get \rightarrow
                                                                                                                                                                             left.put \rightarrow PHIL)
|| DINERS(N=5) = forall[i:1..N]
                                                                                                                  (phil[i] : PHIL \parallel \{phil[i].right, phil[i \oplus 1].left\} :: FORK)
```

```
• More intuitively (for get_i^i, put_i^i, i - philosopher number, j - fork number):
FORK_1 = (get_1^1 \rightarrow put_1^1 \rightarrow FORK_1 \mid get_1^5 \rightarrow put_1^5 \rightarrow FORK_1)
FORK_2 = (get_2^2 \rightarrow put_2^2 \rightarrow FORK_2 \mid get_2^1 \rightarrow put_2^1 \rightarrow FORK_2)
FORK_3 = (get_3^3 \rightarrow put_3^3 \rightarrow FORK_3 \mid get_3^2 \rightarrow put_3^2 \rightarrow FORK_3)
FORK_4 = (get_4^4 \rightarrow put_4^4 \rightarrow FORK_4 \mid get_4^3 \rightarrow put_4^3 \rightarrow FORK_4)
FORK_5 = (get_5^5 \rightarrow put_5^5 \rightarrow FORK_5 \mid get_5^4 \rightarrow put_5^4 \rightarrow FORK_5)
PHIL_1 = (think_1 \rightarrow get_1^1 \rightarrow get_2^1 \rightarrow eat_1 \rightarrow put_1^1 \rightarrow put_2^1 \rightarrow PHIL_1)
PHIL_2 = (think_2 \rightarrow get_2^2 \rightarrow get_3^2 \rightarrow eat_2 \rightarrow put_2^2 \rightarrow put_3^2 \rightarrow PHIL_2)
PHIL_3 = (think_3 \rightarrow get_3^3 \rightarrow get_4^3 \rightarrow eat_3 \rightarrow put_3^3 \rightarrow put_4^3 \rightarrow PHIL_3)
PHIL_4 = (think_4 \rightarrow get_4^4 \rightarrow get_5^4 \rightarrow eat_4 \rightarrow put_4^4 \rightarrow put_5^4 \rightarrow PHIL_4)
PHIL_5 = (think_5 \rightarrow get_5^5 \rightarrow get_1^5 \rightarrow eat_5 \rightarrow put_5^5 \rightarrow put_1^5 \rightarrow PHIL_5)
\parallel DINERS = (FORK_1 \parallel ... \parallel FORK_5 \parallel PHIL_1 \parallel ... \parallel PHIL_5)
```

Ryszard Janicki Deadlock

Hungry, Simple Minded Philosophers

Obvious deadlock! Everyone picks right fork.

```
Trace_1 =
phil.1.think \rightarrow phil.1.right.get \rightarrow
phil.2.think \rightarrow phil.2.right.get \rightarrow
phil.3.think \rightarrow phil.3.right.get \rightarrow
phil.4.think \rightarrow phil.4.right.get \rightarrow
phil.5.think \rightarrow phil.5.right.get
think_1 \rightarrow get_1^1 \rightarrow
think_2 \rightarrow get_2^1 \rightarrow
think_3 \rightarrow get_2^1 \rightarrow
think_4 \rightarrow get_4^1 \rightarrow
think_5 \rightarrow get_5^1
```

What if not 'Simple Minded'?

```
FORK = (get \rightarrow put \rightarrow FORK)
PHIL = THINK
THINK = (think \rightarrow (right.get \rightarrow left.get \rightarrow EAT \mid left.get \rightarrow right.get \rightarrow EAT))
EAT = (eat \rightarrow (right.put \rightarrow left.pt \rightarrow THINK \mid left.put \rightarrow right.put \rightarrow THINK)
\parallel DINERS(N = 5) = forall[i : 1..N]
(phil[i] : PHIL \parallel \{phil[i].right, phil[i \oplus 1].left\} :: FORK)
```

 Unfortunately a freedom of choosing either right or left fork does not solve the problem. The same trace leads to a deadlock. However in "real" implementation, it will make it happen less often.

Still 'Simple Minded' but not so 'Hungry'

```
FORK = (get \rightarrow put \rightarrow FORK)
PHIL = THINK
THINK = (think \rightarrow right.get \rightarrow (left.get \rightarrow EAT \mid giveup \rightarrow right.put \rightarrow THINK))
EAT = (eat \rightarrow right.put \rightarrow left.put \rightarrow THINK)
\parallel DINERS(N = 5) = forall[i : 1..N]
(phil[i] : PHIL \parallel \{phil[i].right, phil[i \oplus 1].left\} :: FORK)
```

- There is no deadlock now!
 Trace₁ → phil.i.giveup → phil.i.right.put → ...
- However we might get: $Trace_1 \rightarrow Trace_2 \rightarrow$ and so on, where: $Trace_2 = phil.1.giveup \rightarrow phil.1.right.put \rightarrow phil.2.giveup \rightarrow phil.2.right.put \rightarrow$
 - phil.2.giveup \rightarrow phil.2.right.put \rightarrow phil.3.giveup \rightarrow phil.3.right.put \rightarrow phil.4.giveup \rightarrow phil.4.right.put \rightarrow phil.5.giveup \rightarrow phil.5.right.put \rightarrow
- No philosopher will ever eat!Starvation!

'Hungry' and 'Asymmetrically Simple Minded', or 'Some Discipline Added'

 Philosophers 1, 3 and 5 always perform 'left.get → right.get', while 2 and 4 always perform 'right.get → left.get'.

```
FORK = (get \rightarrow put \rightarrow FORK)
PHIL = (when(i = 1 \lor i = 3 \lor i = 5) \ think \rightarrow left.get \rightarrow
right.get \rightarrow eat \rightarrow left.put \rightarrow right.put \rightarrow PHIL
| \ when(i = 2 \lor i = 4) \ think \rightarrow right.get \rightarrow
left.get \rightarrow eat \rightarrow right.put \rightarrow left.put \rightarrow PHIL)
|| \ DINERS(N = 5) = forall[i : 1..N]
(phil[i] : PHIL || \{phil[i].right, phil[i \oplus 1].left\} :: FORK)
```

Works! Neither deadlock nor starvation.

Ryszard Janicki

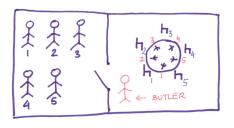
Asymmetrically Simple Minded Philosophers

• Notation: for get_j^i , put_j^i , i - philosopher number, j - fork number

```
\begin{split} &FORK_{1} = (get_{1}^{1} \to put_{1}^{1} \to FORK_{1} \mid get_{1}^{5} \to put_{1}^{5} \to FORK_{1}) \\ &FORK_{2} = (get_{2}^{2} \to put_{2}^{2} \to FORK_{2} \mid get_{2}^{1} \to put_{2}^{1} \to FORK_{2}) \\ &FORK_{3} = (get_{3}^{3} \to put_{3}^{3} \to FORK_{3} \mid get_{3}^{2} \to put_{3}^{2} \to FORK_{3}) \\ &FORK_{4} = (get_{4}^{4} \to put_{4}^{4} \to FORK_{4} \mid get_{3}^{3} \to put_{3}^{3} \to FORK_{4}) \\ &FORK_{5} = (get_{5}^{5} \to put_{5}^{5} \to FORK_{5} \mid get_{4}^{5} \to put_{5}^{4} \to FORK_{5}) \\ &PHIL_{1} = (think_{1} \to get_{2}^{1} \to get_{1}^{1} \to eat_{1} \to put_{2}^{1} \to put_{1}^{1} \to PHIL_{1}) \\ &PHIL_{2} = (think_{2} \to get_{2}^{2} \to get_{3}^{2} \to eat_{2} \to put_{2}^{2} \to put_{3}^{2} \to PHIL_{2}) \\ &PHIL_{3} = (think_{3} \to get_{4}^{3} \to get_{3}^{3} \to eat_{3} \to put_{4}^{3} \to put_{3}^{3} \to PHIL_{3}) \\ &PHIL_{4} = (think_{4} \to get_{4}^{4} \to get_{5}^{5} \to eat_{4} \to put_{4}^{4} \to put_{5}^{5} \to PHIL_{4}) \\ &PHIL_{5} = (think_{5} \to get_{1}^{5} \to get_{5}^{5} \to eat_{5} \to put_{1}^{5} \to put_{5}^{5} \to PHIL_{5}) \\ &\parallel DINERS = (FORK_{1} \parallel \dots \parallel FORK_{5} \parallel PHIL_{1} \parallel \dots \parallel PHIL_{5}) \end{split}
```

Ryszard Janicki

No more than 4 philosophers are sitting at the table.



```
FORK = (get \rightarrow put \rightarrow FORK)
PHIL = (think \rightarrow sitdown \rightarrow right.get \rightarrow left.get \rightarrow eat \rightarrow left.get \rightarrow left.get \rightarrow eat \rightarrow left.get \rightarrow l
                                                                                                         right.put \rightarrow left.put \rightarrow getup \rightarrow PHIL)
BUTLER(K = 4) = COUNT[0]
COUNT[i:1..4] = (when(i < K) sitdown \rightarrow COUNT[i+1] |
                                                                                                                                                                                                                   getup \rightarrow COUNT[i-1]
||DINERS(N=5) = (forall[i:1..N])
                                                                     (phil[i] : PHIL \parallel \{phil[i].right, phil[i \oplus 1].left\} :: FORK)
                                                                                                                                                                      \{phil[i:..N]\} :: BUTLER(K = 4))
                                                                                          { phil[1], phil[2], phil[3], phil[4], phil[5] }
```

Ryszard Janicki Deadlock

'Butler' Solution

- 'Butler' solution works. No deadlock and no starvation.
- FORK's are passive processes (monitors), hence they always can be presented as:

$$FORK = (get \rightarrow put \rightarrow FORK)$$

• PHILOSOPHER's are active processes.

A Solution with Simultaneity

- No philosopher is allowed to grab one fork only, he must take both left and right at the same time if they are available.
- Modeling simultaneity is **not** natural in FSP approach, it is possible but looks artificial.
- Modeling simultaneity is natural when Petri nets are used.

Individual Philosophers and Free Forks as Petri Nets

Philosopher No. 1:

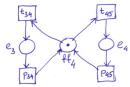
tt₁ - Philosopher No.1 thinks

 e_1 - Philosopher No.1 eats

 t_{12} - Philosopher No.1 takes up forks 1 and 2

 p_{12} - Philosopher No.1 puts down forks 1 and 2

Free Fork No. 4:



 ff_4 - Fork No. 4 is on the table

e₃ - Philosopher No. 3 eats using Fork No. 4

t₃₄ - Fork No. 4 is taken by Philosopher No.3

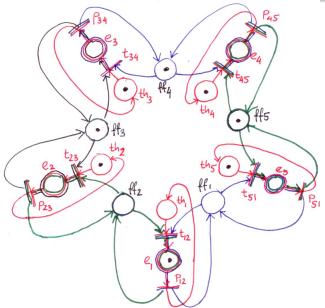
 p_{34} - Fork No. 4 is put down Philosopher No.3

e₄ - Philosopher No. 4 eats using Fork No. 4

 t_{45} - Fork No. 4 is taken by Philosopher No. 4

p₄₅ - Fork No. 4 is put down Philosopher No. 4

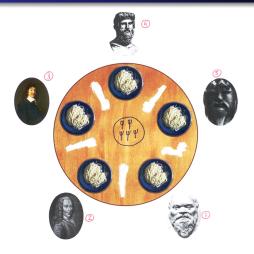
Dining Philosophers Composed



A Solution with Simultaneity for FSP

```
FORK = (take.right \rightarrow put.right \rightarrow FORK)
           take.left \rightarrow put.left \rightarrow FORK)
PHIL = (think \rightarrow takeboth \rightarrow eat \rightarrow putboth \rightarrow PHIL)
|| DINERS(N = 5) = forall[i : 1..N]
      (phil[i] : PHIL||\{phil[i].right, phil[i \oplus 1].left\} :: FORK))
      /{takeboth.1/take.right.1, takeboth.1/take.left.2,
       takeboth.2/take.right.2, takeboth.2/take.left.3,
       takeboth.3/take.right.3, takeboth.3/take.left.4,
       takeboth.4/take.right.4, takeboth.4/take.left.5,
       takeboth.5/take.right.5, takeboth.5/take.left.1,
       putboth.1/put.right.1, putboth.1/put.left.2,
       putboth.2/put.right.2, putboth.1/put.left.3,
       putboth.3/put.right.3, putboth.3/put.left.4,
       putboth.4/put.right.4, putboth.4/put.left.5,
       putboth.5/put.right.5, putboth.5/put.left.1}
```

Different Dining Philosophers and Some Limits of Process Algebras

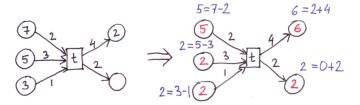


 All forks in one bowl. Forks are not distinguishable and philosophers pick them randomly.

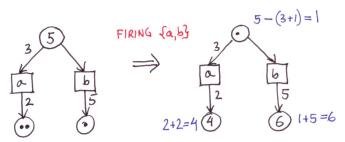
Ryszard Janicki

Place/Transitions Nets (P/T-Nets)

Firing rules:

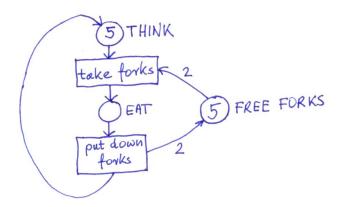


• Different kind of simultaneity:



Ryszard Janicki

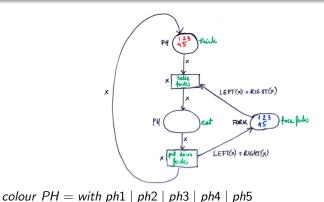
P/T-Nets Solution to 2nd Dining Philosophers Problem



- It does not work for the original Dining Philosophers Problem.
- Both philosophers and forks are represented by tokens.
- State machines represent generic behaviours.
- Impossible to model directly with FSP.

Ryszard Janicki Deadlock 23/36

Coloured Petri Nets



```
colour Fork = with f1 | f2 | f3 | f4 | f5

LEFT: PH \rightarrow FORK, RIGHT: PH \rightarrow FORK

var x: PH

fun LEFT x = case of ph1 \Rightarrow f2 | ph2 \Rightarrow f3 | ph3 \Rightarrow f4 |

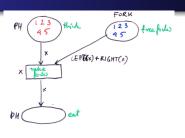
ph4 \Rightarrow f5 | ph5 \Rightarrow f1

fun RIGHT x = case of ph1 \Rightarrow f1 | ph2 \Rightarrow f2 | ph3 \Rightarrow f3 |

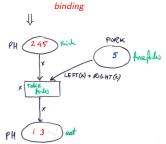
ph4 \Rightarrow f4 | ph5 \Rightarrow f5
```

Ryszard Janicki

Firing



Firing occurrence: $(take\ forks, \underbrace{x = ph1}) + (take\ forks, \underbrace{x = ph3})$



4 D > 4 A > 4 B > 4 B > B = 900

Multisets (or Bags)

- A multiset m, over a non-empty and finite set S is a function $m:S \to \mathbb{N} = \{0,1,2,\ldots\}$
- m(s) is the number of appearances of s in m.
- notation: *M* is usually represented by:

$$\sum_{s\in S} m(s)s$$

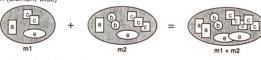
$$S = \{a, b, c, d, e\},\$$

 $m(a) = 3, m(b) = 1, m(c) = 0, m(d) = 183, m(e) = 4$
 $m = 3a + b + 183d + 4e$

- $s \in m \iff m(s) \neq 0$
- m(s) is a coefficient
- the *empty multiset* $m = \emptyset \iff m(s)$ for each $s \in S$.

Ryszard Janicki Deadlock 26/36

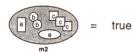
Some Operations on Multisets



Scalar multiplication (element-wise)

3 *

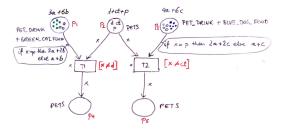
Comparison (element-wise)



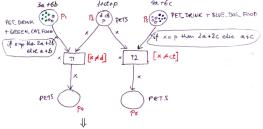
Size (number of elements)

Subtraction (only if m2 ≥ m1)

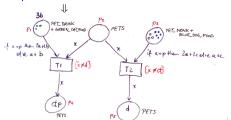
```
colour PET_DRINK = with a; colour GREEN_CAT_FOOD = with b; colour BLUE_DOG_FOOD = with c; colour PETS = with dog | cat | pig; (pig eats both cat food and dog food) var x : PETS; (in the drawing: dog=d, cat =ct, pig = p)
```



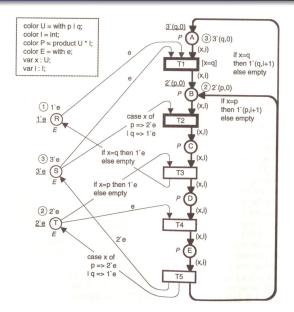
- In place p_1 we have 6 green cat food servings and 3 drinks (no dog food as it not allowed here, it is allowed in place p_3)
- Firing transition T1 corresponds to allow cat or pig or both to eat. The cat eats 1 serving of cat food and 1 drink while the pig eats 2 servings of food and 2 drinks.
- If both cat and pig eat and drink, 3 drinks and 3 servings of cat food disappear from place p_1 , and p, ct disappear from place p_2 .
- Similarly for places p_3 , p_5 and transition T2.



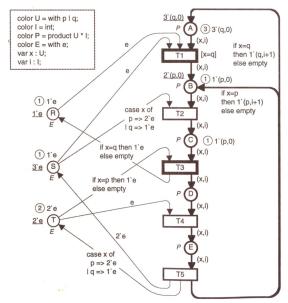
Firing occurrence: (T1, x = c) + (T1, x = p) + (T2, x = d)Interpretation: All three pets eat.



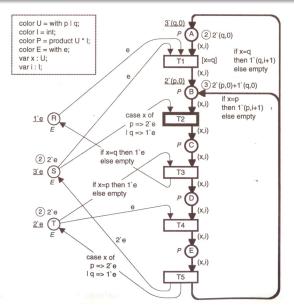
Some resource allocation system in its initial marking M_0



M_1 reachable from M_0 by $(T2, \langle x = p, i = 0 \rangle)$



M_2 reachable from M_0 by $(T2, \langle x=q, i=0 \rangle)$



A Coloured Petri Net is a tuple: $N = (P, T, A, \Sigma, C, N, E, G, I)$ where:

- P is a set of places and T is a set of transitions.
- T is a set of transitions.
- A is a set of arcs
- In CPNs sets of places, transitions and arcs are pairwise disjoint $P \cap T = P \cap A = T \cap A = \emptyset$
- \bullet Σ is a set of color sets defined within CPN model. This set contains all possible colors, operations and functions used within CPN.
- C is a colour function. It maps places in P into colors in Σ .
- N is a node function. It maps A into $(P \times T) \cup (T \times P)$.
- E is an arc expression function. It maps each arc $a \in A$ into the expression e. The input and output types of the arc expressions must correspond to type of nodes the arc connected to.
- G is a guard function. It maps each transition $t \in T$ into guard expression g. The output of the guard expression should evaluate to Boolean value true or false.
- I is an initialization function. It maps each place p into an initialization expression i. The initialization expression must evaluate to multiset of tokens with a color corresponding to the

Some Concepts Needed

- The elements of a type, T. The set of all elements in T is denoted by the type name T itself.
- The type of a variable, v denoted by Type(v).
- The type of an expression, expr denoted by Type(expr).
- The set of variables in an expression, expr denoted by Var(expr).
- A binding of a set of variables, V associating with each variable v∈V an element b(v)∈Type(v).
- The value obtained by evaluating an expression, expr, in a binding, b denoted by expr<b. Var(expr) is required to be a subset of the variables of b, and the evaluation is performed by substituting for each variable v∈ Var(expr) the value b(v)∈Type(v) determined by the binding.

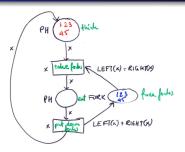
'Official' Formal Definition of Petri Nets

Definition 2.5: A non-hierarchical CP-net is a tuple CPN = $(\Sigma, P, T, A, N, C, G, E, I)$ satisfying the requirements below:

- (i) Σ is a finite set of non-empty types, called **colour sets**.
- (ii) P is a finite set of places.
- (iii) T is a finite set of transitions.
- (iv) A is a finite set of arcs such that:
 - $P \cap T = P \cap A = T \cap A = \emptyset$.
- (v) N is a **node** function. It is defined from A into $P \times T \cup T \times P$.
- (vi) C is a colour function. It is defined from P into Σ .
- (vii) G is a guard function. It is defined from T into expressions such that:
 - $\forall t \in T$: $[Type(G(t)) = \mathbb{B} \land Type(Var(G(t))) \subseteq \Sigma]$.
- (viii) E is an arc expression function. It is defined from A into expressions such that:
 - $\forall a \in A$: $[Type(E(a)) = C(p(a))_{MS} \land Type(Var(E(a))) \subseteq \Sigma]$ where p(a) is the place of N(a).
- (ix) I is an initialization function. It is defined from P into closed expressions such that:
 - $\forall p \in P$: [Type(I(p)) = C(p)_{MS}].

35/36

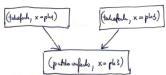
Behaviours



Sequence:

(take forks, x = ph1)(take forks, x = ph3)(putdown forks, x = ph3) Step-sequence:

 $\{(take\ forks, x = ph1)(take\ forks, x = ph3)\}\{(putdown\ forks, x = ph3)\}$ Partial order:



Ryszard Janicki Deadlock