Monographs on

Theoretical Computer Science
W.Brauer G.Rozenberg A.Salomaa (Eds.)

WOLFGANG REISIG

Petri Nets

An Introduction

Springer-Verlag
Berlin Heidelberg New York Tokyo

EATCS

Monographs on Theoretical Computer Science
Volume 4

Editors: W. Brauer G. Rozenberg A. Salomaa

Advisory Board: G. Ausiello S. Even M. Nivat
Chr. Papadimitriou A. L. Rosenberg D. Scott

Wolfgang Reisig

PETRI NETS

An Introduction

With 111 Figures

Springer-Verlag
Berlin Heidelberg New York Tokyo

Dr. Wolfgang Reisig

GMD
Postfach 12 40, Schlo8 Birlinghoven
5205 St. Augustin 1, Germany

Prof. Dr. Wilfried Brauer

FB Informatik der Universitit
Rothenbaum-Chaussee 67—69, 2000 Hamburg 13, Germany

Prof. Dr. Grzegorz Rozenberg

Institut of Applied Mathematics and Computer Science

University of Leiden, Wassenaarseweg 80, P.O. Box 9512
2300 RA Leiden, The Netherlands

Prof, Dr. Arto Salomaa

20500 Turku 50, Finland

Translation of the German original edition: W. Reisig, Petrinetze
ISBN 3-540-11478-5
Springer-Verlag Berlin Heidelberg New York 1982

ISBN 3-540-13723-8 Springer-Verlag Berlin Heidelberg New York Tokyo
ISBN 0-387-13723-8 Springer-Verlag New York Heidelberg Berlin Tokyo

Library of Congress Cataloging 1n Publication Data
Reisig, Wolfgang, 1950—
Petri nets.

.
Racad on lectures aiven hy t
Lasea OoneCures given oy

Translation of Petrinetze,

Includes index,

1. Petri nets. L. Title.

QA267.R4513 1985 S11 84-26700
ISBN 0-387-13723-8 (U.S)

This work is subject to copyright, All rights are reserved, whether the whole or part of
matenal is concerned, specificaliy those of translation, reprinting, re-use of 1llustrations,
broadcasting, reproduction by photocopying machine or similar means, and storage 1n
data banks. Under § 54 of the German Copyright Law where copies are made for other

Ll it =

than private use a fee 1s payable to “Verwertungsgesellschaft Wort”, Mumnich.

© Springer-Verlag Berlin Heidelberg 1985
Printed in Germany

The use of registered names, trademarks, etc. 1n the publication does not imply, even 1n
the absence of a specific statement, that such names are exempt from the relevant pro-
tective laws and regulations and therefore free for general use.

Typesetting, printing and bookbinding: K. Triltsch, Wiirzburg
2145/3140-543210

Preface

Net theory is a theory of systems organization which had its origins, about 20
years ago, in the dissertation of C. A. Petri [1]. Since this seminal paper, nets
have been applied in various areas, at the same time being modified and
theoretically investigated. In recent time, computer scientists are taking a
broader interest in net theory.

The main concern of this book is the presentation of those parts of net
theory which can serve as a basis for practical application. It introduces the
basic net theoretical concepts and ways of thinking, motivates them by means
of examples and derives relations between them. Some extended examples il-
lustrate the method of application of nets. A major emphasis is devoted to those
aspect which distinguish nets from other system models. These are for instance,
the role of concurrency, an awareness of the finiteness of resources, and the pos-
sibility of using the same representation technique of different levels of ab-
straction. On completing this book the reader should have achieved a system-

fAr

atic grounding in the subject allowing him access to the net literature [25].

The presentation of the material here is rather more axiomatic than in-
ductive. We start with the basic notions of ‘condition’ and ‘event’ and the con-
cept of the change of states by (concurrently) occurring events. By generali-
zation of these notions a part of the theory of nets is presented. It would have
been possible to proceed in the opposite order by firstly presenting net repre-
sentations of practical, real systems and then, proceeding by a sequence of ab-
straction steps, reaching nets consisting of conditions and events. However, the
chosen method of presentation corresponds to the usual way of proceeding in
the framework of theoretical computer science.

It is not intended, in this book, to give a total overview and summary of the
theory and applications of nets. Such an attempt is doomed to failure, not only
because of the number of publications in the field, more than 500 are refer-
enced in [25], but also because of the wide spectrum of the topics covered; for
example complexity theory, the theory of formal languages, the theory and de-
sign of logic circuits, computer architecture, operating systems, the connection
of computer processors, process control and real time systems, programming
and command languages, databases, communication protocols, software en-
gineering and yet even further into topics outside computer science (ad-
ministration, jurisprudence, the logic of inter-personal interaction). Also, we
are not able here to treat the foundations of net theory which lie in the philoso-

VI Preface

phies of natural sciences, in the classical and non-classical logics, in theoretical
physics and in the theories of communication.

A series of lectures for students in the third and fourth year of computer
science, which the author gave at the Technical University of Aachen, served as
a basis for this book. It might therefore be used in university courses, but it is
also intended for the graduate student, the researcher and the professional who
want to start within the field of Petri Nets.

The book assumes only an elementary knowledge of the structure, function-
ing and application of computer based information systems and some elemen-
tary mathematics. Using the first chapter as a basis, Part 1 and Part 2 may be
read rather independently of each other. Part 3 uses the notions introduced in
Chapts. 2, 4, 5 and 6. The computing practitioner should, in addition to the first
chapter, find it worthwhile to study, particularly, the example at the start of
Chapt. 5 and Sects. 6.3 to 6.5 and 8.1 to 8.3.

At the end of each chapter exercises are given. The more difficult ones are
marked with *.

The appendix presents the mathematical notions and notation which are
Ad 1n thic hook

This book was originally published in German by Springer-Verlag in 1982.

or the English edition it was revised and the “Further Reading” appendix and
th 1

varnic Qv aroa ““ (\fﬂf\"nfnf‘
t(1C CXCrCiscs were 1ncorporaca.

Acknowledgements

This book could not have been created without the help of a number of people.
At the Institut fiir Informationssystemforschung of the Gesellschaft fiir Mathe-

matik und Datenverarbeitung in Bonn (West Germany), I received great sup-
port in discussing particular topics from C. A. Petri, H. Genrich, K. Lauten-
bach und P.S. Thiagarajan. Prof. W. Brauer gave many valuable remarks on
the German manuscript.

On the occasion of the English translation it was possible to revise the text
due to many hints and comments from its readers. Especially I am indepted to
Eike Best, Ursula Goltz, Kurt Lautenbach, Roberto Minio, Horst Miiller, Leo
Ojala, Anastasia Pagnoni, Grzegorz Rozenberg and P.S. Thiagarajan for their
many critical and constructive notes. Horst Miiller and Dirk Hauschildt mainly
contributed to the revision of Lemma 5.3 (d) and Theorem 7.2 (k), respectively.

I am deeply indebted to the translators Ursula Goltz and Dan Simpson, who
with remarkable competence, fervour and patience did an excellent job. They
also brought up some valuable discussion with regard to the contents of the
book.

W.R.
Aachen, Germany
June 1983

To the English Edition

We have retained the notation of the German book (e.g. B for sets of conditions
and S for sets of places) corresponding to the standards introduced at the Ad-
vanced Course on Net Theory and Application, cf. [17]. Any changes might
have induced further problems (e.g. C for conditions would exclude an ap-
propriate notation for cases. P for places would imply the non-standard notion

of P-invariant).

U.G., D.S., Aachen and Sheffield

Contents

Introduction

Chapter 1. Introductory Examples and Basic Definitions

1.1 Examples from Different Areas .
1.2 Examples from Logic Circuits and Operatmg Systems
1.3 Non-Sequential Programs .

1.4 An Example for Systems Analysis

1.5 Some Basic Definitions .

1.6 Summary and Overview .

Exercises for Chapter 1

Part 1. Condition/Event-Systems

Chapter 2. Nets Consisting of Conditions and Events

2.1 Casesand Steps

2.2 Condition/Event-Systems

2.3 Cyclic and Live Systems

2.4 Equivalence e e e e
2.5 Contact-Free C/E-Systems

2.6 Case Graphs
Exercises for Chapter 2

Chapter 3. Processes of Condition/Event-Systems

3.1 Partially Ordered Sets

3.2 Occurrence Nets

33 Processes oo

34 The Composition of Processes
V@ P, PN

35 l'l OCESSES auu \./dbC Jliapin
Exercises for Chapter 3

Chapter 4. Properties of Systems

4.1 Synchronic Distances .
4.2 Some Quantitative Propertles of Synchromc Dlstances
4.3 Synchronic Distances in Sequential Systems

10
12
14
16
16

17

18

18
21
23
24
25
28
30

32

33
35
37
39

A1l
<41

44

46

46
52
53

Contents

4.4 Synchronic Distances in Cyclic Systems
4.5 Facts Ce e e
Exercises for Chapter 4

Part 2. Place/Transition-Nets

Chapter 5. Nets Consisting of Places and Transitions

5.1 Place/Transition-Nets .

5.2 Linear Algebraic Representation

5.3 Coverability Graphs .

5.4 Decision Procedures for Some Net Propertles
5.5 Liveness

Exercises for Chapter 5

Chapter 6. Net Invariants

6.1 S-Invariants . .
6.2 Nets Covered by Q-In\mrmnte

6.3 The Verlflcatlon of System Properties Usmg S Invarlants

6.4 Properties of a Sender-Receiver Model
6.5 A Seat-Reservation chtpm

ANVSvi

6.6 The Verification of Facts in C/E-Systems by Means of S Invarlants .

6.7 T-Invariants

vanwepc for Chanter 6
lllllllllll y wi U

Chapter 7. Liveness Criteria for Special Classes of Nets

7.1 Marked Nets, Deadlocks and Traps
7.2 Free Choice Nets Coe
7.3 Marked Graphs

Exercises for Chapter 7

Part 3. Nets with Individual Tokens

Chapter 8. Predicate/Event-Nets

8.1 An Introductory Example

8.2 Predicate/Event-Nets .

8.3 An Organization Scheme for Dlstrlbuted Databases
8.4 Factsin P/E-Nets . . .

8.5 A Normal Form for P/E- Nets

Exercises for Chapter 8

Chapter 9. Relation Nets

9.1 Introductory Examples
9.2 Relation Nets

IX

54
55
57

61

62

62
65
66
71
73
74

77
77
81
82

84
87

o7/

93

94
96

Pavy)

98

98
101
108
109

111

112

112
114
117
119
122
123

124

124
126

X Contents

9.3 The Translation of P/E-Nets into Relation Nets 129
9.4 Calculation with Multirelations . 129
9.5 A Matrix Representation for Relation Nets 132
9.6 S-Invariants for Relation Nets 133
9.7 An Example for Applying S-Invariants: The Ver1f1cat10n of Facts 133
9.8 Relation Net Schemes e e e e e e e e 135
Appendix. Mathematical Notions and Notation 139
LSets 139
II. Relations . 139
I1I. Mappings, Functions 140
IV. Partial Orders 140
V.Graphs 140
VL Suprema of Sets of Natural Numbers and Calculatlons w1th w 141
VII. Vectors and Matrices 142
Further Reading 143
1. Some Landmarks in the Development of Net Theory 143
2. Conferences on Petri Nets . 144
3. Text Books 145
4. Bibliographies 145
5. References to Chapter 2 146
6. References to Chapter 3 146
7. References to Chapter 4 147
8. References to Chapter 5 147
9. References to Chapter 6 151
10. References to Chapter 7 151
ii. References to Chapter 8 i52
12. References to Chapter 9 153
13. Modifications and Generallzatlons of Place/Transmon Nets 153
14. Applications 155
15. Implementation and Automatic Analysns of Nets 158
16. Related System Models 158
Index 160

Introduction

(a) Perri nets, the subject of this book, are a model for procedures, organiza-
tions and devices where regulated flows, in particular information flows, play a

role.

This language of nets arose from the intention of devising a conceptual and
theoretical basis “for the description, in a uniform and exact manner, of as
great as possible a number of phenomena related to information transmission
and information transformation” [1]. We shall restrict ourselves to such applica-
tions of this theory as lie in the area of the design and use of computer based
information systems.

In comparison with other system models, the major characteristics of Petri
nets are the following:

— Causal dependencies and independencies in some set of events may be
represented explicitly. Events which are independent of each other are not
projected onto a linear timescale; instead, a non-interleaving, partial order
relation of concurrency is introduced. This relation is fundamental for the
whole conceptual basis of net theory.

— For some systems it may not be sensible to try to describe them as sequen-
tial functions. To do so only leads into unnecessary distracting detail. Exam-
ples are a query answering system of a distributed database, a real time sys-
tem for production control, the control of processes in an operating system or a
communication protocol.

— Systems may be represented at different levels of abstraction without having
to change the description language. These levels of abstraction range from the
change of single bits in computer memories to the embedding of a computer
system into its environment.

— Net representations make it possible to verify system properties and to do
correctness proofs in a specific way. Once a system has been modelled as a
net, properties of the system may be represented by similar means, and

correctness proofs may be built using the methods of net theory. Logical pro-

positions are obtained as static components of dynamic net models.

Two objections may be raised here. One is that other methods which are
well-known and established aim for the same goals. The other point is made
by considering processes which run independently of each other (for example:
processes in the central memory and in peripheral processing units of some
computer). Such processes take particular states and perform state changes.
The argument is that such states or changes which are coincidential may be

2 Introduction

-~ Linad ~Alal ctata 1
comoinea into a 51UU¢11 Staic Or a gu

a new theory is not required. Here we are not able to discuss in full the reasons
why the specific ways of thinking of net theory are sufficiently important to
justify the construction of a whole new theory. We simply note two points in
reply: first, that the above proposed combination of coincident states or
changes gives rise to the problem of determining whether they are really
simultaneous. Secondly, a purely sequential model does not truly reflect the
real causal structure of processes. In any sequentializing view we can not dif-
ferentiate whether two events occur one after the other because the first is a
prerequisite of the second or whether this order in time is solely by chance.
But, in fact, the causal relations are those which, to a large extent, characterize

1t 1ac 110 Ld 1V A4l© LITOD icil 24 5

a system.

L\n se whinlh Anciaeg thhnca Tlaaio
1angc WIiiCIl COVEIS tnese. 1 InuS,

(b) In the first chapter we shall present, by means of several examples, differ-
ent net models. This gives a first insight into the structural patterns and repre-
sentation methods typical for nets. The mathematically oriented reader may
start at 1.1 and skip to 1.5.

Systems consisting of conditions and events, which are introduced in Part 1
of this book, constitute the most detailed description level of marked nets.
Here, the fundamental notions of non-sequential processes are studied: viz., the
relations of causal dependency and independency of events; the relationship
between non-sequential processes and their set of possible sequential realiza-
tions; the metric of synchronic distances as a measure for the dependency be-
tween events; and, finally, the formulation of system properties in the language
of logic and their integration into the net calculus.

In the second part of the book we consider nets consisting of places and
transitions. Such nets are particularly suited to the formulation of blocking
problems. For the investigation of such nets we introduce coverability graphs,
which allow conclusions to be drawn about the behaviour of the system we are

modelling.

We concentrate our presentation on those investigation methods which do
not rely on the set of all possible sequential executions. A particular one of
these is the calculus of invariants involving linear algebraic techniques. By
means of several examples we show how this calculus may be used for the
verification of system properties. For particular place/transition-nets, we
derive particular methods of analysis.

In the third part of the book we consider individuals, predicates and rela-
tions on nets; we thus reach a level which yields a relationship between nets
and universal algebra. We show how, on this level too, system properties
which are formulated in the language of logic may yet again be represented in
the net calculus. The verification of system properues SO represemcu is agam
aided by an invariant calculus generalized from place/transition-nets.

Chapter 1
Introductory Examples and Basic Definitions

1.1 Examples from Different Areas

In the preface and the introduction, we have already used the terms “‘system
organization”, “system model”, “condition”, “event” and “information trans-
formation” without explaining them. These notions are of fundamental im-
portance in net theory. However, as they are concepts from the real world, we
shall not try to give precise definitions of them but rather appeal to the intui-
tion and general understanding of the reader. But, we shall have to consider
properties of objects of this kind, and also the relationships between such ob-
jects. We shall say, for instance, that “system models” represent real systems
more or less adequately, that “events” occur and that “conditions” do or do
not hold.

kdd 13

(a) Let us first consider systems comprising conditions and events. Figure |
shows a system in which the conditions are: “it is spring”, “it i is summer”, “it is
autumn” and “it is winter”; the events are: “start of spring”, “start of sum-

9

mer”, “start of autumn” and “start of winter”. We see that each condition is
renresented by a circle and each event by a box, Each condition which holds is

g o esented Q Viivab Qiis Vahar vV e Qi VVRIReAiviVal ANiad AVEARRS 2

marked by a dot (a token) (in Fig. 1, it is “spring”). The set of conditions
which hold in some configuration is called a case. In the system represented in

start of
swmmer

spring (e swmmer

start of Y _ start of
spring [:] autum

winter } autum

start of
winter

Fig. 1. The four seasons and their changes

4 Introductory Examples and Basic Definitions

Fig. 1, each cas .
results. A condition, b, and an event, e, may be related with each other as

follows:

(1) b starts to hold when e occurs. b is then called a postcondition of e. Graphi-
cally, this relationship is represented as an arc from e to b.

(2) b ceases to hold when e occurs. b is then called a precondition of e. Graphi-
cally, this relationship is represented as an arc from b to e.

If b 1s not affected by the occurrence of e there is no arc between b and e at
all.

So, in our system of the four seasons, when an event occurs the token is
moved to the next season.

start of
summer
spring swmmer
winter or
bt spring start of
start oj -,i t o]
spring ot autumm
autumm
winter autum
start of
winter

start of
swmmer
spring summer
winter or
sprin
start of pring start of
anving . autumm
spring not
autum
o
winter autum
start of
winter

Fig. 3. The system of Fig. 2 after start of summer

1.1 Examples from Different Areas 5

O ()) (o)

&J\. /U

E z ==> = z
e e

&) (O &

Fig. 4. The occurrence of an event e

When modelling the four seasons and their changes we may wish to rep-
resent additional conditions and events. When we add the conditions “winter or
spring” and “not autumn”, we obtain the system shown in Fig. 2. Note that
now some events have several pre- or postconditions.

In the system represented in Fig. 2, consider now in which case the event
“start of summer” may occur. This is when it is both “spring” and “winter or
spring”, and it is not already “summer”. By the occurrence of this event we
obtain the configuration shown in Fig. 3. In general, an event may occur if all
its preconditions hold and none of its postconditions hold. Figure 4 shows the
requirements for, and the result of, an event, e, occuring.

Although it is certainly an interesting event that winter ends, it should not
be distinguished from the start of spring because neither of these events can
occur without the other. The end of winter and the start of spring are coinci-
dent events, they are represented by one single box.

(b) When describing systems, at some levels, it is not always appropriate to use
the notions of “condition” and ‘“event”. For example, when looking for

FoN
LN
Al O

consumer
®- /SO
L7,
L] [
W buffer
producer

consumer

Fig. 5. A system consisting of one producer and two consumers

6 Introductory Examples and Basic Defimtions

o)
)

nlyv be the total number

bottlenecks in ma ,u.acturing processes, it may only be the wumber o
goods produced which is of interest and not their individual identities. In th
representation of a store, a set of conditions (“the places s,,..., s, are used”)

may then be combined into one item which is marked n-times (“n places are
used”). Figure 5 shows a system of one producer and two consumers using a
buffer as their store. The producer generates items (represented as tokens),
which are placed in the buffer. The consumers may remove items which are in
the buffer. In such nets, we say the elements are places O and transitions OJ.
Places may, in contrast to conditions, carry more than one token. Arcs again in-
mcate lHC llOW of lOKCHb A lrdﬂblllOl'l _]l"eb Uy meOVll'lg a lOKCﬂ from CdCl’l in-
put place and by adding a token to each output place (Fig. 6). If we restrict
each place to carry at most one token this firing rule corresponds to the effect

of event occurrences described above.

+\,A

g\,\
O ©

Fig. 6. The firing of a transition ¢

The two consumers are represented by two tokens in one single consumer
part of the net as in Fig. 7. However, now the consumers may no longer be
distinguished as individuals.

(c) Nets consisting of places and transitions model system properties concern-
ing the number, the distribution and the flow of objects which are not further

Aigtinonichad If wa wich ta cancidar individnial nranartiag af tha ahieste wa
ulouusulouvu. 11 VWL VWIDIll WU LVUIDIULVL 1givivgdual }JlUl}\vl LiIvo Vi1 ulwv UUJ\/\.J-O vwu

must be able to identify particular tokens. Figure 8 shows a fragment of an
industrial production system, the operation of which is intuitively clear. This
also illustrates the construction of nets. Round nodes (places) represent passive
system components. These are those components which may store items, take
particular states and make things observable. Rectangular nodes (transitions)

FON
N

producer two consumers

Fig. 7. Combination of the two consumers of Fig. 5 into one part of the net

1.1 Examples from Different Areas 7

O O
’ of¢)

i eapacity:
100 100 100 items

|
A
()
_ %
| \
I\

Fig. 8. A fragment of an industrial production system

)

DY/

.
(/ N
\

R/

represent active system components. Such components may produce, transport
and change objects. Arcs show which system components are directly coupled
with each other and in which direction objects may “flow” through the
net. These objects themselves are represented as individual tokens.

(d) There are systems where some of the connections between system com-
ponents are not oriented. Some systems do not have objects which flow. But we
shall always adhere to the principle of partitioning the system into active and
passive components. This partitioning may often be done in a number of dif-
ferent ways. For example, as a first approximation, a game of chess may be
represented as an interaction, ¢, of two players (holders of states) s; and s,.
Alternatively, the board, s, may be considered as a passive object to be ac-
cessed by the moves, 7, and ¢,, made by each player. Figure 9 shows the first

8 Introductory Examples and Basic Definitions

$ t $2 h s t,

player 1 moves of player 2 moves of board- moves of
the players player 1 player 2

Fig. 9. Two representations of a chess game

view as N, and the second view as N,. These two different partitions stress two
A1 fFavrant agmante AF tha cama Cash Aafinad thaot thhn aomaqt
UlllClCllt aopcu.o O1 lllC aallivc DyOLClll Cacn llldy UC reiinea so I.llal. I.llC dbpcblb
of the other view are included. Figure 10 shows the smallest refinement which
covers the aspects of both views.

As long as no distinguished flow of objects is to be represented, the arcs of
a net may be undirected, as in Fig. 9 and Fig. 10. In this book we will not dis-

cuss nets of this kind.

S t SC t, ‘SZO

player 1 moves of board moves of player 2

player 1 player 2
S~ Tl — o~ — s
O-{+HO{1H0O
—— -

coarsening yielding ,

Fig. 10. Common refinement from Fig. 9

(a) Let us start with a problem from logic circuits. x and y are two variables,

vhinh aon talba tha yaliiag “tenia? and “falea” Faosh 1 aggioned an itial valy
Wiiicii Cail take ulic vaiucs Ul ana 1ais . Cacin IS asSignca an initiar vaiuc

independently of the other. They are then combined to give the value x A y to
the variable x and the value x V y to the variable y. These new values are
available until they are, again independently, deleted. Then the system returns
to the initial configuration and the variables may be given new values. Fig-
ure 11 shows this system as a net consisting of conditions and events.

1.2 Examples from Logic Circuits and Operating Systems 9

° ® ¢ start of
cycle

initialization

initial
values

"

compute new
values

computed
values

x
n<
n

delete
values

values are
*4) deleted

X y

Fig. 11. A system which calculatesx :==x A yandy:=xV y

(b) In operating systems several processes may write to, or read from, an area
1n main memory. For example, consider a configuration of two processes with
write access and four processes with read access. At most three reader pro-
cesses may overlap in their access to the memory. When the memory is being
changed by some writer process no other process may have access.

Flonrp 12 shows this svstem as a net consistine of nlaces and tr

Siav VY LIS O yOrviil G0 4 3iVL VVIRISIOULS piaveo

ansitions
ansitions.

Two of the arcs are labelled by 3. In this case, when the appropriate transition
fires the token count on the place s is reduced or increased by 3 instead of 1.

wvpsAd +n
ready to
write
/\ e U |
ready to
®) read
3
writing ... reading
3
S
other access other
. control .
processing ® ®) processing
2 writer processes 4 reader processes
p p

Fig. 12. Organization of the access rights of six processes to a memory area

10 Introductory Examples and Basic Definitions
1.3 Non-Sequential Programs

In the area of software engineering, non-sequential programs are required, in
partlcular for systems programmmg and process control Even in small pro-

be represented usmg purely sequentlal techmques To do SO means we must
accept an overspecification. Because of the currently available computer archi-

tactuirae thic averensacification mav he ercanamically advicahla and ceam mare
wlulCo uils OVOIopLliniCauUil dilay Uv CCUNUIMNCally aUvisauiC allG SOOI IMioic

efficient, for if we specify the non-sequential behaviour we still have to give a
sequential specification for the implementation. However, we propose it is a
fundamental advantage to avoid the introduction of orderings except in those
situations where they are necessary or wanted. To show this, we now consider
two examples.

(a) We want to construct a program for the addition of two natural numbers
stored in the variables x and y. In the final state, the variable x should contain
the value 0 and the variable y the required sum. The operations allowed are
the addition and the subtraction of the value 1 and the test for 0.

Figure 13 presents two sequential solutions to this problem. The nets shown
there are similar to ordinary flow charts. Instructions are represented as events,
and possible program states as conditions. The current state is marked by a
token. In both nets, each event has exactly one pre- and exactly one postcondi-
tion. Hence, from the firing rule given above, there is always only one token

in the net
10 08 Ik,

The two programs shown in Fig. 13 are almost identical. They differ only
in the order of the instructions x := x —1 and y:= y + 1. Clearly their order is
of no importance; actually, when executing them no order need be observed at
all as they are logically independent.

Figure 14 shows a non-sequential program for the addition problem. Here,
e; and e, change the number of tokens in the net from one to two and back to

initial state @ initial state

read
X, Y
x>0 <O
x:r=x-1 write y
final state final state
y:=y+1 x:=x-1

Fig. 13. Two sequential programs for the addition problem

1.3 Non-Sequential Programs

initial state @

read

LY

final state

x:=x=-1 y:=y+l

Fig. 14. A non-sequential program for the addition problem

(/K(P " o
A =A~{mx) B:=B~{mn}
v {mn} U {max}
mes mn D O
. .
<:>7 final
inttial state
state
mx? = mn%=
max(4A) min(B)
mx : =mx ' Y,
mn:=mn'

Fig. 15. A non-sequential program for solving the rearrangement problem

11

12 Introductory Examples and Basic Definitions

one, respectively. In this representation it is explicit that the instructions
x:=x—1and y:=y+1 may be executed independently.

(b) The program shown in Fig. 15 solves the following rearrangement prob-
lem: given two finite, non-empty, disjoint sets 4 and B, A UB is to be re-
arranged into two subsets 4° and B’ such that |4’|=|A4l, |B’|={B| and
max (4") < min (B’).

Operations on sets are certainly slow in comparison with simple assign-
ments. In this solution the set operations are executed concurrently whenever
possible.

Non-sequential programs of the kind discussed in this section are not to be
considered as special non-deterministic programs. In some particular run of
such programs, it need not be decided in which order concurrent instructions
are executed. The program 1s deterministic in that its meaning is independent
of any ordering of instruction evaluations. If, nevertheless, a computing system
chooses to impose an order, it performs a service which is beyond the require-
ments specified in the program.

1.4 An Example for Systems Analysis

Whenever computers are used for practical applications we have to develop
programs from informal problem descriptions. Nets may be used to support

thic davalanmant 1in tha fallawing wav TaA ctart with cama ctriintiiral mranar.
Lo ubvvluyluput 151 uilv lUllUVVllls VV“] 14U otdilt witll, OVILIV Ot UuULtuial Pl UPU‘

ties are imposed on the informal description by some net representation. Then
a series of gradual refinement steps follows, finally yielding system parts in a
form suitable for prosrammms uy this continuous and systemalic develop-
ment, we also obtain a description of how the system parts relate to each other
and to their environment.

For example, consider the organization of the borrowing and the returning
of books in a library. An unambigous and perspicuous representation of this
organization is needed to describe several different levels and several different
views of the organization. Different views correspond, for instance, to the
needs of the library staff, the users, the suppliers of new books, the caretaker,
the administration, etc.

Moreover, when the library system is set up, the designers of the library
would need a representation of their view as would the designers of a com-
puter-aided administration system.

Figure 16 shows a first coarse structuring of the library system. Users can
access the library by three desks; the request desk, the collection desk and the
return desk. In the library all books are kept in the stack and each book has an
index card. A potential borrower enters the library system at the request desk
where a particular book may be requested. If the book is in the library it is
taken from the stack and the borrowed book index is updated. The user gets
the book at the collection desk. When a user returns a book he does so via the
return desk; the book is put back in the stack and the index is appropriately
updated.

1.4 An Example for Systems Analysis 13
request collection
desk desk

O_.

mmmmm

kernel of the library

Fig. 16. Coarse structure of a library

A first refinement of Fig. 16, shown in Fig. 17 involves two active agencies
which organize the delivery and re-acceptance of the books and two passive
components, the stack and the borrowed book index.

Figure 18 represents a simple organization scheme for such a library. The
tokens in this net are of three kinds: order forms, books and index cards. Each

ing this number. To borrow a book an order form containing the book number
is put on the request desk. The book and its index card are taken from the
stack, the book and the order form are placed on the collection desk and the
index card is inserted in the borrowed book index. However, if the book
requested has already been borrowed, the order form with an appropriate
message 1s given to the collection desk. When a book is returned, the book to-
gether with its index card is replaced into the stack. Figure 18 illustrates a
typical situation in this small library. Book I has been ordered and the cor-
responding order form is on the request desk. On the collection desk is book 3
with its order form, and also an order form saying book 5 is already borrowed.
Book 2 has been returned and is still on the desk. The stack contains books /
and 4 with their index cards and books 2, 3 and 5 are borrowed.

A change to a new situation is possible by the occurrence of one of the
three events e|, e;, e;. For such an occurrence the objects written on the arcs

delivery

request colleation
desk Q =O desk

borrowed
book index

library
stack

return
desk

O

re-acceptance

14 Introductory Examples and Basic Definitions

delivery
Y

request

desk e, collection
desk

No (order form)
=No (index card) Order £,

W No (order form)

=No (index card)
=No (book)

es i book (_/
d

No (book)

=No (index

re-acceptance

Fig. 18. A simple library organization

leading to e, have to be instantiated by suitable items from the input places;
the items must be chosen so that the formula written on e, besomes true. When
e, occurs the corresponding tokens flow 1n accordance with the event occur-
rence rule for nets consisting of conditions and events. Such nets are called

vrodicato/ evente-note
vl C o (= eI

1.5 Some Basic Definitions

In all the constructions described in the previous sections, the underlying
structure consisted of two sorts of objects and some relations between them. As
long as these objects are not interpreted in any special way (for instance, as
conditions, states, stores or events, state changes, instructions), we call circles
S-elements and boxes T-elements, respectively*. The relations between S- and
T-elements, represented as arcs, are combined yielding the flow relation. It was
not accidental that the flow relation in the previous examples always connected

elements of different sort. Rather, this is a basic property of nets.

* These terms are derived from the interpretation as places (German: Stellen) and transi-
tions. To date, this has been the most thoroughly investigated and frequently applied inter-
pretation.

1.5 Some Basic Definition 15

. : . collowine definition:

(a) Definition. A triple N = (S, T; F) is called a net iff

(1) S and T are disjoint sets (the elements of S are called S-elements, the ele-
ments of T are called T-elements),

(i) F€ (SxT) u (T xS) is a binary relation, the flow relation of N.

Graphically, we represent S-elements as circles and T-elements as boxes
(mnemonically ®, @). The flow relation is represented by arcs between the
respective circles and boxes.

(b) Notation. Let N = (S, T; F) be a net. We sometimes denote the three com-
ponents S, T and F by Sy, Ty and Fy, respectively. If confusion can be excluded,
we also write N for SuU T.

(c) Definition. Let N be a net.
(1) Forx e N,
"x = {y|yFy x} is called the preset of x,
x"={y|x Fyy} is called the postset of x.
ForXc N,let'’X= (J xandx"= (J x".

xeX xeX
In particular we have, for x, y € N:

XEy=yex_

(11) A pair (s,¢) € Syx Ty is called a self-loop iff sFyt AtFys. N is called
pure iff Fy does not contain any self-loops.

(iii) x € N is called isolated iff "x U x* = .

(iv) N is called simple iff distinct elements do not have the same pre- and

nostset 1 e

postset, i.e.
Yy veN('y="vA y"=1')Y— y=1v
V-/\,J_J'.\./\]I\J\ .}/l—'-,"].
Figure 19 shows a net which is simple but not pure and which contains no
isolated elements

S:{SZ,...,SS}

T:{tz,...,tS}

F:{(sz,tz),(tl,sg),(tl,ss),(tl,s4),(33,t2),(t2,ss),(52,t2),(sz,ts),(s4,t2),(s4,t4)
(t3,34),(t3,35), (t4,35),(s5,t5)}

Fig. 19. Graphical representation of a net

16 Introductory Examples and Basic Definitions

(d) Definition. Let N and N’ be two nets.

(i) Given a bijection f: N = N’, we call N and N’ f-isomorphic iff s € Sy <=
B(s)e Sy and xFyy< B(x)Fy-f(»). (This implies that 1€ Ty <
B@) eTn.)

(i) N and N’ are calle isomorphic iff they are f-isomorphic for some bijec-
tion .

Graphical representations in which the elements are not named explicitly
represent nets uniquely up to isomorphism. We always use such representa-

i el . .

1.6 Summary and Overview

The examples given in this chapter may be classified into three groups: Nets

consisting of conditions and events, nets consisting of nlqmac and transitions

....... 5y Vi VUMWV Gias VVRILDy VS LURISASUIE iavesS (SRS INS RS LS -

and nets which carry individuals as tokens. Formally, these classes are distin-
guished mainly by the way the nets are marked. In the first case, an S-element
1s either marked or unmarked, in the second case it carries a certain number
of indistinguishable tokens, in the third case it is marked by individual objects.
The three parts of this book correspond to these three interpretations. Other
interpretations (see, for instance, the chess game discussed in 1.1 (d)) will not
be considered here.

Exercises for Chapter 1

1. Represent in Fig. 1 the two conditions
a) “not winter and not spring”,
b) “‘spring or autumn”.

2. Rearrange Fig. 12 so that in each case either none or more than one process
is reading.

Part 1. Condition/Event-Systems

Part 1 deals with a fundamental class of systems in net theory called condi-
tion/event-systems. They are introduced in Chap. 2. In Chap. 3 we investigate
what single processes running in such systems look like. Chapter 4 introduces
and explains notions for the representation and description of some properties
of condition/event-systems.

Chapter 2
Nets Consisting of Conditions and Events

First, for nets consisting of conditions and events, we must make precise the
meaning of “occurrence of a single event or several independent events”. For
this, the notion of a step is introduced. A notion of equivalence for condition/
event systems (C/E-systems) is then introduced, and we show how each system
can be transformed to an equivalent contact-free normal form. Finally we dis-
cuss the case graph of a C/E-system. This graph provides an overview of all
cases and steps of the system.

2.1 Cases and Steps

In the first chapter we have already informally discussed systems consisting of
conditions and events. Conditions are represented as S-elements, events as 7-
elements. We know already that conditions are either satisfied or not, and that
the occurrence of events changes condition holdings. In each configuration of
such a system some conditions hold, while the rest do not hold. The set of con-
ditions which hold in a configuration is called a case. An event e can occur in
a case ¢, if and only if the preconditions of e belong to ¢ and the post-
conditions of e do not belong to ¢. When e occurs, the preconditions of e cease
to hold and the postconditions of e begin to hold.

If S- and T-elements are to be interpreted as conditions and events, respec-
tively, we shall write (B, E; F) instead of (S, T; F).

(a) Definition. Let N = (B, E; F) be a net.
(1) Asubset ¢ < B is called a case.
(i1) Let e € E and ¢ < B, e has concession in c (is c-enabled) iff ‘ec c A e N c= 0.
(i11) Let e € E, let c = B and let e be c-enabled. ¢’ = (c\'e) U e’ is called the
Jollower case of ¢ under e (¢’ results from the occurrence of e in the case c)
and we write: c[e) ¢’.

To represent a case ¢ graphically, we draw a dot (a token) in each circle
belonging to c.

Figures 1—3 show nets consisting of conditions and events; one case is
shown in each figure.

According to Definition (a), an event e can only occur if no condition in its
postset e° 1s satisfied. If any satisfied postconditions are preventing the occur-

2.1 Cases and Steps 19

rence of e; that is, if, in a case ¢,’e < c A e° N ¢ * @, then this is called a con-
tact-situation. At first glance, it might not seem fully justified that e is then not
allowed to occur: One could, for example, propose that every postcondition
which is satisfied before the occurrence of e remains so after the occurrence
of e. But let us discuss the implications. In terms of some examples, it would
mean that spring may start when it is already spring; that an already written
memory cell may be rewritten; that a full glass may be filled; that a reserved
seat may be reserved again; or that a car may move to a place where another
car is already standing. Some such events are impossible, but on the other
hand some may be intended, or else possible but unwanted. We will see later
how such events can be described, discovered or prevented. But at the lowest
and most detailed level of description, which concerns us now, we rule them
out. There are also formal reasons for this: Suppose that we allow a transition

@®—~ ® T O—{}+@ and that in the situation @~ @~ O

both events occur exactly once, then it depends on the order of their occur-

rences, whether the case O—{ O~ }~@) or the case O—{ @ @

results. But we want to be able to explicitly distinguish, to represent and to
trace, whether events occur in a particular intended order or whether they oc-
cur in arbitrary order or independently.

When an event has led from one case to another, other events may occur,
yielding yet other cases. These events are dependent on each other in different
ways: In Fig. 20, for example, e, has to occur before e; and e4. e; and e, on the
one hand and e, on the other hand are alternatives. If e; and e,4 occur, they can
be combined into one step. The occurrence of a set of events G in one step is
possible if all events of G are enabled and their pre- and postsets are disjoint;
G will then be called detached.

20 Nets Consisting of Conditions and Events

(b) Definition. Let N = (B, E; F) be a net.
(i) Aset of events G < E is called detached iff Ve, e; € G: e) * e; =
‘een‘e,=0=e Ne;.
(ii) Let ¢ and ¢’ be cases of N and let G be detached.
G is called a step from c to ¢’ (notation: ¢[G) ¢’) iff each event e € G is c-
enabled and ¢’ = (c\'G) LU G".

By a step ¢[G) ¢’, G leads from a case ¢ to a case ¢’. Obviously, if G con-
tains only one element, G = {e}: ¢[G) ¢’ <> c[e) ¢’
The following lemma clarifies some relations between ¢, G and ¢’

(c) Lemma. Let N be a net, let G < Ey be detached and let c,, ¢, be cases of N. Then
c[GYc <= \¢'="G A I\c=G".

Proof. If c[G) ¢’, all e € G are enabled and ¢’ = (¢\'G) U G". Hence, ‘G < ¢ and
Gnc=0.
Now it follows

c\¢’ =c\((c\'G) L GT)
= (c\(c\'G)) N (c\G") according to A3 (v) (cf. Appendix)
= (¢ n"G) N (c\G") according to A3 (i1)
=(cn'GascnG =90
=‘Gas'Gcec.

c¢’\c=((c\'G) U G)\¢
= ((c\'G)\c) U (G"\c) according to A3 (iii)
=0 U (G"\c)
=G asGnc=0.
Conversely, if c\¢’ ="G then "G < ¢, and if ¢"\c = G" then G* n ¢ = @, hence
all e € G are c-enabled. Furthermore,
(c\'G) UG = (c\(c\c")) U (c"\c)
= (c N) U (¢"\c) according to A3 (i1)
=¢’, hence c[G) ¢'. O

b, e b

Fig. 21. {e;, e,} is a step from {b,, by} to {bs, bs}, {e,, e3} is a step from {b,, b3} to {b, bs }

2.2 Condition/Event-Systems 21

e €3

Fig. 22. A situation of confusion

In general there are several possibilities for combining events into steps: In
Fig. 21 not only {e, e,} but also {e, e;} yield a step. By changing cases succes-
sively by steps, a process is generated (this notion will be made precise later).

If a step is finite, then it can be realized by the occurrence of its events in
arbitrary order:

(d) Lemma. Ler N be a net, let ¢ and ¢’ be cases of N and let G be a finite step

from c to ¢’. Let (e, ..., e,) be an arbitrary ordering of the elements of G, such
that G=e,...,e,}. Then there are cases c,...,c,, such that ¢=cy, ¢’ = ¢,
ande,_;[e> ¢, z=1,...,n).

Proof Let e, ¢’ € G and let ¢ be a case in which e and ¢’ both have concession;
fth ‘e N /)’—MA e'n ‘e’ —{h So ifele o ‘e’ < c.

------ SN T uu,;xulu/u ¢ =
Analogously it can be shown that e’*n ¢’ = . So ¢’ has concession in ¢’. For
i=1,...,n it follows that ¢, remains activated during successive occurrence of

fnnf‘rm [}

0. " n aftnro Vsl
Clyeeey ©—j anil Casl UICICIUIC U dlDIVULII & into C. L

It may be the case that two enabled events can occur in a single step. How

jar it may ha tha ~rnga that thavy have ~nmmitnan mwre A mactanm At Ao S L

e‘V\wl it 1liay UL lllC Casc wuiadtu Lucy 11a vC QCUIL11110U1L1 })l C= VUl pUDlLUllUlllUllb ana lllat
their occurrences are therefore mutually exclusive. Such events are said to be
in conflict with each other. It may not be obvious whether conflicts will arise;
for example, if in Fig. 22 starting with the case shown there, e, occurs before e,
then there will be no conflict between e, and e;. If, however, e, occurs before
e; then such a conflict results. There is no order specified between e; and e,;
this is a situation called confusion.

2.2 Condition/Event-Systems

We will now introduce nets which model the notions of condition and event
and which are intended to make derived notions, such as case and step, usable
for the description of real systems.

A system consisting of conditions and events is not fully described until we
specify, in addition to the net (B, E; F), also the cases we wish to consider.
(For example, the net of the four seasons in Fig. 1 would not make sense as
intended with a case containing two elements.) Such a set of cases C should
have the following properties:

22 Nets Consisting of Conditions and Events

1) If a step G < E is possible in a case ¢ € C, then G leads again to a case
in C (steps do not lead out of C).

2) Conversely, if a case ¢ € C can result from a step G < E, then the situation
we moved from was also a case of C. (In other words, when we reason
backwards and look for preceding cases, we only find cases of C).

3) All cases in C can (by forward and backward reasoning) be transformed
into each other. This is a weak demand; it does not imply that, for any two
cases ¢|, ¢; € C, there exists a sequence of steps from ¢, to ¢, or from ¢, to
¢;. It only demands a deducible dependency between the two cases.

4) C should be large enough such that (i) for each event e € E there is a case
in C in which e has concession, and (ii) each condition b € B belongs to at
least one case of C but does not belong to every case of C. This excludes

self-loops and isolated conditions. We also exclude isolated events, since
the occurrence of an event should be observable.

Further, we shall not allow two conditions b, and b, to have the same pre-
; L o ither botl ld_hold
neither of them holds (or they would never be able to change). Hence two

conditions are indistinguishable in the context represented in the net; they are
representatives of the same condition. It is sufficient to include every condi-
tion only once in a net.

A similar argument is applicable to events with equal pre- and postsets.
Any two such events either both have concession in a case or neither has con-
cession, and the occurrence of either of them leads to the same follower case. If
in a given context all important aspects of a system are represented, the signifi-
cance of an event is uniquely determined by its pre- and postset.

We summarize these requirements in the following definition:

(a) Definition. A quadruple X = (B, E; F, C) is called a condition/event-system
(C/ E-system, for short) iff

(1) (B, E; F) is a simple net without isolated elements, B U E * 0.
(i1) C = (B) is an equivalence class of the reachability relation Ry = (ry L rz')*
where ry c Z(B)x#(B) is given by ¢;rsc; <= 3G E:c;[GYcy. C i

called the case class of ~.
(iii) Ve < E Jc € C such that e has concession in c.

Pt
w

b, b,

by be,

Fig. 23. A C/E-system, its case class is C = {{b}}, {03}, {b3}, {ba}}

2.3 Cyclic and Live Systems 23

Obviously, ! | ~ of a CLE 5 s fully_d ned |
arbitrary element of C.
(b) Notation. Let 2 = (B, E; F, C) be a C/E-system. Analogously to 1.5 (b) we

denote B, E, F and C by By, Es, Fs and Cs, respectively. Where no confusion
arises we write 2 both for B U E and for the net (B, E; F).

(¢) Proposition. Let X be a C/E-system.
(i) Force Cy,c’ < Bsand G < Es:
c[GY¢ = ¢ e€Cs and
c'[Gyec = ¢ eCs.
(iii) Vb e By e, ¢’ e Cswithbe cAb ¢ .
(iv) X' is pure.
Proof. (1) Since By U Ex #+ () and isolated elements are excluded, there exist
some elements x, y € 2 with x Fx y.
(1) follows from Definition 2.2 (a) (i1).
(iii) Since b is not isolated (2.2 (a) (i)), there is an event e in "b U b". Since
cases ¢, ¢’ € Cy with ¢[e) ¢’ exist and since b € ¢ U ¢’, the result follows.
(iv) An event contained in a self-loop never has concession. W]

(d) Proposition. Ler 2 be a C/E-system and let i = # (Bz) x # (Bs) be defined by
e Fe,<>3eeExs:c[e)c,. If Es is finite then Ry = (F L F~1)*.

Proof. For R = (f U i)*, R < Ry trivially holds. Since with Ej finite every

step of X is finite, it follows from Lemma 2.1 () that ry < #* and rz' < (F7)*.
The result follows using A7 (iii) and (iv). O

2.3 Cyclic and Live Systems

The requirements for the case class Cs of a C/E-system X might not be im-
mediately obvious; rather, one may perhaps expect Cs to be the set of all suc-
cessor cases of some initial case. If all cases of X are reproducible, any such
case class is identicai to Cy.

(a) Definition. A C/E-system X is called cyclic iff V¢;, ¢; € Cs:¢) (rf) ¢;.

(b) Proposition. Ler X be a cyclic C/E-system and let c € Cs. Then
Cs={c''cric}.

Proof. Since X is cyclic r3! < r¥. Then applying A7 (iv) R; < r¥. O

Figures 1, 2, 20, 21, 22 show cyclic C/E-systems.
In a cyclic system every event can always reoccur.

24 Nets Consisting of Conditions and Events

& b €2

Fig. 24. A system which is live but not cyclic

(c¢) Definition. A C/E-system X is called live iff Vce Cs Vee E; 3¢’ € C;
such that ¢ r¥ ¢’ and e is ¢’-enabled.

(d) Proposition. Every cyclic C/E-system is live.

Proof. Let c € Cs, e € Ex. By 2.2 (a) there exists ¢’ € Cs such that e has con-

cession in ¢’, and by 2.3 (a), c r¥ ¢'. O
Flgure 24 shows that not every live system is cyclic: The indicated case can
not be reproduced by cvert OCCUITENCES

The systems shown in Fig. 1 and Fig. 2 behave quite similarly: In both of them

the continual change of cases yields the cyclic alternation of the four seasons.

We call two C/E-systems equivalent if their cases and steps correspond to each
other in the following way:

(a) Definition. Let 2 and 2" be C/E-systems.

(i) Given bijections y: Czx = Cy- and ¢: Ex — Ex., we call 2 and X7 (y, ¢)-equiv-
alent iff for all cases ¢, c; € Cx and all sets of events G < Ex: ¢|[G) ¢,
<= y(c) [6(G)) y(c2). (Let e(G) ={e(e)|e € G}, cf. A9 (iii).) 2~ and X’ are
called equivalent iff they are (y, ¢)-equivalent for some tuple (y, ¢) of bi-
jections.

(i1) 2 and X" are called isomorphic iff the nets (Bys, Ex; Fx) and (By, E5-; Fx')
are f-isomorphic for some bijection f and if ¢ € Cz <= {f(b)|b € ¢} € Csx..

(b) Notation. 2 ~ 2" iff the C/E-systems X and X’ are equivalent.
(c) Proposition. ~ is an equivalence relation.

(d) Proposition. Equivalent C/E-systems always have the same number of cases,
events and steps. They may however have a different number of conditions.

It is obvious that the systems shown in Fig. 1 and Fig. 2 are equivalent;
both are also equivalent to the system shown in Fig. 25.

2.5 Contact-Free C/E-Systems 25

start of

start of "
winter

spring

&) = L\
S start start S3
of of

autwm summer
Fig. 25. A C/E-System which is equivalent to those shown in Fig. | and Fig. 2. Its cases are
{51, 5o} = spring, {s,, 53} = summer, {s,, 53} = autumn,) = winter

(e) Proposition. Let X and 2’ be two equivalent C/E-systems.
(1) 2 iscyclic < X" is cyclic.
(ii) 2 is live <> X' is live.

Sequential C/E-systems with single element cases (for example the system
shown in Fig. 1) correspond to finite automata. For any two such systems the
notion of equivalence is not interesting: it coincides with isomorphism.

(f) Lemma. Let X and X’ be C/E-systems with ¥ ¢ e Cs U Cs: |c| =1.
2 and X’ are equivalent if and only if they are isomorphic.

Proof. Let 2 be y—e¢-equivalent to X’. Since every case contains exactly one
element, every condition b forms a case {b} (every condition must hold in some
case by Proposition 2.2 (c) (iii)). Hence y: C; — Cs. induces a bijection
f’: Bs — B,. by means of ' (b) = b’ < y ({b}) = {b"}.

f X — 2, defined as f(x) =f’ (x) for x € By and B (x) = ¢(x) for x € Ey,
1s also bijective.

Since events must be able to occur, |‘e| = |e
T]'\pn o 1¢ [hl_anahlad tharafars o (s} ic R{h) en

A llwil © 19 Uj wviiauvivu, ulviwviviv © \(—, 10 ,.I \U}=

.

=1
ahlad
ao1cl

ogously ¢ (e) Fx- f(b) follows from e Fxb. The converse i

2.5 Contact-Free C/E-Systems

In Sect. 2.1, we argued that events should not have concession in contact situa-
tions. We will now show that such situations are avoidable by means of equiv-
alent transformations of C/E-systems. To do this, we add to each condition b
its complement b, such that in every case either b or b holds.

(a) Definition. Let > be a C/E-system and let b, b’ € By.
(1) b’ is called the complement of b iff 'b=b"" and b* = "b’.
(1) 2 1s called complete iff each condition b € By has a complement b’ € B;.

(b) Lemma. Let 2 be a C/E-system and let b € By i
(1) b has at most one complement. It will be denoted by b.
If'b has a complement b then

26 Nets Consisting of Conditions and Events

(i) b has a complement and b =b.
(i) VceCs:becvbec

TS 10 rnmanloto fL-n
1] 4w LUmMpiaic, cnc n

(iv) Vee Es:|'e| =|e’|.
(v) VceCs:lc|=75"|Bs|

Proof. (i) holds since 2 is simple.
(11) follows using the definition of a complement.

which contradicts Definition 2.2. -
(1v) follows using the definition of a complement, since b € ‘e < b € ¢'.
(v) is implied by (iii). O

Fig. 26. A condition b and it complement b

(c) Definition. Let 2 be a C/E-system and let B < By be the set of those con-
ditions which have no complement in Bs. For each b € B let b denote a new
element. Let F={(e, b) |(b,e) e Fs Abe B} U {(b, e)|(e,b) € Fs Ab € B}.

For ceCs let p(c)=cu{blbeBAb¢ c} Then the C/E-system X =
(Bs U {b|be B}, Es; Fs UF, ¢(Cy)) is the complementation of X. ¢ (c) is the
complementation of c.

Obviously, each condition b which has no complement in X has got basa
complement in 2.

(d) Proposntlon Let X be a C/E-system and let c € Cy.
() 2= b3 i

(i) VbeBsVceCs:begp(c) = bé¢ p(c)

(iii) c=¢(c) N Bs.

(e) Lemma. The function ¢: Cy — Cs as defined in 2.5 (¢) is bijective.

Proof. pissurjective: if ce Cz,c’=cnBseCsand ¢ (c’) =c.
pisinjective: ¢ (c)) = ¢ (c;) = cy=¢(c;)) "nBs=9p(c;) " Bs= 3. O

Notation. Let 2 be a C/E-system, and let e € E;. To simplify the notation, let
—e and e— denote the pre- and postset of e in 2, respectively, while ‘e and ¢’
will, as usual, denote the pre- and the postset of e in 2, respectively.

() Proposition. Let X be a C/E-system, let G < Ex and let B be the set of those

conditions which have no complement in By.
(i) G="GulblbeBAbeG}, G =G U

AR T I S AN A ~ G v

(11) ‘G="GNnBy, G=G" mB;

<3~z

{blbe B A be Gl

2.5 Contact-Free C/E-Systems 27

17 these elements are new

Fig. 27. A C/E-system X and its complementation £

We are now able to show that the complementation of a C/E-system yields
an equivalent contact-free system.

(g) Theorem. If X is the complementation of a C/E-system X then X is equiva-
lent to X.

Proof As o Cs > C2 is bitective (Lemma 25 (e)) it ic <ufficient to chow:
] 9. Cx Cz 18 bijective (Lemma 2.0 (e)), 1t 1s sufficient to show:

Ve,eeCe VOGS Ry o[G) ey <=p(c) [G) p(cz). According to Lemma
2.1 (c) we show instead:

(eNa="G Ac\e; =G") = ((9(c)\@(c2)) = "G A p(c)\p(c))=G").

According to the Propositions 2.5 (d) and 2.5 (e) it holds:
c=¢(c))nBs, =¢(c;)) "By, ' G="GnNnBs and G°'=G"Nn Bs, hence
e\ = (¢ (c1) NB)\(p (c2) N Bs) = (¢ (c)\p (c2)) N B (A3 (vi))
="GNBs="C.
¢\¢; = G" is derived in the same way.

Conversely, let B as in 2.5 (c), let B, =_{51b € B\c,} and let B,= {b|be B\c,}.
Hence, ¢ (c1) = ¢, U By and ¢ (¢;) = ¢; U B,. Now we get
¢ (c)\@ (c2) = (1Y B)\(c2 U By) _
= (ca\(c2 U By)) U (B1\(c2 U By)) according to A3 (iii)
= (c)\¢y) U (B|\B;), as obviously ¢; n B, and B| N ¢, are empty
="G U ({b|b e B\c\}\{b|b € B\¢,))
=G u {!)lb € (b\Cl) ADb ¢ (B\Cz)}
‘GuiblbeBAb¢c Abec)
='Gu {blbeB Abe)\
='Gu{blbeBAbeG")
= ~G according to Proposition 2.5 (e).

@ (c2)\g(c1)) =G is derived in the same way. 0

28 Nets Consisting of Conditions and Events

(h) Definition. Let 2 be a C/E-system.
2 is called contact-free iff for each e € Es and for each c € C;:

(1) ‘ecc= e < Bs\¢ and
(2) eecc= ‘ec Bs\c.

Note that in (h), requirement (2) does not always follow from (1).
Example: @-.D

(i) Theorem. (i) Every complete C/ E-system is contact-free.
(i1) For every C/E-system there is an equivalent contact-free C/E-system.
(iii) If 2 is contact-free, then Ve € Es: ‘e + O A e" * 0.

Proof. (i) Let 2 be complete, letb € By, ¢ € Es and ¢ € Cs. Then

beenc=hbe'en (Bs\c)= ‘et c,

beenc= bee n (Bs\c)= e Ec.
(ii) 2 1s complete (2.5 (d) (1)), contact-free ((i)) and equivalent to 2 (2.5 (g)).
(iii) Assume e’ =@ = ‘e+ @ (e is not isolated). Then Jc € Cy with ‘ec c.
Since ' < Bs\c, this is a contact situation. Analogously for ‘e =). O

Of course, not every contact-free C/E-system is complete, as for example
Figs. 1, 2, 20, 21, 22 show.

LY 4re
&0 U

In order to obtain an overview of all cases of a C/E-system, the construction of
a case graph is useful. its nodes are the cases and its arcs are the steps of the
C/E-system.

(e) Definition. Let 2 be a C/E-system, let .4 be the set of all steps of X, and let
P= {(Cl, G, Cz) € C)_‘ x-9 XC;_-ICI [G> Cz}.

Then the graph @5 = (Cs, P) is called the case graph of X (for the repre-
sentation of graphs see A12—A14).

(b) Theorem. A C/E-system is cyclic if and only if its case graph is strongly
connected.

Proof. Let X be a C/E-system with set of steps 4. X is cyclic

= Ve eCs:(cric)

<= V¢ eCs3G),...,G, €5 ey, ..., c, € Cyicy[Gr) €1...[Gy) Ca
ANcg=cN¢c,=¢

<> @5 1s strongly connected. O

(c) Theorem. A C/E-system X is live if and only if for each ¢, € Cy and for each
e€Esthereisapathcyl ¢ ... 1, c, in @5 with |, = {e}.

2.6 Case Graphs 29

toy}
"4 \”*

{bza 5}
{9 {93
{b,, b,} ——*3"_""_—’{9 ol {bmbs
{e\ /
{b, b3}

Fig. 28. The case graph corresponding to Fig. 20

Proof. X is live <= V¢ € Cx Ye e Ex A¢, ¢’ e Cs:cory ¢ A cle) ¢’ < there is
apathcylicy...coo1 e, withe,oy=c¢, l,={e}, c,= . O

(d) Theorem. Two C/E-systems are equivalent if and only if their case graphs are
isomorphic.

Proof. Let 2 and 27 be two C/E-systems with case graphs @y = (Cy, P) and
@;. = (C;s., P"), respectively, and let ¢ be the set of steps of 2.
2'1s y—e¢-equivalent to X

<= Ve, Ce VG ed:¢1[G) ey = y(c1) [6(G)) y(c2))
@(VC],C}EC;VGG/ (Cl,G Cz)EP@()’(Cl) E(G) ‘))(Cz))EP)
<> @5 1s y—e-isomorphic to Dy . O

Not every graph can be interpreted as the case graph of a C/E-system, as
shown in Fig. 29: In case ¢|, ¢; and e, have concession. If in ¢, there is a con-
flict between €) and €, € is not Cy- cuamcu and therefore the arc \Lz, 162;, L4}
1s excluded. If in ¢, there is no conflict between e, and e,, e, also has conces-

sion in ¢; and therefore the arc (c3, {e}, ¢s) is required.

S
/ AN
(=) \ e,

Cq

Fig. 29. A graph which can not be the case graph of any C/F-system

30 Nets Consisting of Conditions and Events

Case graphs quickly get very complicated in strongly concurrent systems.
For example, a step consisting of n events generates 2" arcs in the case graph.
The following theorem will be needed later:

(e) Theorem. Let X be a C/E-system, let ¢, c,,c3 € Cyand let Gy, G, < Ex.
() Ifc| Gy ¢; Gy ¢y is a path in s, then Gy N G, = .
(ii) Let Gy Gy,=0. If ¢; (G, U Gy) ¢c3 is an arc in @y then there exists ¢ € Cx
such that ¢y Gy ¢ G, ¢y is a path in 5.

Proof.

(i) ee Gy = c;ne=0 = eisnotc,-enabled = ¢ ¢ G,.

(i) ¢ (G, UGy) ¢y is an arc in @z = ¢|[G, UGy ;= ¢, [G)) ¢ and ¢[Gy) ¢,
where ¢ = (¢)\'G)) U G|. O

Exercises for Chapter 2

1. A shepherd intends to cross a river together with a goat, a wolf and a head
of cabbage. With the shepherd, only one additional object fits into the boat.

The situation must be avoided where a) the wolf and the goat, or b) the goat

SituguY Vol UL QVUIRLLRS Wi v Gy olv |99 L Lal (9.9 L

and the head of cabbage remain allone (for obvious reasons). Represent a
suitable organisation for crossing.

2. Interpret the conditions s, s, and s; in Fig. 25.

3. Are the following C/E-systems equivalent?

0@
10—~
b_’O__.c a
O

Exercises for Chapter 2 31

4. For the following C/E-system construct an equivalent one with a minimal
number of conditions:

(o)

JZONN

~NoN

A\

*5. Let X and 2" be two C/E-systems.
(i) Given a bijection y: Cy = Cy, X’ y-simulates X iff VG < Ex 3G’ < Ex
such that ¢|[G) c; = y(¢)) [G") 7 (¢2).
(1) Given a bijection ¢: Eyx = Ey., X' g-simulates X iff Vc¢,,c, € Cs
3¢f, ¢5 € Cx such that ¢, [G) ¢; = ¢f [¢(G)) ¢3.
(a) Are X and 2’ equivalent, if 2’ y-simulates 2~ and X y~!-simulates 2’?

(hY Are S and 3/ eqauivalent if 57 e-simulates 3 and S ¢~ l-simulates 3’7
() Are 2 and 2~ equivalent, if 2~ g-simulates 2 and 2 ¢ !

Si111RIGLCS &

6. Are the C/Esystems of the following figures contact free: Fig.1, Fig. 2,
Fig. 21, Fig. 22, Fig. 24, Fig. 257

7. Construct the complementation of the following C/E-system:

Y (D%
-/ ./
f’ ;
1 /4 f f
2 53 3 %
52 Sg

8. Construct the case graph of the C/E-system in Exercise 7.

Chapter 3
Processes of Condition/Event-Systems

This chapter deals with processes which can run on C/E-systems. One may be
tempted to define a process of a C/E-system as a path of its case graph. But
what we mean intuitively when speaking of processes is not adequately de-
scribed by such a path: the total ordering of its elements does not give any
information as to whether the events actually occur one after the other or
whether they are independent of each other. The partial order in which events
occur is only indirectly represented in the case graph by the set of all possi-
bilities of occurrences as successions of steps.

We therefore search for a more convenient description of processes: one
which is, in particular, unambiguous and indicates explicitly whether events
occur concurrently. Such a description can be considered as a record of event
occurrences and changes of conditions. The entries in this record are partially
ordered by the relation “a is a causal prerequisite for b”, since repetitions of
the same event or the same condition are recorded as new entries. There is a
fairly obvious representation of such records, namely again as a net. For in-
stance, all of the occurrences in Fig. 20 are completely represented in Fig. 30.

Fig. 30. A net representation corresponding to Fig. 20

A given T-element represents the occurrence of the event denoted by its
labelling. Distinct 7-elements with the same labelling denote several, different,
occurrences of the same event. Similarly, an S-element s shows by its inscrip-
tion b, that b was satisfied by the occurrence of s and ceased to hold as a result
of the occurrence of s”. Just as in the corresponding concrete situations the con-
flicts were resolved, all S-elements are now unbranched. To facilitate the
handling of such process descriptions as “partially ordered nets”, we shall first
study some properties of partially ordered sets and then consider occurrence
nets, 1.e. those partially ordered nets which are suitable for the description of
processes. We then introduce processes and show how they can be composed
and decomposed, and finally study their connection to case graphs.

3.1 Partially Ordered Sets 33

3.1 Partially Ordered Sets

The relations of causal dependence and independence will turn out to be sym-
metric and (by definition) reflexive, but in general they will not be transitive

lations. T) hall consider similarity relations:

(a) Definition. A binary relation o = AxA4 on a set A4 is called a similarity rela-
tion iff

(1) Yae A:apa (gis reflexive),

(1) Ya,be A:apb= bga (0issymmetric).

Asubset B < A is called a region of a similarity relation g iff
(1) Ya,beB:aob (gpis full’'on B),
(1) YaeA:a¢B= 3beB:+(apb) (B is a maximal subset on which g is
full).

(b) Proposition. Let A be b set and let o = A x A be a similarity relation.
(1) Each element of A belongs to at least one region of o.
(11) Regions of a non-empty set A are not empty, and no region is a proper sub-
set of any other region.
(111) If o is an equivalence relation then the regions of @ are exactly the equiva-
lence classes of o.

(c) Graphical representation. A finite similarity relation over a set 4 can be
represented uniquely as an undirected graph. 4 is taken as the set of nodes and
= {(a,b)|a+b N agb) as the set of arcs. Figure 31 shows a similarity rela-
tion. Its regions are surrounded by broken lines.
We now consider partially ordered sets (s

see
ments are linearly ordered, are on one line) and
are “concurrent”) are defined as follows:

.Al

|O
AN

(d) Definition. Let 4 be a partially ordered set.

(1) Letli cAxA4 begivenbyalib <a<bVvb<aVa=h.

(i) Letco cAxA begivenbyacob < 1(alib) v a=b.
(Le.acob<=(a< b Vb<a)).

Fig. 31. A similarity relation with 4 regions

34 Processes of Condition/Event-Systems

(e) Proposition. Let A be a partially ordered set, and let . b € A.

(i) alibvacob,
(i) (@libANacob) <= a=b.

(0) Theorem. For any partially ordered set A, li and co are similarity relations.

Proof. Reflexivity and symmetry of li follow immediately from the definition.
The complement 4xA\p of a symmetric relation o < AxA4 is symmetric. The
complement of li is therefore symmetric, and becomes reflexive by adding the
pairs (x, x). (I

Figure 32 shows a partially ordered set and the corresponding relations li
and co (the graphical representation of partial orders is explained in All).

>

= e
™

™,
/ f t g/ a
A X AN VAV

n o

Fig. 32. A partially ordered set with its relations /i and co

(g) Definition. Let 4 be a partially ordered set, and let B < A.

Diccaolad o I 260 D 2q o vroagian

\l} D 1S calica a tirie i1 D iSa lelUll Uf ll
(i1) B s called a cut iff B is a region of co.
The partlal ordering in Fig 32 yields the three lines {a, b, c}, {e, f, g} and
b o
] < {.

,.IA.L ~Y (s LY J,.) {
d, f, g}, and the five cuts {e, a}, {e, b}, {e, d, ¢}, {

(h) Proposition. Let A be a partially ordered set, and let B < A.
(1) Bisalineiff

(@) Ya,beB:a<bVvb<ava=b and

(b) Ya € A\B 3b e B with~(a<bVvb<a).
(i) Bisacut iff

(@) Ya,beB:~(a<bVvb<a) and

(b) YaeAAB3IbeB with a<bVvb<a.

(i) Definition. Let 4 be a partially ordered set, let B, C < A4.
(1) A is called bounded iff there exists an n € N such that for each line L of 4,
ILi=n.
(11) B precedes C (we write B<C) iff VbeB VceC:b<cVbcoc.
(B<CmeansB< Cand B=*C.)

3.2 Occurrence Nets 35

(i) Let B"={aeAd|{a} <Bland B*={a € A|B < {a}}.
(iv) Let °B={beB|Vb eB:bcob’ v b< b},
B°={beB|VbeB:bcob' Vb <b}.

o . ‘e L bR o

of the “maximal elements” of 4.

(D) Theorem. IfAisa
Ny SESRERER L AL

Proof. Let a and b be arbitrary elements of °4. Then aco b since " (a<b Vv
b <a). Let ce A\°A4 and let L be a line with ¢ € L. Since L is finite, there
exists d € L N °A and therefore d < c. By Proposition 3.1 (h) it follows that °A4
is a cut. Similarly it can be shown that 4° is a cut. (]

Aline and a cut have at most one element in common:

(k) Proposition. Let A be a partially ordered set, let L be a line and let D be a cut
of A Then | Ln D|<1.

Proof. Let a,be LN D. Then alib, as a,b € L. However aco b, as a, b € D.
Using Corollary 3.1 (e), a =b. O

(1) Defini tm_ A narhallv ordered set 4 is called

The partial ordering illustrated in Fig. 32 is K-dense, as can be easily
verfied. Figure 33 shows that not every partial order is K-dense

c —d
Fig. 33. A partially ordered set which is not K-dense: {c, b} n {a,d} =0

3.2 Occurrence Nets

Occurrence nets will now be introduced as cycle-free nets with unbranched

S-elements. Thus, we immediately obtain a partial ordering of the elements of

an occurrence net. We shall show that bounded occurrence nets are K-dense.
(a) Definition. A net K = (Sk, Tk; Fk) is called an occurrence net if and only if
(1) Ya,beK:a(Fk) b < 1 (bF¢a) (Kiscycle-free),

(i1) Vse Sk:|s|<1IA|s|<1 (S elements are unbranched).

Figure 34 shows examples of occurrence nets.

36 Processes of Condition/Event-Systems

(b) Proposition. Let K be an occurrence net. The relation <, defined by a < b <
aFg¢ b, forall a, b € K, is a partial order on K.

Hence, all notions concerning partially ordered sets, such as lines, cuts,
boundedness and K-density are particularly defined for occurrence nets.

(c) Definition. A slice of an occurrence net K is a cut containing only S-elements.
Let sl (K) be the set of all slices of K.

Examples of slices are shown in Fig. 34.

an oceurrence net with three

lines and 11 cuts, 5 of which

are slices.

s, g s Example of a line :
6
,vo—’ logrtyreyntyrsgd
e Example of a cut :
s, Sg {t1,34,s5}

a cut whiech 71s a slice :

131,63}

-

0 or
j [

O-{FO-LFO{F—

—()

An unbounded occurrence net which is not K-dense :

14 14 -
{sO,tl,sl,...} n {sl 8, yeood =

Fig. 34. Examples for occurrence nets

(d) Theorem. Every bounded non-empty occurrence net is K-dense.

Proof. Let K be a bounded non-empty occurrence net. Assume that K is not K-
dense. Let L be a line and D be a cut of K with L ~n D =. Since L is not
empty and finite, x; = min (L) and x; = max (L) exist. Obviously x; € °K and
x, € K°. Since D is a cut and x; ¢ D,3d € D such that x;<dVvd<x,. As
x) € °K, x; < d. By analogy, as x, € K°, there exists some d’ € D with d’' < x,.

3.3 Processes 37

Now let a; = max {x € L| 3d € D with x < d} and a,=min{x € L|3d e D
with d < x}. The existence of a; and a, follows now from the finiteness of L.

If a; < ay, 3d,d’ € D with d < a, < a; < d’. But this is not possible since D
1s a cut. Therefore a; < a,, since a;, a, € L. From the definition of a, it fol-
lows: 3b, € a) 3d € D with by < d and 3b, € 'a, 3d’ € D with d’ < b,, where
b ,b, ¢ L.

Since a;,a, € L and a; < a,, dc| €a; with ¢; € L and Jc¢, €’a, with ¢, € L.

Obviously b, * ¢, and b, ¥ ¢,. Since S-elements are unbranched, a,, a, € Tk
follows. Therefore (a,, a;) ¢ Fx. There must be at least one S-element s € L
with @, < s < a,. By definition of a;, Vd € D:scod. But this is impossible
since D 1s a cut.]

Figure 34 shows that unbounded occurrence nets are not always K-dense.

3.3 Processes

We will now defin processes of C/E E-systems Lsing bounded occurrence nets,
We will define thls notl only for contact-free C/E-systems, the reason for this
will be discussed after havmg given the definition. Anyway, this is no severe

€
rectrictinn since avery /F_cuctem can b fnr ad intn

IVOMIIVUIVUEL S1vY vVl y o/ asToyoviil van ansiormeg 1inte an

tact-free system (Theorem 2.5 (i) (ii)).
Processes will be described as mappings from bounded occurrence nets

intn rantact_fraa P/L_‘_o\lofnmo caticfuing twna rannirarmantc- Facrh clica ic
1T JuisiwaviTlive o/ Ly O.yot\vlllo Oatlbl)’llls LYWwu l\r\-lull VI1LIVEILD. \l} pavil Jolive 10

mapped injectively onto a case and (ii) the mapping of a T-element to an
event respects the environment of the event.

(a) Definition. Let K be a bounded occurrence net and let 2 be a contact-free
C/E-system. A mapping p: K — X is called a process of X iff for each slice D
of Kand each r e Tk:

(1) pi D 1s injective A p(D) € Cy.

W)y pC=pOApI)=p@)".

In graphical representations of processes p: K — X, every element x of K is
labelled by its image p (x). In this way, Fig. 30 shows a process corresponding
to Fig. 20.

The property that bounded occurrence nets are K-dense is important for
the use of occurrence nets to describe non-sequential processes. Every line rep-
resents a sequence of elements which are causally dependent (a sequential sub-
process). A cut is interpreted as a “snapshot” of the process. One element can
be seen together with different elements in different snapshots. The K-density
of an occurrence net guarantees that every sequential subprocess is represented
in every snapshot.

Why may this definition not be applied to arbitrary C/E-systems? It turns
out that problems arise when contact enforces a certain order of event occur-
rences.

38 Processes of Condition/Event-Systems

As an example, we consider the system shown in Fig. 24. In the represented
case, e, may only occur after e,, even though all preconditions of e, are satis-
fied. A process which precisely describes this sequential occurrence of e, and
e, must indicate that b ceases to hold before e; occurs, and this cannot be
achieved without introducing the complement of b as a condition of X

A possibility to introduce a notion of process for arbitrary C/E-systems X
would be to define a process of X to be the corresponding process of the com-
plementation X, defined as above. However, this would yield additional S-
elements in processes of contact-free, but not complete systems 2.

(b) Theorem. For each processp: K — X
(1) p(Sk) € Bz A p(Tx) < Ex (p is sort preserving),

(1) Vx, ye KixFxy = p(x) Fz p(y) (p respects the flow relation),
(iii)) Vx,y € K: p(x) =p(y) = xliy (events and conditions are not concurrent
with themselves),
(iv) Vi e Tx: 't = QA 1° * O (events have prerequisites and consequences),
(v) for each cut D of K: p| D is injective.

Proof. (1) p(Sk) < Bs follows immediately from Definition (a), as each s € Sk
belongs to at least one slice. For ¢ € Tk there exists an x € 2 with x € "p (¢)
v p ()" (Definition 2.2 (a) (i1)). Using Definition 3.3 (a) (ii) the existence
of a ye'tut with p(y) = x follows. Since y € S¢, we have x € By and
p)ex u'xcEs.

(i) Forse Sxandr1 e Tx:sFxt= se’t=p(s) € p() = p(s) Fzp ().
Similarly, fort Fxs:set' = p(s) e p(1)" = p (1) Fsp(5).

(iii) For x,y e Sk the result follows immediately from the definition. For
x,yeTx, x*y, p(x)=p(y) implies ‘p(x)="p(y) and p(x) =p(»)"
Now using Definition 3.3 (a) (ii) we find p ("x) = p('y) and p (x) = p (¥").
Suppose x co y, then there are slices D; 2 x U "y and D, o x” v y". Either
xuyorx'uy isnon-empty, and ‘x N 'y =0=x" Ny (S-elements of K
are unbranched); therefore p| D, or p | D, is not injective. Hence x li y.

(iv) For 1€ Tk, using (i) we have p(t) € Ex. By Theorem 2.5 (i) (iii),
p(1) ¥ @and p (1)" # 0. The result follows by Definition 3.3 (a) (ii).

(v) follows from (iii) and Definition 3.3 (a) (i).

(c) Theorem. Let p: K — X be a process, let T < Tx with ¥Yt,,t,e T: 1, ¢c01,.
Then Ac;, ¢, € Cs with¢|[p(T)) c;.

Proof. Obviously Vs,,s, € 'T:s cos,. Then there is a slice D € sl (K) with

‘T~ N Nafinitinn 2 ALa)Y wvialdc n(iNY =c _ and ‘Nn{iTYN=n("TY— n(ND)
+ S oo RO 5.5 (4d) YitGils Py © Ly 4ng Pii) Pl) S pY).

Vs e T 3s; € D with s; <s. Therefore T°"n D=9, and also p(D) np(T") =
p(D) np(T)' =0 Hence p(T) is p (D)-enabled, and the result follows. O

(d) Definition. Two processes p,: K; = 2 and p,: K, = 2 of a C/E-system X
are called isomorphic iff K, is p-isomorphic to K, and Vx e K,:p;(x)=
P2 (B (x)).

3.4 The Composition of Processes 39

In the following we shall not distinguish between isomorphic processes; by
“process”, we shall sometimes mean either a whole equivalence class of iso-
morphic processes or an arbitrary representative of this equivalence class. As

('I|Qr‘nccpr| |n l < (r|\ H'\p plpmnnfs Qf t]r\p nnr]prl\nng Qccurrence nets un” fhprp-

fore not be expllcltly named in graphical representations. This convention has
already been applied in Fig. 30.

Contact-free C/E-systems are fully characterized by their sets of processes:
Note that a process p: K— 2 is actually conceived as the set of pairs

{(x, p(x))|x e K]}.

(e) Theorem. Let 3, 3

A0 i,

processes of X, (i =1, 2). Then P) = P, < X

Proof Let 2, = (B,,E,,F,,C) (1—1 2) and let 2, #22 Then there exists

b eB\32 or e eE\E2 or (b e) € Fl\Fz or (e,b) € Fl\Fz or c € C\Cz Then
there is a step ¢|[e’) ¢; in X; which is not possible in X, (choose b € ¢ U ¢,
ore=eo0rc=c¢, Or c=20, rpcnpr*tnmlv\ With K= (Q ft\i F), let p: K - X}

¢; Or ¢;, respecti
be a process such that p (°K) = and p(K°)=c¢c, and p(t)=e’. Then
pE Pl\Pz. O

3.4 The Composition of Processes

For processes p;, p, we define the composition p, ° p,, provided that p; ends
in the same case that p, starts with.

(a) Lemma. If p: K — X is a process then °K and K° are slices of K.

Proof. By theorem 3.1 (j), °K and K° are cuts. Since 2 is contact-free (De-
finition 3.3 (a)), for each e€ Ex, ‘e + 0 and e’ * @ (Theorem 2.5 (i) (iii)).
°K UK° < Sk follows from Definition 3.3 (a) (ii). O

(b) Lemma. Let p,: K, = 2 (i=1,2) be two processes with p, (KP) = p,(°K,).
Then there exists up to isomorphism exactly one occurrence net K, with a slice D,
and a process p: K — X, such that p| D™ = py andp| D+ = p,.

Proof. Let K, = (S,, T}; F) (=1, 2) and without loss of generality (S, U T}) N
(SzUTz) K] =°K2 (S1U52, T]UTz, F UF2), D= K] =°K2, and
ndef‘nedhvn(ﬂ_n(r\@vr_‘l((1_1 2), fulfils the requirements. 0

....... N/ Y4B =il LIl -

40 Processes of Condition/Event-Systems

(N

S @@
@] ° ® N OB
) ®

Py P

Fig. 35. Composition of processes, p| © p,=p

(c) Definition. Let p,, p,, p be processes, satisfying the statement of the above
iemma. Then p is referred to as the composition of p, and p,, and we write
pP=Dpy° D

Each slice divides a process into composable subprocesses:

(d) Proposition. Ler p: K — X be a process and let D be a shce of K. Let
p =p|D” andp* =p|D*. Then p~ and p* are processes and p = p~ ° p*.

The composition of processes 1s associative:

(e) Proposition. Ler p,, p,, p; be processes such that p, ° p, and p, ° p; are de-
fined. Then p, © (p, ° p3) and (p, © p) © ps are isomorphic processes.

We call a process elementary if it describes a single step. Processes are de-
composable into finitely many elementary processes.

(f) Definition. A process p: K — X is called elementary iff Sy = °K U K°.

As examples, the process p; in Fig. 35 and the processes ps, ps, ps, Ps 1n
Fig. 36 are eiementary.

@
oo
® b)

Ps

Fig. 36. Composition of the process p shown in Fig. 35 using the elementary processes
D35 Pas Ps OF Pg, Ps

3.5 Processes and Case Graphs 41

(g) Proposition. (i) p: K — X is an elementary process iff p (°K) [p (Tx)) p (K°)
is astep of 2.
(i1) If p: K — X is elementary, then for all t\, 1, € Tg: t; co t,.

(h) Definition. A process p: K — X is called empty iff Ty = 0.
(i) Proposition. (i) Every empty process is elementary.

(or p=p’ ° p), respectively.

(j) Theorem. If p: K — X is a process then there exist finitely many elementary
processes py, ..., p, Such thatp =p,° ... o p,.

Proof. There exists a largest number, m, of T-elements on any line of K.
We prove the result by induction on m. If m =0 then Tx =@ and p is empty.
If the longest lines of K contain m +1 T-elements, then p is decomposable
into p’ and p” such that p=p’ o p”; the longest lines of p’ contain m T-ele-
ments; and p” is elementary but not empty. By the induction hypothesis, p’ is
composable from elementary processes p|,...,p., p’=p1°...°p,, and hence

p=pi°...op,°op". O

3.5 Processes and Case Graphs

In this section we investigate the relation between processes and the paths in
case graphs.

We start by showing that elementary processes directly correspond to arcs
in case graphs. Then we look for paths in a case graph describing one single
process. It turns out that all those paths can be transformed into each other
by “decomposition” and “unification” of their arcs.

(a) Lemma. Let X be a contact-free C/E-system. p: K — X is an elementary pro-

andp (Tx) =G.

Proof. If p: K — X is elementary then p (°K) [p (Tx)) p(K®) is a step in X, so

(P (°K),p(Tk),p(K®)) is an arc in P5.
Conversely, if (¢, G, c;) is any arc in @5 then ¢;[G) ¢;. Let K= (¢; U ¢,
G; Fsn (¢ U c; U G)?); thenid: K — X is an elementary process of X. O

This lemma establishes a unique correspondence between elementary pro-
cesses and arcs, and we therefore define:

42 Processes of Condition/Event-Systems

{1}

15} falc} {24}
| b 3
O—{a}—C N /|

P=

Fig. 37. A process and a part of a case graph: Each of the 13 paths from {1,4} to {3, 6} cor-
responds to the process p

(b) Definition. Let 2 be a contact-free C/E-system.
(1) If v is an arc in @5, then let v denote the process corresponding to v,
which is uniquely determined (Lemma 3.5 (a)). v is called the process of v;
v is called the arc of v.
(i1) Let vy,...,v, be arcs and let w=v,...v, be a path in @5. Then w=

vio...or 1s called the process nfw w 1s called a path nfw

a
l .. ©n 1S Lalive uiiv ULess Iy 13 Vaaavea G gl

(iii) For v = (c1, G, ¢5) and eeG, let {(v,e)=v l(e) and let 7 (v) =
{¢t(v,e)|e € G}.

For each path of a case graph there is exactly one corresponding process.
Conversely, there are in general several paths corresponding to a single pro-
cess, as shown in Fig. 37. ¢ (v, ¢) and 7 (v) denote a single T-element and a set
of T-elements of an occurrence net, respectively.

(c¢) Definition. Let 2 be a C/E-system, let¢;, ¢;,c3 € Cyr and G, G, < E; .
O If uy=c Gy ¢y, ua=c¢,Gyc3 and v = ¢, (G, U G,) ¢; are arcs in Py, then
the path u; u, is called a decomposition of v; v is called a unification of

u u,.

(i1) Let w, w’ be paths in @5. w’ is called a permutation of w iff there exist
paths u,, ..., uy such that w=u, u, u3, w = u, uy u3, and u, is a decompo-
sition or a unification of u,.

(iii) Let w;,...,w, be naths in &5, (wy,...,w,) is called a permutation se-
quence 1ff for 1=1,...,n—1:w,, is a permutation of w,.

(d) Pronosition., Let 3 be a contact-free C/E-s

(d) Proposition, Let X be a

G\, G, < E5 be disjoint and nonempty.

(1) If v=1c,(G) UGy ¢, is an arc in @x then there exists a decomposition of v
of the form ¢, G\ ¢ G, ¢,, for some c € Csx.

(i1) Let uy=¢; Gy ¢3 and u, = c3 Gy ¢, be arcs of @5, and let ujou,: K — 2.
Then V1, e Tk: 1y coty iff ¢, (G, U Gy) ¢y is an arc in ¢5.

istem. let o,
)ste C

s .0 Cs. and let
, el ¢y,¢, 035 € Ly, ana lel

25

35 Processes and Case Graphs 43

Duynnf 1) €Al Avare mm.v-linbnl : Frnen arallasag D) A 7a)
i [UJ \1 TULITU WD lllllCUldlCly 11Ul _/UlUllaly hw s U \C} \ll)
(1) V1,,5,e Tx:1,cot, iff there is an elementary process p: K — 2 with

P(°K)=c, p(K°)=c; and p(Tx) = G, U G, iff ¢; (G U Gy) ¢, is an arc
in @5 (Lemma 3.5 (a)). (]

(e) Lemma. Let w be a path of some non-empty process (w: K — 2). Then there
is a path w' and an arc v with 7 (v) = { ‘'t < °K}, and a permutation se-
quence from wtotw’.

Proof. The proof is by induction on the length, n, of w. If n =1, w is an arc and
the result follows immediately if we choose v = w and the path w’ of length 0.

If n>1, there exist arcs v|,v, and a path w’ such that w=w’v,v,. Let
A={te7 (r,) "'t < °K}andlet B=7 (v)\4 (Fig. 39).

rd N /‘\
,/ ‘| / \I
1
‘\\,// \\,__/ \\/’
T (w') 7(1)1) 7(02)

Fig. 39. Illustrating the proof of Lemma 3.5 (e)

If A+ 0 and B # 0 then, by Proposition 3.5 (d) (i), there exists a decomposi-
tion vy v4 of v with 7 (v3) =4 and 7 (v4) = B. Since for all 1 € 4 and for all
e (v)) tcot’, vy can be unified with v; yielding an arc vs (Proposition
3.5(d) (i1)). w'rsvs is a permutation of w of length n. Using the induction
hypothesis, w'vs can be permuted to a path v’ w” with 7 (v') = {t € Tx|"t < °K]}.
v’ w” vy 1s the required permutation.

If B=0, v, can immediately by unified with v,. If 4 = @, the resuit foliows
from the induction hypothesis by permuting w’v, . O

(f) Theorem. Two paths w and w’ correspond to the same process if and only if a
permutation sequence from w to w’ exists.

Proof. Let w and w’ be paths of the process p: K — X. We prove the result by
: i

gthnofw. n=1:wisanarc. Forall r €7 (w), 't < °K. The

A 2 LR) W (O i Qii Qi 4 22

44 Processes of Condition/Event-Systems

permutation of w, using Lemma 3.5 (e), yields w’. Now, assume the hypothesis

vw; and v’w{ such that 7 (v)={t e Tx|t < °K} =7 (v’). By the induction
hypothess, there exists a permutation sequence from w; to w{, and the result
follows, since v = v".

Conversely, if u,u, is a decomposition of an arc v then the processes of

uy u, and of v are equal (Proposition 3.5 (d)). Thus, if w’ is a permutation of w,
then w and w’ are paths of the same process. Hence all elements of a permuta-
tion sequence are paths of the same process. O

Exercises for Chapter 3

1. Construct the regions of the following similarity relation:

AN

2. How many cuts, slices and lines has the following occurrence net?

747
&

*3. Two occurrence nets K and K’ are similar iff there exists a bijection
1. Ty — Ty such that Vll, helg:h1<th= T(ll) < T([z).
a) For the following occurrence net construct a similar one with a2 minimal

(89 4% Vvl a ii wuwl &

number of S-elements:

)
NN

() ()
\/'\/\(K/
O~ TOT (O O
—O—-
/

i I G
—O~ O

—

O
O

b) Let K and K’ be similar occurrence nets. Does a bijection
o: sl (K) — sl (K’) exist such that VD, D, e sl (K): Dy< D, =0 (D)) <
a(Dy)?

¢) Does a bijection f exist as characterized in b), if K is finite?

Exercises for Chapter 3 45

4. Decompose the following process into a minimal set of elementary pro-

SN N
g o B

5. Construct a process of the following C/E-system:

/l;ia
AN

*6. Let K be a bounded occurrence net and let X be a C/E-system. Show that a
mapping p: K — X is a process iff
(1) p'°Kis injective and p (°K) € Cs, and
(i) VieTk:p(Ct)="p(®) Ap(t’)=p ()" A pisinjective on "fand on ¢".

In the previous chapter we saw how to describe C/E-systems and how to de-
fine and analyse their dynamic behaviour. We shall now concern ourselves
with some properties of C/E-systems. We shall see that some of those proper-
ties can again be described by means of the net calculus.

4.1 Synchronic Distances

An important property of a system is the degree of dependence between occur-
rences of its events, i.e. in which way the occurrence of a certain event is
dependent on the occurrences of other events. For example, we mentioned in
Chap. 1.1(a) that the end of winter and the beginning of spring are two
strongly connected (strictly “synchronized’) events. Neither of them can occur
without the occurrence of the other; we say that they are coincident. Events
can be less tightly synchronized, for example, if their occurrences alternate
(e; and e; in Fig. 22), if they are concurrent (e; and e, in Fig. 21), or if they
occur in arbitrary order. At the other end of the spectrum, the occurrences of
e) and e, in Fig. 22 are completely independent.

We wish to define a measure for the synchronization of events. To this end,
we generalize the above considerations to pairs of sets of events, say E|,
E, c Ex. We observe how often the events of E| and the events of E;, respec-
tively, occur in each process p of the system. The absolute difference of their
respective occurrence frequencies is what we call the variance of E, and E, in
the process p. The supremum of the variances in all processes is called the syn-
chronic distance o (E|, E,) of E| and E,. It will turn out that ¢ is a metric func-
tion. Hence, synchronic distances are a means of obtaining quantitative in-
formation about the dynamic behaviour of a system without the introduction
of a notion of “time”.

Again we will restrict ourself to contact-free C/E-systems 2, as the notion
of synchronic distance is based on processes.

To define the synchronic distance o (E|, E;) of two sets of events, E,,
E, c E5, we consider all processes p:K — 2 and count the elements of p~! (E))
and p~!(E,). Since we are interested in the maximal difference of the occur-
rences of E, and E,, we count for all slices D,, D, of K the elements of p~' (E))
and p~! (E,) between D, and D,. For this, we define, for subsets M of Ty, the
measure u (M, Dy, D,). If D,<D,, let u(M,D,,D,)=|Mn Dt nD;3|; if

4.1 Synchronic Distances 47

B, D D
RN .
: \\ T 53// r3
! ~ '() :
| ~o 7
! f, <
/
O N
| // ~ Iy
| , | N\ N
| /U L ~
~
I // iZ i’5 ~
w{t },0,,0,) =1 wilt,,t,},0,,0,) =-1
u(ft4,t5},?2,?3)l:—2 u({tg,t4},D3,D2):0
U(tt2,t31,U2,U3}:1

Fig. 40. An exa nple for the measure u
D, <Dy, let u(M, D\, D,) =|M n D7 n D}|. However, slices may not be com-
parable; therefore, we define u generally in the following way:

(a) Definition. Let K be an occurrence net, let D,, D, be slices of K, and let
M < Tk be finite. Then let

u(M,Dy,Dy))=|MnDf nD;|—|Mn Dy n D3|

(b) Proposition. For all finite subsets M of T-elements and all slices D,, D, of
an occurrence net K, we have y (M, D,, D,) = —u (M, D,, D).

Using the measure 4, we now define the variance v of two sets of events in
a process.

(c) Definition. Let 2 be a contact-free C/E-system. sy denotes the set of all
finite processes of 2.

(d) Definition. Let 2 be a contact-free C/E-system. Let p: K = X € ny and
E\,E,c E;.

Then V(p, El , Ez) = max {,Ll (p_! (El), D] s Dz) —u (p_! (Ez), Dl s DQ) i Dl , D2
€ sl (K)} is called the variance of E, and E, in p.

(e) Proposition. For each process p.K — X and each pair E|\,E,c E;:

v(p, E\, Ey) =v(p, Ey, Ey).
The synchronic distance of two sets of events can now be defined as the
supremum of the variances in all finite processes.

(f) Definition. Let X be a contact-free C/E-system and let E|, E, < E; both be
finite.

43 Properties of Systems

e b3
v(p,{eoi,{23})=1 bo eo e3 —W
\)(p,{eo},{e],eg})ZZ
\){p,{eo,ez},{ez})=2
v(p,{el},{e2})=2 er

Fig. 41. Examples for the variance v

nr N

Y al N cnsem (o f . X | A BN,
o\ul,uz)—bupivw,ul,uz)u}

and E,.

S I L P S PR AL LGSR AR Al
Ty ¢ 15 CAlICU UNC SYncnronic distance o0J L.

m
[¢]
[«

(g) Remarks. If necessary o is indexed to indicate the underlying C/E-system.
Synchronic distances of single events are denoted by o (e, e;) instead of

o ({el}, {&2}).

(h) Graphical representation of synchronic distances. For two sets E,, E, of
events of a C/E-system X, the synchronic distance o (E|, E,) is illustrated by an
additional S-element s with s = E, and s"= F,. s is not a condition of the con-
dition/event-system 2, but is allowed to carry arbitrarily many tokens. In each
case ¢ of X, s contains a number of tokens (sufficiently many tokens, in order
not to hinder event occurrences). Whenever an event of E; or E, occurs, this
number is increased or decreased by 1, respectively. o (E;, E;) is the su-
premum over the maximal variation of the number of tokens on s, yielded by
finite processes. In graphical net representations, s and the new arcs are drawn
as broken lines, and s is labelled by “o = x”,if 6 ("s, s") = x.

We do not provide proof here, because the newly introduced S-element s
imposes a more general class of nets, which will be treated in the next chapter.
In Exercise 9 of Chap. 5, we will return to this problem.

€ e3
e eg 0({24],{30]) =1
0({22},{24]):2
o({ez,es},{e4,e5]) =4
O/ N/ U 0({6?,@4},{63,25})-‘:2
e, eg O({E4,25},{€3}):w
© O
€

Fig. 42. Synchronic distances between sets of events

e,

4.1 Synchronic Distances

o
Q
i
€

49

€9 e; bs

b2 e, b,
C/E-system ¥
L [=3]
C—leo

process p of %

Fig. 44. A C/E-system in which the two events e; and e, occur concurrently (o (e, ;) = 2)

50 Properties of Systems

b, & b,
P N o~
bo €y bt bS e, by
(o) o i(> C/E-system L'

e,

Fig. 45. A C/E-system in which e, and e, occur in some (arbitrary) order (o (e,) =1)

(i) Some special synchronic distances. Obviously, we obtain a synchronic dis-
tance o (e, e;) = 0 if and only if e; = e,; that is, e; and e, occur coincidently
(as, for example, the end of winter and the beginning of spring in i.1 (a)). Cor-
respondingly, for sets of events E,, E,, 6 (E,, E;) = 0 if and only if E, = E,.

We now consider the two systems 2 and 2’ shown in Fig. 44 and in Fig. 45.
The two events e, e; occur in 2 concurrently, they are independent. By ap-
plying the definitions, we obtain o5 (e, e;) = 2. In Fig. 45 we change the sys-
tem by introducing a regulation mechanism, which prevents e, and e, from oc-
curing concurrently, forcing them to occur in some arbitrary order. (p;! (e;)
and p;!(e,) (i=1,2) are situated on one line in the processes p, and p, of X7,
while p~! (e)) and p~! (e;) are concurrent in the process p of X.) The conceptual
difference of the systems X and X"’ is reflected by the synchronic distance of
e; and e,. In the system X’, we find o5 (e, e;) = 1. This example shows how
synchronic distances may describe the difference between concurrency
(o (e1, €;) = 2) and occurrence in some (possibly unspecified) order.

In Fig. 46, corresponding pairs of events of X and X, respectively, have
the same synchronic distances: o (e;,e;) =o(ej,es) =w and o (e, e;) =

4.1 Synchronic Distances 51

e e

e

/’D\u‘ b

?E? | DA
e;3

e, €3 e,

Z

Fig. 46. Two C/E-systems X, X, with o5 (e, ') = g5, (e, e’) fore, e’ € {ey, ..., e4}

4

/7 /!

7
\\ o=2 s
A&
K]
//\—(\
7 AN

e
/Ck
S
A S
\ =// N\ /
4
e3

N

e, ‘ e3 e,

Fig. 47. Other synchronic distances in the systems of Fig. 46

& ~—O—-

€

Fig. 48. An infinite synchronic distance because of a conflict

o (e;,e4) =1 in both systems. But intuitively, 2, is “more strictly synchro-
nized”, as in 2, no two events may occur concurrently. This is expressed by the
synchronic distance of {e|, e;} and {e3, e4}, which is 2 in X}, but 1 in X,
(Fig. 47).

In the system shown in Fig. 48 the events ¢, and e, are unboundedly often
in conflict with each other; we obtain an infinite synchronic distance. In
Fig. 49, the synchronic distance of e, and e, is also infinite. But in contrast to

the sustem shown in Fio 48 the occurrences of 2. and o, are denendent on
he system shown 1n I'ig. 45, t oC ces of ¢ o; are

52 Properties of Systems

p

- N
\-——--

-’

Q

W

[

Id
-—-+®
\

iy

- J

NmE

Fig. 49. A weighted synchronic distance

each other: e, occurs twice as often as e,. To express this, we need to
generalize the concept of a synchronic distance. In Fig. 49, for example, we
specify that the occurrence of e, reduces the number of tokens on the new S-
element by 2. In the graphical representation, the corresponding arc is labelled
by the “weight” 2. This concept of weighted synchronic distances is not ex-
plained any further here.

4.2 Some Quantitative Properties of Synchronic Distances

First, we show that synchronic distances define a metric on the sets of events of
a C/E-system. Then some other properties of synchronic distances are proved.

(a) Theorem. Let X be a contact-free C/E-system, let E|, E,, E3 < Ex. Then
(1) o(E),E))=0<= E, =E,,

(ll) O(El ’ E2) = 0(E25 El)a

(lll) O'(El, Eg) < O'(E! . E3) + O'(Eg, Ez)

Proof. (i) and (ii) follow immediately from Definition 4.1 (f). To prove (iii),
let p: K— X € ny and let D, and D, be slices of K such that v (p, E\, E,) =
#(p " (E)), Dy, D)) = (p™' (E2), D1, D). Then, defining [E]=u(p™' (E),
D\, Dy) (i=1,2,3), we have: v(p, E|, E;) = [E\] - [E2] = [E\] — [E3] + [E5] -
[E)<v(p, E|, E3) +v(p, E5, E;). Using Al6 we obtain: o (E,, E,)

sup{v(p, E\, Ey)lpensy < sup{v(p,E\,E3) + v(p,Es,Ex)peng} <
ﬂ){v(p,El,Eglpen;}+m{v(p,E3,E2)|pen;}. O
(b) Theorem. Ler X~ be a contact-free C/E-system and let E,,..., E4< E5x.

Then O'(El UEz, E3 o E4) < O'(El, E3) + 0 (Ez, E4) + 0 (El M Ez, E3 M E4)

4.3 Synchronic Distances in Sequential Systems 53

Proof. Let p: K — X € ny and let Dy, D, be slices of K such that v(p, E, U E;,
E3U E4) = Hu (p_l (E|) Ez), Dl, Dz) — MU (p_l (E3) E4), D], Dz) For E < Es
let [E]=u (p~'(E), Dy, D;). Obviously for all E,E’c E;: [EUE’] = [E] +
[ENNE], [ENE"] = [E] - [E N E") and [E] - [E'] < v (p, E, E’) < 6 (E, E"). There-
fore v (p, E\ U Ey, Ey U Ey) = [Ey U E)] = [E3 VEy] = [E\] + [E\E\] - [E5] —
[ENE3] = [E\] + [E2] — [E2 0 Ey] — [Es] — [Ed] + [Ean Es] < v(p, Ey, E3) +
V(p, Ez, E4) + V(p, El M Ez, E3) E4)

The result follows using A 16, as in the proof of the above theorem. O

(c) Corollary. Let X be a contact-free C/E-system and let E|, ..., E4< Es such
that El NnkE,= 0= E3 M E4. Then o (El v Ez, E3 v E4) <o (E], E3) + O'(Ez, E4)

Proof. Since o (0, 9) = 0 (Theorem 4.2 (a) (1)), the result follows immediately
by application of Theorem 4.2 (b). O

g (Ela Ez) =0 (El\Ez, Ez\El)

......

r

Proof. Let p: K—Xens and let D|,D,esl(K). For EcEy let [E]=

1 (p~'(E), Dy, Dy). Then [E\]|—[E;] = [(EN\Ey) U (E1n Ey)] — [(EX\E)) v

(Ey 0 Ey)]=[EN\E)] + [E) N Ey] = [ENE\] - [E) 1 Ey] = [ENEy] = [Ex\E)].
Hencev (p, E,, E;) = v (p, E\\E,, E;\E)); the result follows. O

4.3 Synchronic Distances in Sequential Systems

In purely sequential systems, synchronic distances are not very interesting. For
any pair of single events we always obtain one of the values 0, 1 or w.

(a) Definition. A C/E-system is called a state machine iff
(1) Yee Es:|'e=|e' =1,
(i) Vee Cs:|c|=1.

The Figs. 1 and 13 show examples of state machines.

(b) Theorem. Let X be a state machine and let e, e, € Es. Then o (e, e;) €
{0,1, w}.

Proof. Each process of 2 consists of a line of the form

Assume, that there exists a process p: K = X with two T-elements ¢, 1, € Tk,
such thgt, for i=1 or i=2, p(t))=p()=e, and Vietf nt;:p(t) Fe,.
Then, with py=p'(tf N'57), p.=p1°...°op, is a process, and v(p,, {e1}, {e})

— —o—
= n. Then o (e, €)= w. n-uimes
Otherwise, for all processes p of X,v(p,e,e;) <1 and therefore

o(e,e)<l. —
15%~2)

[S

54 Properties of Systems
4.4 Synchronic Distances in Cyclic Systems

The definition of synchronic distances in 4.1 takes account of the fact that, in a
process, concurrency may yield slices which are not ordered. This is important
if the C/E-system 1s non-cyclic because the values corresponding to the situa-
tions discussed in 4.1 (i) could otherwise not be obtained. We are now going
to define a simpler function ¢’, which is equivalent to the synchronic distance
o in the special case of cyclic C/E-systems.

(a) Definition. Let 2 be a C/E-system which is contact-free, let E,, E, < E5
and let p € my. We define v/ (p, E\, Ey) = || p~' (E\) | = |p~" (E2) || and o’ (E), E,)

e i (2l T) A JE N I
=SUup v \p, Ly, L) |P & Ty

(b) Proposition. For any arbitrary C/E-system X~ and E\,E, < Ex: ¢’ (E|, E;) <
G(Ela E2)
For example, in Fig. 4, ¢’ ({e,}, {e;}) =1 < a({e}, {ex}) = 2.

(¢) Theorem. Ler X be a C/E-system which is contact-free and cyclic. Then for all
E\,E;cEx,d'(Ey, Ey) = o(Ey, E).
Proof. By Proposition 4.3 (b), it is sufficient to show ¢’ (E|, E;)= o(E|, E;). To
prove this, we construct for each process p of X a process p’ of X such that
V,(p’, El , Ez) = V(p, El, Ez)

Let p: K— X be given. Let D, D, be slices of K with v (p, E|, E;) =
u (P Y(E), Dy, D) — u (p~' (E;), Dy, D;). Since X is cyclic, a process
K’ — 2 and a slice D; of K’ exist such that p o p’ is a process of X and p (D;
p (D) (see Fig. 50). Then D, < D; and D, < D;.

For slices D, D’ with D< D’, we define the process pp p by ppp =
pl(D*n D).

If v (pDz, D3> E| , Ez) > 0, let p” =PDy,D;°---°PD,. Ds> and we obtain

v(p, Ey, E3) times

vV (p”, E\, E5) 2 v(p, E\, E;). Now assume

V' (Pp,. pss E1» E2) = || Py, 0, (E1) | = | Pba, 0y (E2) || = 0.

n’:
D
)=

<]
/ N /
. — N ~— J
P p

Fig. 50. Ilustrating the proof of Theorem 4.4 (¢)

4.5 Facts 55

Clearly, | pp, p,(E)| = |pb, 0, (E)| + |p~' (E}) 0 Dt n D3|
- |p~"(E)) n Dy n D¥].
Then v’ (pp,, p,, E, E2)
= pp! o, (ED)|+|p " (E)) nDf n D3 |—|p~' (E)) n DT n D3|
—|Pba by (E2) | +|p~" (E2) n Dt n D3| =|p™'(E)) n DT n D3| =0
=|u(p~"(E\), Dy, Dy) — u(p~' (E3), Dy, Dy)|
=v(p, E|,E2)- O

4.5 Facts

It is possible to construct formulae of propositional logic by using the condi-
tions of a C/E-system. Since conditions are allowed to change, such formulae

will be true or false depending on which case the system is in. Formulae which
are true in all cases of the system are especially interesting, because they de-
scribe invariant properties of the system. We shall now show how the
representation and evaluation of such formulae can be integrated into the net
calculus.

Consider again the C/E-system X, of Fig. 46, consisting of two simple
sequential cycles. We now add the requirement that b, and b, do not hold
together in any case of the system. We can achieve this by the construction of
2, shown in Fig. 46. The new property of the system can be expressed in the
net calculus by adding a new T-element ¢ with *t = {b,, by} and 1" = @, as shown
in Fig. 51, which is enabled in no case of the system.

We first study the relations between formulae consisting of conditions of a
C/E-system (for example -1 (b, A by) in Fig. 51) and the possibility of events
being enabled. To this end, we consider a condition b as an atomic proposi-
tional formula, which is true in a given case c if and only if b belongs to c.
Then we can construct formulae of propositional logic and evaluate their truth

values.

(a) Definition. Let 2 be a C/E-system.
(1) The set As of formulae (of propositional logic) over By is the smallest set
such that

—

o

Fig. 51. Enhancement of X, of Fig. 46 by a T-element ¢ which is never enabled

56 Properties of Systems

(1) Bs c 45,
(2)04,@2 EAs = (al /\0/2) € Ay, (al de) € A)_-,
(al _’0/1) € Ay, (—]al) € Ay.
(i1) Each case ¢ € Cx induces for each @ € A5 a value ¢ (a), defined by
é& Ay - {0,1}
b 1iff bec,
b 0iff b ¢ c,
(@ Aay) - min (¢ (@), ¢ @),
(@ V) > max (¢ (@), ¢ (@),
(@ —ay) b ¢ ((na) Va,),
(a) = 1= ¢ (a).
We interpret 1 as “true” and 0 as “false”,
the case c iff ¢ (@) = 1.
(iii) Two formulae a,,a; € Ay are called equivalent in X iff for all ¢ e Cy:

¢(ar) = (@)

operators).
Next we shall associate a formula @ (e) w 1th each event e of a C/E-system
~h that far all ~Ancag A+ 200\ g alid PR o nnr] Anly 'y nAt
lll ou\.«u a vva_y Lllal. 1Vl all vaouvo L. \ } 19 auu lll C 11 daliu v} ll-y 11 C 10 UL

c-enabled.

(b) Definition. Let X be a finite C/E-system and let ee€ E;. Let ‘e=

{bl,...,b}, e’ ={ 1,...,b{,,}. Then «(e) is the formula (bl AN...N\Nb,)—
(b] v vb;,,) If e =0, then a(e) is the formula = (b; A ... A b,). If 'e=0,

o\ Ny L’
|V...VUm.

then «(e) is the formula b
(¢) Lemma. Let X be a finite C/E-system and let e € Ex. Then for each c € Cy,
a(e) is valid in c iff e is not c-enabled.

Proof. é(a(e))=1<>3be’e with ¢(b)=0 or b ee’ with ¢(V)=1 <
db e’ewith b ¢ cor b’ € e’ with b’ € ¢ <= e is not c-enabled. O

We showed above how to associate a formula to an event of a C/E-system.
Next we consider how to represent arbitrary valid formulae built from con-
ditions of the system.

For this we enlarge a C/E-system X by additional T-elements which are
enabled in no case of X (“dead” T-elements). Thus they do not influence the
behaviour of the system. If we associate with each new T-element ¢ a formula
a(?), as shown above for events, then «(7) is valid in 2 (valid in each case of
2). In this way it is possible to represent all valid formulae of 2 by a number
of “dead” T-elements. Such T-elements are called facts.

(d) Definition. Let 2 be a C/E-system.
(i) Aformula @ € A5 is called valid in X iff for all c € C5: ¢ (@) = 1.
(ii) For B,, B, < By, let t=(B,,B;) be a new T-element with 7= B, and
"= B,. tis called a fact of X iff ¢ is never enabled for any c € Cs.

Exercises for Chapter 4 57

€,

Fig. 52. Enhancement of the system of Fig. 2 by one condition and two facts

In the graphical representation of X, a fact ¢t = (B,, B,) is drawn as a T~
element [(labelled by a schematic “F”), as already shown in Fig. 51.

For a fact 7, the formuia «(7) is defined just as a(e) is defined for events e;
for instance, if ‘1=1{b,...,b,}, t"={b],..., b}, then a(t)=(b) A...ADb,)
= (b V...V b),).

(e) Theorem. Ler 2 be a finite C/E-system and let a € Ay . « is valid in X if and
only if facts 1y, ..., 1, exist such that a is logically equivalent to a(t)) A ... A\ a(ty).

Proof. Each a € Ay can be transformed into a logically equivalent formula
@ =a N... \Na,, where each «, is a term of the form b, V...V b,V
bi v ...V b, with b,, b, € By (conjunctive normal form). Therefore, «, is logi-

cally equivalent to a formula « (;) with "1; = {b,, ..., b,} and 1; = {b], ..., b},}.
Now, e is valid in 2 <’ is valid in X < for all i, «, is valid in 2 < for
all i, 2 (1) is valid in 2 <= for all i, 7, is a fact. O

() What about formulae which are valid in some, but not in all, cases of
the system? For a case ¢ € Cy, let ¢’ denote the conjunction of all conditions
of 2 which hold in ¢. Then, if @ is valid in the cases ¢, ..., ¢;, we can describe
this by the valid formula (¢c{ A... A ¢;) = a.

Exercises for Chapter 4

1. Construct two non-equivalent, contact free C/E-systems X and 2’ and a
bijection ¢: E; — Ey such that Ve, e; € Ex: g (e, e3) = o (e(e)), & (e2)).

2.Let 2 be a finite, cyclic C/E-system and let E,, E; < Es. Show that
o (E|, E;) = w < there exists a non-empty process p: K — 2 such that

p(°K)=p(K°)and V' (p, E,, E|) > 0.

58 Properties of Systems

*3, Given a contact-free C/E-system X, a process p of X, two finite event sets
E,E;cEs and a mapping g¢g:Ex— N\{0}, let v, (p,E|, E;)=

max| 3. 9(e) p(p"' (),D1,D) = ¥ g (€)' (7' (&), D1, D) | D, Dae sL(p)|
tee E, e€Ey J
(weighted variance of E| and E; in p).
Then o, (E\, E;) =sup {v, (p, E\, E;) |p € n5} is a weighted synchronic dis-
tance of E; and E>.
a) Show for all g: Es — N\{0} and all E,, E,, E; C Es:
l) Oy (EI,E2)=0<=> El =E2,
2) o4 (Ey, E3) = 04 (Ey, Ey),
3) O'g- (E; 5 Ez) = O'g (El 5 Eg) + O'g (E'g3 Ez)
b) Consider the following C/E-system:

(1) Compute the (unweighted) synchronic distance o (E,, E>).
(i) Does a weight mapping g exist such that g, (E;, E,) is finite?

Exercises for Chapter 4 59

¢) Consider the following C/E-system:

(1) Compute the (unweighted) synchronic distance o (e, e5).
(if) Does a weight mapping g exist such that g, (e, €,) is finite?

4. In the four season system (Fig. 1) represent the following facts:
a) If it is neither summer nor winter, then it is spring or autumn.
b) If it is summer then it is neither winter nor autumn.

Part 2. Place/Transition-Nets

As one abstraction of the many ways to interpret nets, we shall consider, in this
part, nets with S-elements which — in contrast to conditions — may carry more
than one token. In such nets S-elements are called places, the T-elements are
called transitions. An actual state of the system is represented by a certain dis-
tribution of tokens over the places, such that the number of tokens on each

sition ¢ ayﬁre if all places in °f carry at least one token and if the capacity of
all places in ¢ is greater than the number of tokens they actually carry. When

t Firaqg o tal-an ramavad fram nla~a i and o talban i addad ta avary
l 111Coy a LURNVLL l) l\.«lllUV\.«U 11VUI111 L«V\«ly Plab‘.« lll l allu a LtUN\LUIL lD auuvu wv \aV\.«l-y

place in #°. We shall also allow weights to be attached to the arcs, these weights
are natural numbers n € N. In this case, not one but n tokens are added or
removed, respectively, when a transition fires. The firing rule is changed cor-
respondingly; there must be sufficient tokens on each place in ‘7 and sufficient
capacity in 1" to receive the tokens.

Edeple IOr ll’llb muu (.)I nets ﬂdVC ducauy UCCII uiScusseu lll b[ldp l
(Fig. 5 and Fig. 6) and also in connection with synchronic distances (Fig. 43).

Chapter 5 explains the basic notions of nets consisting of places and tran-
sitions and introduces the coverability graph, a first method for analysing
these nets. A further analysis method is the evaluation of invariants which is
discussed in Chap. 6. For special classes of nets (free choice nets and marked
graphs), analysis methods are derived in Chap. 7.

Chapter 5

Nets Consisting of Places and Transistions

As a first example in this chapter we consider a system consisting of one
producer and two consumers. We have already seen this in Fig. 5. In this
modified version

(1) the buffer may contain at most five tokens,

(2) the producer generates three tokens in each step,

(3) at most one consumer is able to access the buffer in each configuration of
the system,

(4) each consumer removes two tokens when accessing the buffer,

(5) the production steps of the producer are counted.

The system shown in Fig. 53 fulfils these requirements. The meaning of
this should be intuitively clear; it is explained formally in the next section.

counter
k=1 @ =
o
s
84 $ k=5
]
® 4
ty t, 3 ea 5 K=2
N : N
S buffer
‘72 JJ t
K=2 4
KZ] e -
producer consumer

Fig. 53. A producer-consumer system with limited buffer capacity, multiple generation and

multiple consumption, limited buffer access, and a counter

5.1 Place/Transition-Nets
This section presents the basic notions of place/transition-nets.

(a) Definition. A 6-tuple N = (S, T; F, K, M, W) is called a place/transition-net
(P/T-net) iff
(1) (S, T, F) is a finite net, the elements of S and T are called places and
transitions, respectively,

5.1 Place/Transition-Nets 63

(i1) K: S = N U {w}, gives a (possibly unlimited) capacity for each place,
(i) W: F — IN\{0}, attaches & weight to each arc of the net,
(iv) M: S > N u {w} is the initial marking, respecting the capacities, i.e.
M(s) = K(s) forall s € S.
By analogy with C/E-systems, the components of a P/T-net N are denoted
by SN; TN, FN, KN, WNa MN.
In the following definition we give the firing rule for place/transition-nets.

(b) Definition. Let N be a place/transition-net.
(i) A mapping M: Sy — N U {w} is called a marking of N iff M (s) < Ky (5)
for all s € Sy.
Let M be a marking of V.
(i1) A transition ¢ € Ty is M-enabled iff
Vse't: M(s)= Wy (s, 1) and
Vset':M(s) < Ky (s)— Wy (1,5).
(1ii) An M-enabled transition 7 € Ty may yield a follower marking M’ of M
which is such that for each s € Sy
(M(s)— Wy (s, 1) iff s\,
M (s) = !M(s)+ Wy (1,) iff s e '\,
M@ —Wy(s,)+ Wy (t,s) iff setni,
M (s) otherwise.
We say ¢ fires from M to M’, and we write M[t) M’.
(iv) Let [M) be the smaliest set of markings such that
(1) Me[M) and
(2) if My e [M) and for some 7 € Ty M, [t) M, then M, € [M).

In the graphical representation of P/T-nets, the arcs fe F are labelled by
W (f) if W(f) > 1. The capacity of a place s € S is represented by the inscrip-
tion “x =K (s)”. The inscription “x = ” may be omitted. A marking M is rep-
resented by drawing M (s) tokens or the symbol w on each place s.

Examples of enabled and non-enabled transitions are shown in Fig. 54 and
Fig. 55.

Notice that transitions contained in self-loops may only fire if the markings
of the corresponding places leave enough latitude (Fig.56). This is a
consequence of the firing rule.

Figure 53 shows a place/transition-net. The marking shown means that the

producer must wait for some free place in the buffer, that the consumers com-

or | @\
o

(V¥

R

ol -

Fig. 54. Firing of a transition

64 Nets Consisting of Places and Transitions

K=3 K=4
[)

K =2 K =3
— :
2

K =2

Fig. 55. Situations in which a transition is not enabled

o0 OO

Fig. 56. Both transitions are not enabled and therefore may not fire

pete for the right to access the buffer, and that the producer has already com-
pleted five production steps (i.e., it has produced 15 tokens).

(Mool arv /LK qugtam ha ~rangidarad a Qranrial laora/te

blcall)”, CVbl)’, \.//L4 D)’lelll \,au UD L«UllOlUL«l L«U ao a Sspilial }Jla\.«b/l aft ai.f.iOﬂ-
net with place capacities and arc weights equal to one. Conversely, a place/
transition-net with place capacities and arc weights equal to one behaves like a
net COnSlbllllE of conditions and events. But note that a C/ L-ayStE‘:m is pTO‘\udcd
with a case class C, whereas for P/ T-nets we assume an initial marking.

As a generalization of C/E-systems, a marking M yields a contact situation
for a transition ¢ € Ty if 7 fails to be M-enabled solely because the places in ¢°
do not have sufficient capacity.

(c) Definition. A P/T-net N is called contact-free iff for all M € [My) and for
all1 € Ty:

ifVset: M(s) = Wy(s,t) then Vset : M(s) < Ky(s) — Wy(t,5).

Analogously with C/E-systems, every P/T-net can be completed by adding
places such that its behaviour is not changed but contact situations are ex-
cluded.

Figure 57 shows an example of this construction. Given any P/T-net N, the
corresponding net N’ is obtained by adding new places and arcs: For every
place s of N we construct an additional place 5 and for all arcs (¢, s) and (s, ?)
of Fy we add new arcs (5,¢) and (¢,3), respectively, such that Wy. (5, 1) =
Wy (t,5) and Wy (1,5) = Wy (s, 1). Assuming the capacity Ky (5) =Ky (s) and
for the new places 5 the initial marking My (3) = Ky (s) — My (s), the resulting
net is obviously contact-free, as for any reachable marking M, M (s) + M (3) =
Ky (s). Markings M of N and M’ of N’ correspond iff the restriction of M’ to
the places Sy of N equals M. Obviously, this correspondence is unique. Given

5.2 Linear Algebraic Representation 65

K=o k=6
2 2
O. ..
1 1
S S
P 3
3 =
K=6 1

[1)

3 J

Fig. 57. Complementation in P/ T-nets

corresponding marking M of N and M’ of N’, every transition 7 is M-enabled
in N if and only if 7 is M’-enabled in N’. Furthermore, we may replace all
finite place capacities Ky (s) € N in N’ by w without affecting the behaviour
of N'.

5.2 Linear Algebraic Representation

The formal treatment of P/T-nets is much simplified by a linear algebraic
representation.

(a) Definition. Let N = (S, T, F, K, M, W) be a P/T-net.
(1) For transitions ¢ € T, let the vector £: S — Z be defined as
Wis) iff ser\'t,
L(s)=1 " W(s,t)iff s e 't.\z',
- Wis)— W,) ff se‘tnt,
1 0 otherwise.
(11) Let the matrix N: S x T — Z be defined as N (s, 1) = £ (s).
(Vectors and matrices are introduced in Appendlx L

Clgarlv everv markine of a net may be repre
ry markin g repre y vector. re dg

shows the matrix N and the initial markmg My f et shown in F1 53.
N (s,, t,) describes the change in the marking of s, when 1, fires. Entries with

vq]np 0 are amitted
WV Al w Vidllilltivag,.

w

(4]
3

=

This representation is unambiguous only for pure nets. In this case, the
components Sy, Ty, Fy and Wy can be derived. If we additionally require that
N is contact-free, the behaviour of N is fully determined by the matrix N and
the vector My.

With this matrix representation we find the following short formulation of
the firing rule introduced above:

(b) Corollary. Let N be a P/T-net and let M,M’: Sy - N u{w} be two
markings of N. Then for each transition t € Ty:
(1) If't is M-enabled then M1y M’ < M+t =M’

66 Nets Consisting of Places and Transitions

t] t2 ts t4 t5 MIV
8, 1 -1 1
s, -1 1
82 1 5
8, 3 -2 3
35 1 -1
36‘ 1 -1 2
s, -1 1

Fig. 58. Matrix and initial marking corresponding to Fig. 53

If N is pure then additionally
(1) ¢ is M-enabled < 0 < M+t < Ky,
(iii) N is contact-free < (VM€ [My)y: 0 < M+ 1= M+ 1 <Ky).

For nets with infinite place capacities the following monotonicity property
holds:

(c) Lemma. Let N be a P/T-net with Ys € Sy: Ky(s) =w. Let M, My:Sy —
N u {w}.

(1) M, [t> M = (M, + M) [l> (M + M,).

(ll) Me [M|> = (M+1,Vl’2) € [Ml + IW2>.

Proof. (i) is obvious from the definitions.
(1) is implied by (1).

O

5.3 Coverability Graphs

It would be nice to have a finite graph directly representing the reachable
markings of a (finite) P/T-net. Obviously this is impossible, since, in general,
infinitely many different markings will be reachable. However, we can get a
finite graph such that every reachable marking is either explicitly represented
by a node of the graph, or else is “covered” by a node. Therefore such a graph
will be denoted coverability graph.

In order not to overwhelm the construction we will assume nets N with un-
limited capacities, i.e. Ky (s) = w for all places s € Sy. According to Sect. 5.1

5.3 Coverability Graphs 67

his ; Iv technical restrict;] l :

net with unlimited capacities without affecting its behaviour.

Each node E of a coverability graph should be thought of as a marking of
the net; some will actually be reachable markings, others cover reachable mark-
ings. The basic idea of covering markings comes from examining how infinite
sequences of reachable markings can arise. One way in which an infinite se-
quence of distinct markings can arise is as follows. Suppose M and M’ are
reachable markings and M’e [M). Suppose further that for each place s
M(s) < M’ (s) and M #+ M’ (we write this M < M’), and that Ky (s) = w at all
those places s where M’ (s) > M (s); then any transition enabled in M is also
enabled in M’. So, by repeating the chain of transitions that lead from M to M’
we obtain a new marking M” with M’ < M”. Iterating this procedure, we
generate an infinite sequence of distinct markings (M,), i=1, 2,.... Note that
this sequence has the property that M, (s) =M (s) if M’(s)=M((s) while

M, () > M, (s) if M’(s)> M(s). The sequence will be represented in the
graph by a covering node K with K(s) M(s) if M’ (s) =M (s) and K (s) =
if the number of tokens on s is increasing. Once the construction of the graph
is formalised, it will be possible to prove by induction (Lemma (c)) that every
reachable marking is either explicitly represented or is covered by such a
covering node. Finally, in Theorem (g), we shall prove that only a finite num-
ber of nodes are introduced in the construction.

(a) Definition. Let N be a P/T-net with infinite capacities and let "= G,,G|,...
be a sequence of graphs which meets the following requirements:
(l) GO = ({MN}5 ﬂ)
(i1) Let G, = (H, P) be given. Let E € H and let 1 € Ty such that
(a) t is E-enabled,
(b) no arc starting at E is -inscribed (i.e. B E’ such that (E, 1, E’) € P).

Then define the marking E, for every s € Sy, by E (s) = o, if there exists
a node F’ in H cuch that p’(p_.Lt and F'((V\/ p(c\+t(c\ anr" thprp

a [vuv L. 11 441 JUVLILLl Al is L Al Lo (O) S L9y L \v) Al Uiiviw

exists a path from E’ to Ein G, E (s) = E (s) + 1(s), otherwise, and let
Gl+l (H {

Tf 1t 1q
\Au) i itis

[© o\
I is called a coverin sequence G= H,, \J P,| is the coverability graph
g

Vo377 oA hy I (with (7 = (H D\
Cr7ic uU]‘ \Wllllu \l‘[,l [}}

Notlce that, in the above definition, the marking E may already be con-
tamed in H, being a node of G,. In this case only a new arc (E, ¢, E) is added

na naw nada

in C,.H ’ but no new noac.

Remember that the assumption of unlimited place capacities is a purely
technical restriction. In the following unlimited capacities will be understood
if coverability graphs are discussed.

We will now show that indeed each reachable marking is “covered” by a
node of a coverability graph:

(b) Lemma. Ler G be a coverability graph of some P/T-net N. For each firing
sequence My [1,) M, ... M, _\ [t,) M, there exists a path Eyt, E,...E,_ 1, E,
in G such that My = Ey and foralli=1,...,n,M, < E,.

68 Nets Consisting of Places and Transitions

a S,

N a@\/ d [c
N

N

= sa
b
Gy
3 5
Dt
b
- d|2
G 0 |
2 10 c
M A
c oY s
010 3 Oww) d)

Fig. 59. A P/T-net with two different coverability graphs (Markings M are represented as
vectors M (s|) M (s,) M (s3), arc indices show the order of generation of the arcs)

Proof. We prove the Lemma by induction on n. If n = 0, My = My is by defini-
tion a node of G. Assume now there exists a node E > M, _,. Since 7, is M, _,-
enabled, 7, is also E-enabled and there exists an arc (E, ¢,, E’) in G. Clearly
M, ,+1,<E+1,<E’ and the result follows. O

Our next aim is to show that w-entries in coverability graphs indeed rep-
resent unbounded places. This is achieved by associating to each node E of a
coverability graph a set of markings such that, for all w-entries of E, there
are infinitely many markings with an unlimited token count on the correspond-
1ng place.

(c) Definition. Let N be a P/T-net and let E: Sy - N u {w}. Let E be a
node of G.
(1) Let Q (E) = {s € Sy | E (5) = w}.
(i1) For i € N, a marking M of N is called an i-marking of E iff Vs e Q (E):
M(s)=iand Vs ¢ Q (E): M(s) = E (s).

5.3 Coverability Graphs 69

i) Let s < My N b b e N .

i-markir;g Mof E in.#g. Then,.# is called a covering set of E.

(d) Lemma. Ler G be a coverability graph of some P/T-net, N. For each node E,
there exists a covering set #g.

Proof. Let Gy, Gy, ... be a covering sequence of G. We prove the result by in-
duction following the definition of G.

For the single node of Gy, the proposition is trivially true.

To show the induction step, let m € N, let (E, ¢, E) be a new arc in G,
and assume that. # exists. We wish to show that M; exists.

Let E'= E + 1. According to the definition of covering sequences, Q (E)
Q (E). For every set S such that Q (E) < S < Q (E) we prove

(*) VieN IMe[My):(VseS:M(s)2i)A (Vs¢ Q(E): M(s)=E’(s)

by inductionon S =Q (E), ..., S = Q (E).

To show (*) for S =Q (E), note that we assume that .#; exists. As Q (E) =
Q(E), #g={M+1t|Me #} exists. This immediately implies (*) for
S =Q(E). X

By induction hypothesis, assume (*) for some S =S, and let s, € Q (E)\S).
By Definition 5.3 (a) there exists in G,, a node E, and a path E¢, ... 1, E, with
(E,_1,1n, E) = (E, 1, E) such that E, < E’ and Eq(s;) < E’ (s1). To show (*)
for S} U {s1},leti € N and let

z=max ({|,(5)||0<j<nAseS ALs) <0}u{i}.

By induction hypothesis there exists a marking M, € [My) such that
VseS i My(s)=(i+1) n-z and Vs ¢ S,: My (s)=E’(s). Starting with M,
we can fire from M, the transitions 7,...1,: My[t,) ... [t.y M,, and it holds
VseS i M,(s)=i n-z, M,(s)) > M, (s,) and Vs ¢ Q (E): M, (s) = E’ (s). So
we can even fire 7, ... 7, i times: M [() ... 1,)') M and for the resulting mark-
ing M it holds VseS,:M(s)=n-z, M(s))=i and Vs ¢ Q(E): M(s)=
My (s). This, however, implies (*) for S =S, U {s;} (asn-z >z > i).

Finally we obtain (*) for S = Q (E). This expresses the existence of Mz and
finishes the induction step for G,,,. g

These two lemmas motivate the name “coverability graph”. Each reachable
marking is covered by some node of the graph and, conversely, each node
covers a set of reachable markings which may have arbitrarily large values for
the w-components.

Figure 60 shows the kind of structural properties of My not represented in
the coverability graph. The coverability graph does not show that, in N,, the
transition ¢ may fire arbitrarily often but, in N,, ¢ may fire at most as many
times as a previously fired.

Coverability graphs of finite nets are finite; in Definition 5.3 (a) case (ii)
applies only finitely often, as will be shown in the sequel.

(e) Definition. Let N be a P/T-net. Two markings, M,, M,, of N are called
unordered iff neither M, < M, nor M, < M,.

70 Nets Consisting of Places and Transitions

$2 S2

o~ N

b b
Ny N,
u c
700 - ;@/)
a
700 b 001
G

Fig. 60. Two different P/ T-nets with the same coverability graph

(f) Lemma. Every set of pairwise unordered markings of a P/ T-net is finite.

Proof. We prove the somewhat stronger proposition, that each infinite se-
quence g =M, M,, ... of mutually distinct markings has a strongly increasing
infinite subsequence ¢’ =M; , M,,,

If [Sy|=1 then M, <M, or M,< M, for all i,j e N. In this case, let
M, =M, and, given M, , there exist only finitely many markings M in ¢ such
that M < M; (as descending sequences of naturals are finite), hence there
exists some index ;4| > i, such that M, ,, > M.

For Sy={s1,..., 8,41}, there exists by the induction hypothesis an inifite
subsequence ¢” = M, , M,,, ... of o such that

*) M, (s)) <M, (s,) for I<k<n andall je N.

With M, =M, we construct ¢'=M,, M,,... as a subsequence of ¢
Given M, , there are only finitely many markings M in ¢” such that M (s,.,)
< M, (s,.1)- Hence, there exists some index i+, > i, such that M, in ¢” and
M, (Sy41) > M, (s,). With (*), we have M, . > M, . O

41

(g) Theorem. Every coverability graph of a P/T-net is finite.

Proof. Forj=1,2,..., let (K;_,, t;, K)) be the arc which was added in G,. Let
I;=Gy, G, ... be a covering sequence of a finite P/T-net and let G be the
coverability graph generated by I'. A path w=K, 1 K, ... of G is called con-
structive iff there exists a subsequence G,,, G,,, ... of I" such that G, generates

5.4 Decision Procedures for Some Net Properties 71

the arc (K,_,,1,K) (=1, 2,..) and G, = G,. We shall show that every con-
structive path w=K, 1, K, ... is finite. Let & = Kj, K|, ... be the sequence of
nodes in w and let S={se SN\MN (s) * w}. For each descending sub-

cCAMIIAT Al T e an~ fernvancima cttlhoamitamAan

quuClleb 1\0 > l\l >0 > I\n, 7l \ Ll 1\0 \.)} I"Ul CaCll 1HUICaAadIiE dSubvdiyuclive
ses
K; < K{ <... < Kj, we have by construction of w, K/ (s) < K] (s) = K] (s)=w.

Therefore n < |Sy|. Hence @ and also w is finite.

Obviously the constructive paths of G constitute an acyclic subgraph G’
of G. As G’ is finitely based and finitely branched, and as each constructive
path is finite, G’ is finite according to Koenig’s Lemma (cf. A16). Since every
node of G lies on some constructive path, the node sets of G and of G’ are

—

equal and the Theorem foliows. 0

Thus, coverability graphs can actually be constructed for P/T-nets and can
be used to prove certain properties of such nets.

5.4 Decision Procedures for Some Net Properties

Some questions about coverability and liveness can be reduced to properties
of coverability graphs. Since coverability graphs of P/T-nets are finite and can
actually be constructed, we obtain constructive procedures for the decision of
these problems. Such procedures are the main concern of this section.

It is decidable for arbitrary markings M of a P/T-net N whether a mark-
ing M’ € [My) with M < M’ exists, that is, M is covered by some marking of
[My):

(a) Theorem. Let N be a P/T-net, let M: Sy — N U {w} be an arbitrary marking
of N and let G be a coverability graph of N. A marking M’ € [My) with M < M’
exists if and only if

(i) VseSy: (M(s) = w = My (s)=w)and

(1) there exists a node E in G such that M < E.

Proof. Let M’ € [My) with M < M’. (i) using Lemma 5.3 (b), there exists a
node E of G with M’ < E. Therefore, M < E. (ii) Clearly, My (s) # @ implies
VM €[My): M (s) ¥ w.

Conversely, assume (i) and (ii), let E be a node of G with M < E. Using
Lemma 5.3(d), there exists M’ e [My) with M’ (s) = M(s) in the case
E(s) € N, and M’(s) arbitrarily large in the case E (s) = w. If M (s) = w, we
have My (s) = w and therefore M’ (s) = w. O

(b) Definition. Let N be a P/T-net. S = Sy is called simultaneously unbounded
iff Vie N IM, € [My) such that Vs € S: M, (s) = i.

(c) Theorem. Let N be a P/T-net, let S < Sy and let G be a coverability graph
of N. S'is szmultaneously unbounded iff there exists a node E in G such that

Ao Q. 1 — w
oco.u\.))—

72 Nets Consisting of Places and Transitions

Proof. Let M\, M,,... € [My) such that VseS Vie N: M (s) =i Using

5.3 (b) there exists, for each M,, a node E, such that M, < E,. Since G is finite
(5.3(g)), there exists a node E of G such that, for infinitely many i, i, ...
e N,M, < E.Since Vse S:i; <M, (s) < E(s), we have E (5) = w.

The converse is Lemma 5.3 (d).]

(d) Definition. Let N be a P/T-net, let M: Sy = N U {w} be a marking of N,
and letz € Ty.
1 is called M-dead iff YV M’ € [M) : 1 is not M’-enabled.

(e) Theorem. Let N be a P/T-net, let t € Ty and let G be a coverability graph
of N.
t is My-dead iff there exists no arc of the form (E,t,E’) in G.

Proof. If (E, 1, E) is an arc of G then E[t) E and, by Lemma 5.3 (d) there
exists a marking M € .#¢ which enables .

If 7 is not My-dead then there exist M|, M, € [My) with M, [t) M,, So, by
Lemma 5.3 (b) there exists a node E with M, < E. Since 7 is M;-enabled, it is
also E-enabled and an arc (E, 1, E) exists. O

(f) Theorem. Let N be a P/T-net, such that Vs € Sy: Ky (s) = w, let M: Sy —
N U {w} be a marking of N, and let t € Ty be M-dead. Then for all M’ < M, t is
M’-dead.

Proof. Assume 1 is not M’-dead. Then there exists a marking M’ € [M’) such
that 7 is M’-enabled. Starting from M, firing the same transitions in the same
order as when firing from M’ to M’, yields a marking M such that 7 is M-
enabled. . g

VPN o FRUgy | P T s AT L. o D/T s mend Tos 7 L e e L2, 1L L AT TL .
\B) L“vivlaly. L€l IV ve a4 I/ 1-net und et U ve u coveraoiury grapr oy Iv. 1
set [My) of reachable markings is finite iff no node of G has an w-component.

rars o

Proof. [My) is infinite iff at least one place s is unbounded. According to
Theorem 5.4 (¢), this is true iff at least for one node E of G, E (s) = w. O

For the practical analysis of nets, coverability graphs are of limited value,
as algorithms for their construction are too complex. It was shown in [81] (cf.
also [47, 73]) that there exists a sequence N, N,,... of P/T-nets with linearly
growing size (let the size of a net be the number of its eiements, arcs, and
initial tokens) such that the corresponding coverability graphs Gy, G|, ... grow
(with respect to the number of nodes) quicker than any primitive recursive
function.

As a consequence of this result, the following is proved in [81] and [82]: Let
N and N’ be two P/T-nets with identical places (i.e. Sy = Sy/) and finite sets
[My) and [My) of reachable markings. It is obviously decidable if [My) <
[My-), but not in primitive recursive time (or space). A similar result holds for
the problem whether or not [My) = [My-).

5.5 Liveness 73

’

problems [My) < [My) and [My)=[My-) are not decidable [76]. Further-
more it is shown there that it is not decidable if [My) decreases in case a
transition is skipped from the net.

For a P/T-net N it is decidable in space 2¢ "¢ (let n denote the size of

N) 1t [My) 1s finite [80]. Hence the construction of coverability graphs is not
required for this problem. Equally complex is the problem if, for an arbitrary
marking M, there exists a reachable marking M’ € [My) such that M < M".
Furthermore it is shown in [80] that both problems can not be decided in
space W,

The problem if an arbitrary marking M of a P/T-net N is a reachable
marking (i.e. M € [My)) became well known as the reachability problem. It was
recently (positively) solved [67].

5.5 Liveness

P/T-nets are often used in application areas where the number and distribu-
tion of dynamically moving objects is important; for instance, the data in a
computer, the goods in a warehouse, the documents in an administration sys-
tem, the work in progress in a production system. In such areas, the aim is
generally to obtain an organisation which allows for variations in the number
and distribution of the moving objects, but which restricts such variations
within certain limits. There may be failures in the form of blockings, which
cause a partial or total standstill of the system. Such blockings are either the
result of a lack of such moving objects, or the result of a jam (superfluity).

In the net representation of such systems, active system elements (proces-
sors, agents, machines) are represented as transitions, passive system elements
(buffers, stores) are represented as places. Moving objects are represented as
tokens. Then, blockings are visible as transitions which are not able to fire any
more. Such nets are not /ive. There are several notions of liveness; a marking
may be called live if, for each follower marklno there exists some enabled
transition, or if each transition may sometimes be enabled, or if each transition

may sometimes be enabled from each follower marking, or if each (or at least
nnP\ follower markine is renroducible, etc. A net mav be called live lf with

AVAIVWRL 111G Sii S vV uviviv, AoV Gy Uv vadiva

respect to any of the above liveness notions for markings, it can be prov1ded
with a live marking.

Tn fl’\p fn”nunnn we use
unOWIillg WC UsC

marking, the possibility of each transition being enabled.

(a) Definition. Let N be a P/T-net, lett € Ty.
(1) ¢ is called /ive iff ¥V M € [My) IM’ € [M) such that 7 is M’-enabled.
(11) N is called live iff V1 € Ty: 1 is live.

The intuitively obvious conjecture that enlarging (adding tokens to) the
initial marking of a live net yields again a live net turns out to be false.
Figure 61 shows a counterexample.

74 Nets Consisting of Places and Transitions

N @\ /
Z,

Fig. 61. A live P/T-net. If, additionally, the place s is marked, this yields a net which is no

1 1
10NECT 11VC

This liveness notion does not imply that each marking is reproducible, i.e.
for all My, M, e [My): M, € [M;). Even then this is not the case, if all capaci-
ties are finite. An example of this is shown in Fig. 24.

It might be interesting to discuss liveness of markings:

(b) Definition. A marking M of a P/T-net N is live iff V¢t € Ty AM’ € [M) such
t

Lot 4:c0 AA nnlal 1
at { 1> /vi -CiHldUDICU.

Then we get the following.
(¢) Lemma. A P/T-net N is live iff all markings M € [My) are live.

Proof. Nislive < VieTy:1islive <« Vie Ty VM € [Myy AM’ such that ¢
is M’-enabled < V M € [My) M is live. O

Exercises for Chapter 5

1. Consider the P/ T-net of Fig. 12.
a) Introduce minimal capacities which do not affect the behaviour of the
net.
b) Construct the matrix of this net.

/

~J)
W

Exercises for Chapter 5

3. Construct a P/ T-net with three different coverability graphs.
4. Construct three different P/T-nets with equal coverability graphs.

5. Show that in the P/T-net of Exercise 2
a) M’ e [My) with (0, 5, 10) < M’,
b) AM’ € [My) with (1, 2,3) < M’,
c) {$,, 83} is simultaneously unbounded,
d) there exist no My-dead transitions.

6. Consider the following P/ T-net:

a) Which subsets of places are simultaneously unbounded?
b) Is the net live?
(Hint: Construct the coverability graph.)

Y PO
tH1cC

r1

varaioa)1

7 b D em . 2.n9
/ ICL 111 CACICINC £ 11VC!

o]
172]

8. Rearrange Fig. 12 such that never only one process is reading. If two pro-
cesses are reading, a third one may join them.

*9. a) In Sect. 4.1 (h) we suggested a graphical representation for synchronic
distances. Formalise this idea.
Hints. Let a C/E-system X and a pair s = (E,, E,) of subsets of Ey be
given.
Define the net 2, by 2, = (By U {s}, Ex; FxU{(e,8)|e € E\} U {(s,e)|e € Ey}).
Together with an initial marking M, X, can be conceived as a P/T-net.
Define now what it means to simulate an (initial part of a) process
p: K — 2 as a firing sequence in 2;. To do this, consider event sequences
which are obtained by extending the partial order of Tk to total orders: Let
w=e...e, €_7 (p) iff there exists a slice D,, of K with Dy N Tx={1),...,1.}
such thatforall 1 <i,j<n,p(1)=eand (<1, = i <)).
As an example, for the process p as shown in Fig. 41, we obtain .~ (p) =
{epeleyes, eperee;, epe e, eye;er, e ey,).

5 Nets Consisting of Places and Transitions

Let w=e,...e, € 7(p) and let D, be a slice as given in the definition of
Z(p). For EcEs let A(E,w)={ile,e E}. Obviously, A(E,w)=
| n_l (I.T\ N nD—|

Dy |
If w is embedded in a firing sequence My[e;) M, ... M,_, [e,y M, of X,
i (w,8)=4(E,w)— A (E;,w) denotes the effect of w to s, i.e. g (w,s)=
M, (s) — M, (s) (as obviously M, (s) = My (s) + A (E;, w) — 2 (E,, w)).

1 (w, s) is the contribution of w to the variance v of p, defined by v (p, s) =
max{,u(w s)|w e_/’(p)} mm{,u(w s) w e/(p)} v(p,s) defmes the con-

Define now g (E), E2) = sup {v(p, s) |p € ny} and show 6=o0. (Ob-
viously it is sufficient to show v (p, s) = v(p, E|, E>)).

b) Let X, 2, and -~ (p) be as above and let the set 9 of markings of X; be
defined by: M e I iff M(s) € N and there exists a case ¢ € C; such that
VbeBy:M(b)=1ifbecandM(b)=0ifb ¢ c.
Let O'(E],Eg)— sup {M, (s) — M, (s)I dp eny EIMe IR such that there
C)&lbl two llIlIlg bCLiLlCIILCb 1Vl [al) JVll JVl,, 1 [a,,/ IVI,, clIlU 1V.l lal) 1Vll

o1 [ayy My with {a ... an, af ... ‘}c:_/(p)} Show that ¢ and & are
equal.

Chapter 6
Net Invariants

In this chapter, we are first concerned with sets of places of P/T-nets which
do not change their token count during transition firings. Knowledge about
any such sets of places not only helps in analysing liveness but also allows us to
investigate other properties of systems (for instance, facts in C/E-systems).

Such sets of places will be called S-invariants. Since invariants are charac-
terized by solutions of iinear equation systems of the form N’:x =0, (N’ de-
notes the transpose of N, cf. Appendix VII) it is possible to compute them by
the well-known methods of linear algebra.

By means of two examples, a sender-receiver model and a seat-reservation
system, we shall discuss how to apply invariants to the construction and
analysis of systems.

As well as S-invariants, we also obtain T-invariants as solutions of N - x =
Thev indicate how often, Qtarhno from some marl(lno each transition has

ﬁre, to reproduce this markmg.

1—'0

6.1 S-Invariants

To begin with we shall consider a special class of S-invariants. Let N be a
P/T-net with arcweight 1 for all arcs. We want to characterize sets of places,
S < Sy, of N which do not change their joint total token count when transi-
tions fire. Certainly we can see that if S is such a set of places and s € S then
for each transition ¢ € s” which may be enabled there must be a place s’ €t
which is also contained in S. Intuitively speaking, a token flows along the
arcs (s, ¢) and (¢,") from s to s". Analogously, there is, for each transition ¢ € s
which may be enabled, a place s’ € *f such that a token flows along (s’, #) and
\t,.)} from 5’ to s. Thua, S may be characterized bfy a set, F, of arcs which

fulfils the following requirements:

1) When an arc belonging to F starts or ends at a place s then all arcs from and
to s belong to F.

2) For each arc of F ending at some transition 7 there is exactly one arc be-
longing to F starting at 1.

Figure 62 shows such a set of places. The corresponding arcs are repre-
sented by thick lines. The token count is also constant on the set of places

{sl s 525 54, SS}‘

78 Net Invariants

S—O-

f3 S‘ "L

Fig. 62. The sum of tokens on the set {s,, 53, 54} of places is not changed by transition firings

This simple method of characterizing sets of places with constant token
count does not work if there are arcweights other than 1. An example is
shown in Fig. 63. Therefore, we have to investigate further how the firing of
transitions affects such sets of places.

If the token count on S < Sy does not change when a transition ¢z € Ty fires
than

ivii

Y W, D= D W(,5s).

setnS seErnsS

By Definition 5.2 (a), this condition is equivalent to

X 1) ==X 1(s)ie X 1)+ 2 1(9)=0.

SETNS serns sEINS serns
This is equivalent to
> t(5)=0 andevento >, 1(s)=0.

se(tur)ns seS

N

Fig. 63. The sum of tokens on all places of the net 1s not changed by transition firings

6.1 S-Invariants 79

If we replace S by its characteristic vector cs (see A20) the condition be-
comes
> 1(s) - ¢cs (s) =0 or, by vector multiplication, 7 ¢s = 0.
YéSN
If the token count on S < Sy never changes under arbitrary transition
firings, the condition 7, cs= 0 must be fulfilled for all transitions ¢, € Ty,
hence N’- ¢s = 0 must hold.
Conversely, each solution ¢ of N’-x =0 consisting of components from
10,1} is a characteristic vector of a set of places with constant token count. So
such sets are found by solving N’ - x = 0.

We shall now make precise this informally introduced relation between sets
of places with constant token count and olutions of linear equations, and in-

troduce the general class of S-invariants.

(a) Definition. Let N be a P/T-net.

A place vector i; Sy — Z is called an S-invariant of N ift N’ - i = 0.

(b) Lemma. Let i, and i, be S-invariants of a net N and let z € Z. Then i) + I,
and z - i\ are also S-invariants of N.

Figure 64 shows invariants of the net of Fig. 62. The only invariants which
are characteristic vectors are i; and i,. In fact, they denote the sets {s;, 53, 54}
and {s, $,, 84, S5}, which we previously recognized as sets of places with a con-
stant token count.

How can we now interpret the S-invariants which are not characteristic
vectors? The token count on the corresponding places is certainly not constant,
but on the other hand it does not vary without limit. Considering Fig. 62, we
can say that a token on s; “counts” as much as a token on s, and a token on s
together. Similarly, a token on s, “counts” as much as two tokens distributed
on s;3 and s5. Tokens on s, and s4 have a “weight”, which is twice that of tokens

bttty % 1ty iy Yy
SJ -1 -1 1 1 1 2
32 1 -1 1 1 1
33 1 1 -1 1 1 -1
84 1 -1 1 1 2
85 1 1 -1 1 1 1
Fig. 64. The matrix and four invariants of the net shown in Fig. 62

80 Net Invariants

on s,, s3 and ss. If we consider these weights we find “weighted” token counts
on the net which remain constant during transition firings: Let M, and M, be
markings of the net of Fig. 62 and let ¢t € {1,,..., ts} be a transition such that
M, [[> M,.
Then,
—————————— 2 M s+ 2 M)+ M)+ M s+ M ss)=
2 M, (51) + 2 My (54) + My (52) + M3 (53) + M, (55).

So, with invariant i3 of Fig. 64:
M,'i3=M2‘i3.

Considering again Fig. 62, we find a further regularity concering the places
5,53 and ss. s, and s;3 always get (by f)) the same number of tokens. The
tokens of s, may flow to ss. From ss and s; the same number of tokens is
always removed (by #5). Hence the token count on s; varies 1n the same way as
the sum of tokens on s, and s5. Therefore, M (s3) = M (s,) + M (s5) for all reach-
able markings M € [M,) of a marking M, with M, (s;) = My (s3) = M, (s5) = 0.
Using invarnant i, of Fig. 64 we have My - 14,=0=M - 14.

(c) Lemma. Ler N be a P/T-net with a positive S-invariant 1 and let S =
{seSy'i(s) > 0}.
Then S*="S.

Proof. Assume there exists 7 € S'\"S. Then
dseS:t(s)<0 and VseS:a(t(s)>0).

Then clearly ¢ - ¢s < 0 and, since i is positive, ¢s < i and therefore ¢-i < 0.
So 1 is, under this assumption, not an S-invariant. For ¢t € "S\S", we find simi-

—

larly - i> 0. 0

This corollary corresponds to the intuition that sets of places with constant
token count are obtained from sets of arcs which lead from a place in ‘7 to a
placeint".

(d) Theorem. Let N be a P/T-net. Then, for each S-invariant 1 of N and each

Proof. Let M|, M, € [My) and let 1 € Ty such that M, [t) M,. Then, 1n par-

ticular, M, =M, + (Corollary 5.2 (b)) and ¢-i= 0 (since : 1s an 1nvariant).
Therefore My - i= (M +1) - i=M,-i+1-i= M i O

The converse of this theorem is only true 1f every transition may fire at
least once; in particular, it is true for live nets.

(e) Lemma. Let N be a live P/T-net and let 1: Sy — Z be a place vector such
that, forall M € [My), M- 1= My - i. Then i 1s an S-invarant.

6.2 Nets Covered by S-Invanants 81

Proof. 1t is sufficient to show, for each transition 1€ Ty, t-i=0. So let 71 € Ty
and let M € [My) such that 7 is M-enabled. Then, with M[t) M', M-i=M"-i
=(M+1)-i(Corollary 5.2 (b)) =M -1+ 1-i. Hencet 1= 0. O

(f) Corollary. Let N be a live P/T-net and let i : Sy — Z be a place vector.
1is an S-invariant if and only if for all M € [My), M - i = My - i.

(g) Corollary. Let N be a P/T-net and let S < Sy be a set of places whose charac-
teristic vector cs is an S-invariant.
Then, for all M € [My), >, M(s) = Y, My (5).

sSES seS

6.2 Nets Covered by S-Invariants

If a place s of a P/T-net N may obtain unboundedly many tokens then s may
not belong to any positive invariant i. This section deals with this dependency
between the boundedness of places and their being contained in invariants.

(a) Definition. A P/T-net N 1s said to be covered by S-invariants iff, for each
place s € Sy, there exists a positive S-invariant i of N with i (s) > 0.

(b) Corollary. If some P/T-net N is covered by S-invariants then there exists an
invariant i with i (s) > 0 forall s € Sy.

Proof. By the hypothesis, there exists, for each s € Sy, an invariant i; with
i, (5) > 0. Using Corollary 6.1 (b), i= Y i is an invariant fulfilling the re-
quirements. s€Sy O

Fig. 65. This net, which is live and contact-free with capacity 1, is not covered by S-
invariants

82 Net Invariants

(c) Definition. A P/T-net N 1is called bounded iff My is finite and there exists
n € Nsuch that, for all M € [My) and all s € Sy, M (s) < n.

(d) Theorem. Let N be a P/T-net and let My be finite. If N is covered by S-in-
variants then N is bounded.

Proof. Let s, € Sy and let i be a positive S-invariant with i (so) > 0; let M € [My).
Since M(sp) i (s)) < >, M(s)-i(s)=M-i=My-i. (Theorem 6.1(d)), we

. N
My-i S5
have M (sp) < — . O
1 (5)
The converse of this theorem is not true, even if N is presupposed to be
live or if the limit for the number of tokens is assumed to be one. Figure 65

shows such a net.

6.3 The Verification of System Properties Using S-Invariants

We first consider a small example to show which structural properties can be
recognized by a knowledge of the S-invariants of a net. Suppose that n pro-
cesses 1n an operating system are each allowed to access a buffer in reading or
writing mode. To guarantee reliability, reading and writing access is restricted
in the following way: When no process is writing to the buffer thenup to k < n
processes are allowed to read it. But writing access to the buffer is only per-
mitted as long as no other process is reading or writing the buffer.

In Fig. 66, such a system of reader and writer processes is shown as a P/T-
net. Each process is in one of five states, represented by the places s;, ..., s4.
In the initial state, all n processes are passive, hence s, contains n tokens under
the 1nitial marking My. The place ss contains k tokens in My. This

k 7\ Ss
~ —
8y inactive processes
k 8, processes which are ready
to read
s, ts ta S2 .
8y° reading processes
//“-' N~ s_: processes which are ready
3 to write
r t
L So 1 8y° writing processes
85 synchronization
S3 1 1

Fig. 66. A system of reader and writer processes of an operating system

6.3 The Verification of System Properties using S-Invariants 83

%o 3] ta ¥ ty ‘s i iy My
8, -1 1 -1 1) n
84 1 -1 1
8, 1 -1 1 1
5, 1 -1 1
s, 7 -1 1 K
8 -1 1 -k k 1 k

concurrently

With the invariants shown in Fig. 67, it is possible to prove the correctness
of the system design.

Using i;, we have, for each follower marking M € [My):

4

NV assay
LIVI \‘)I) =
=0 !

AL VP N
My (S;) = n.

it

This means: The number, n, of processes remains constant and each process is
in one of the states s, ..., 54.
Using i, we have, for each marking M € [My):

M (s)) +k - M(s4) + M (ss) =My (s2) +k - My (s4) + My (s5) = k.

Hence, we find: s, contains at most one token under M, that is, there exists at
renc 11 st one to sts

~ Likine . U4 VUMIWG Ken unger iva g VIIGAL 15y LliWI W Wil Qv

most one writing process. When s4 carries a token then s, and s5 are empty. So,
while some process is writing, no other process reads the buffer. s, carries at
most k tokens: there are at most k processes reading concurrently. When no
process 1s writing, that is, M (s4) = 0, then s, may in fact obtain k tokens. Then
the synchronization place ss5 is empty.

In particular, we prove the following

Proposition. With the capacity Ky, defined as Ky (s)=n for i€ {0,1, 3},
Ky (ss) =1 and Ky (s,) = Ky (s5) = k, and with the initial marking My given in
Fig. 67, the net shown in Fig. 66 is live.

Proof. For the reasons discussed above the given capacity Ky will never hinder
any firing of transitions. We start by showing that each marking M e [My)
enables at least one transition. In the case M (so) +M (sz) + M (s4) > 0, we see

from the net structure that at least one of the transitions {,, f3, I, or Is IS

F"P‘

84 Net Invariants

enabled. If M (sy) + M (s5;) + M (s4) = 0, we get from i) that M (s)) + M (s3) = n,

and from i, that M (ss) = k. Then f, or 7, is enabled. Now, if s, is empty for
some M € [My), it may be marked by some succession of firings. This implies
the liveness of 7, and ;. The liveness of the other transitions follows imme-
diately. O

6.4 Properties of a Sender-Receiver Model

As a modification of the producer-consumer model (Fig. 5 and Fig. 53), we
discuss here a model consisting of a sender and a receiver. Both may terminate
their activities by reaching a terminal state. The solution shown in Fig. 68 is not
satisfactory since the receiver may reach its terminal state while the sender is not
in 1ts terminal state or the channel is not yet empty. To exclude these possibilities,
we Introduce a second channel (Fig. 69) which may carry a “terminated”
message from the sender;, additionally, the channel is supplemented by its
complement allowing the possibility of testing whether it is empty.

This sender-receiver system is embedded into an environment, as repre-
sented in Fig. 70, which controls its activities. When the sender and the re-
ceiver reach their inactive state, they signal this to the environment. Then both
may be restarted.

If the sender-receiver system is modelled correctly, it has the following
properties:

(Py) In each constellation, the sender is “inactive”, “ready to send” or has just
“finished sending”. The receiver is “inactive”, “ready to receive” or has just
“finished receiving”.

(P,) The message channel contains at most » messages.

sending receilving
finished finished

(o)~ o)
/R messge /TN
__.O___.
\ / \ J

\n/

ready eady to
to send receive

terminal state termnal state

Fig. 68. Unsatisfactory version of a sender-receiver system with final states

6.4 Properties of a Sender-Receiver Model

sending receiving
finished message channel finished
7N\ 7~
o X =n o

NN N

\Ly)/ x=n \u‘/
ready ready to
v v

to send \ receive

channel for
"terminated"-
cosaae X
{] essage U

terminal state terminal state

Fig. 69. Sender-receiver system with final states

sending receiving
Sy finished Sy finished
h f2 S x=n te ts
vy
S S /
eady to = ready to
send receive
f3 1-7
t,
53 7 w rg
channel for
inacEive "terminated'- naE b ive
message
S10 Sn
1 to 1
S2(@)« e [o »(0)Si

controlling environment

Fig. 70. The sender-receiver system, enlarged by a cyclic control

86 Net Invariants

(P3) The sender (and receiver, respectively) is inactive if and only if it sent a
corresponding signal to the environment. It can leave the Inactive state
only as a result of a signal from the environment.

(P,) If the sender has reached the inactive state, it cannot leave it again until
the receiver has also reached its inactive state.

(Ps) The decision of the receiver whether to receive or whether to become in-
active depends on the behaviour of the sender. In this respect, no con-
flict arises.

(Ps) The receiver may only become inactive if the channel 1s empty and the
sender 1s inactive.

We prove these properties using the S-invariants shown in Fig. 71.

Let M € [My) be an arbitrary reachable marking of My. Using i, we find
M(s)) +M(sy) + M (s3) =1. Similarly using i: M (s7) + M (s3) + M (s55) = 1.
This proves (Py). :

bty ty oty tg tg b, tg Ty Lty iy iy g ig | My
8, -1 1)
8, 1 -1 1 -1 1
s -1 1 1 -1 1
3
8,) -1 1
35 -1) n -n 1
8¢ 1 -1 1
s, -1 1 1
g 1 -1 1 -1 1
8 -1 1 1 n -1 1
810 1 -1 1 -1
817) -1 1 1
CI -1 1 1 1
813 -1 1 1 1

Fig. 71. Matrix, invariants i|,..., is and the initial marking My of the net shown in Fig. 70

6.5 A Seat-Reservation System 87

of overflow: M (s5) + M (ss) + n- M (sy) = n. This implies (P,) and, addition-
ally, that the channel s4 and its complement ss5 are both empty if and only if sy
carries a token, that is, the receiver 1s inactive.

Property (P;) for the sender follows from i, with M (s19) + M (512) —

M (s3) = 0. This means that s; is marked if and only if sy or s, is marked. For
the receiver, (P3) follows in the same way from is. Using is, we have M (s¢) —
M (s10) + M (s1;) = 0. Hence M (sg) = 1 implies M (s19) = 1. This implies (Py).

To show (Ps), we assume that 75 and 7z are both enabled by a marking
M e [My). Then, in particular, M (s4) =1 A M (ss) = n A M (sg) =1, hence
M (s4) + M(ss) + M (sg) = n+ 2. But, using the invariant i+ i;, we have
M(sy) + M(ss)+M(s;) + M (sg) + (n+1)- M(s9) =n+1, hence M (s4) + M (s5)
+M(sg) <n+1.

For (Pg): The receiver can reach the inactive state only when #3 is enabled,
thatis, when M (ss) = n AM(sg) =1 AN M (sg) = 1.

For such markings M, it has to be shown that
(1) M(S4) =0 and (2) M(S3) > 1.

Suppose fg is enabled. So M (s5) = n and M (sg) > 1.

(1) By i3, M(s4) + M (s5) + n-M(s9) = n. So, M(s4) <0 (since M (ss) = n and

M(sg) = 0).

(2) i4 + i giVCS: M(S6) +M(S|2) + M(Sll) - M(S;) = 0. So M(S3) = M(S6) > 1.

6.5 A Seat-Reservation System

The stepwise development of a seat-reservation system is intended to show
how models for planned systems can be constructed as P/T-nets. First, the sys-
tem 1s represented as a net with inscriptions in English. Then it will be refined
so that its structure corresponds to a P/T-net and its behaviour to the firing
rule. By means of S-invariants, we shall prove some properties of the model.

Specification of the system: A seat-reservation system organizes the reserva-
tion of limited resources, for example the reservation of seats in aeroplanes.
Several independent agencies (travel agencies) may access the system in order
to book a seat or to cancel a reservation. In the case of a booking transaction,
the system adds the customer to the passenger list; if the passenger list is full,
he 1s added to a waiting list. In the case of a cancelling transaction, the
customer is deleted from the passenger list or the waiting list, respectively. In
each case, the customer gets a message; particularly, if the task may not be
executed, for instance, in the case of repeated booking by the same customer
or the cancellation of a reservation which has not been previously booked. The
manager of the system may, using an updating routine, reserve released seats
for customers on the waiting list and send them a message or, if the waiting
list 1s empty, release those seats for direct reservation. Figure 72 shows the
global view of the system.

88 Net Invariants

input

book update cancel

output

Fig. 72. Global view of the seat-reservation system

To achieve a high throughput, the system should handle transitions concur-

rently, as much as possible. In particular, booking and cancelling tasks should
not hinder each other.

We shall prove the following three properties:
(P;) It is not possible to overbook the passenger list.
(P,) A customer is only added to the waiting list if the passenger list 1s full
(P3) A customer ot in the waiting list is only directly added to the passenger

list if the waiting list i1s emnty: customers on the waiting list are the first
110 ll (S 9 W) "ul(,ll‘& 1100 10D \'lll‘l‘-] WUOUOLUVILIVI O Ui Lilw 'ull.lll AAU0LV WAl W LALlW L1104

to be served when reservations are cancelled.

Figure 73 shows the system as an inscribed net. The tasks from the travel
agencies enter the system through the input place. Each task contains a
customer identification and the booking or cancelling order; it should be con-
sidered as a labelled token. The conditions written into places (for example,
a=>b or i € W) have to be fulfilled to allow the associated transitions to fire. As
in the representations of algorithms in Chap. 1 (Figs. 11, 13, 14), the inscrip-
tions on transitions denote instructions, which are executed when the transition
fires. Between instructions, the symbol “&” denotes concurrent execution, ““;”
denotes, as usual, sequential execution. The lists W and P are organized fol—
lowing a first-in-first-out principle, whereby first (W) denotes the first element
of W.

An instruction X — W adds X to the end of the list W, skip (x, W) deletes x
from the list W. m,:= ... means an appropriate message is sent to the travel
agency of customer i.

The instructions on one transition form an atomic action. This means that,
during the execution of the instructions of some transition, the entities in-
volved may not be changed by the firing of other transitions. (It would of
course be possible to represent the organization of these indivisible executions
by additional places in the net.) To achieve good performance, sections of
indivisible instructions must be kept as small as possible. This is mainly

6.5 A Seat-Reservation System 89

28w

= @

q:2q-1 & q:=q-1 &
x:=firgt (W) ; k:=k-1

skip (x,W) & ty skip (i,P)
x -+ Pé& & q:=q+1 &

m.s ..
m:=o..

&P

3
k:=k+1 &
i-P3g »
m.:=
1
t]
m.
i3
output
z: customer identification
a: kind of order (b for booking or ¢ for cancelling)
mes message from the system to customer %
W: waiting list
p: passenger list
K: eapacity of P
k: number of seats reserved in P
q: number of cancelled reservations for which the seats

are not yet released.

Fig. 73. The seat-reservation system

achieved by the idea that cancelled seats are not immediately released for
reservation again. Instead, they are counted by the variable ¢ and may be pro-
cessed by the updating module.

For considerations concerning liveness and boundedness, the dependencies
between W, P, k and ¢ are crucial. The influences from the environment can
not be controlled within the system. Therefore, it is sufficient to consider the
part of the system represented in Fig. 74 and to formalise these inscriptions.
Thus, we have to presuppose that the six transitions 7y, ..., #; are enabled at
unforeseen intervals whenever the associated conditions are fulfilled. In par-

ticular, the messages to customers do not influence liveness and boundedness.

90 Net Invariants

skip (4,W)

q:=q-1 & q:=q-1 & :
z:=first (W) ; k:=k-1 6
@ skip (x,W) & t4 skip (%,P)
x-»p & q:=q+l
1 - W
t
5
k:=k+1 &
i =P

Fig. 74. The relevant part of Fig. 73 for correctness investigations

I

q'=q~1 § q =q-1 4 R
x:2first (W) k zk-1
@ skip (x,W) tq q-=q+1
W -
5
@ Es ts
k.=k+1 »
N/ ¢

&

Fig. 75. Replacement of inscriptions concerning the passenger list in Fig. 74 by a new place P

ke=k+1

+ e —/

Fig. 76. Replacement of inscriptions concerning the waiting list in Fig.
its complement W

6.5 A Seat-Reservation System 91

=|

Xl

‘GE Uw

Fig. 77. Replacement of the remaining inscriptions of Fig. 76

TA ctart with wa farmaliza tha naccangar lict and 1t nracaceing Ta Ada thie
LU otail vitll, VWL 1vildlidllsLv iy Pacobllé\'l 1190 allul 1w PlUUbOOllls. i1V G L1110,
a new place P is introduced and embedded in the system of Fig. 74 such that

its token count represents the actual number of seats reserved in the passenger
list. The corresponding inscriptions are deleted, Figure 75 shows the resulting
system, whereby P is empty under the initial marking My.

As 1s the case of the passenger list, we organise the waiting list W as a new
place W with My (W) = 0. Of course, the waiting list (as the passenger list) has
a finite capacity, L. When it is also exhausted no further booking orders can be
processed. As well as W, we also introduce the complementary place W with
My (W) = L. Figure 76 shows the result. (Notice that the introduction of com-
plements 5 of places p serves to test emptyness of p.)

To replace the remaining inscriptions, we introduce places for ¢ and k& with
My (q) = My (k) = 0 as shown in Fig. 77. For k, we also introduce the comple-
ment k with My (k) = K.

The self-loops in the system of Fig. 77 are decomposed as shown in Fig. 78.

Using the invariants given in Fig. 79, we are now able to prove the proper-
ties (Py), (Py), (P;) formulated above. In the following, let M € [My) be an
arbitrary reachable marking of My. _

Using iy, M(P)+M(q)+M®K)+M(y) = My(P)+My(q)+My(k)+
My (y)=K. This implies M(P)=K—-M(q) — M (k) — M (y) < K and hence
(Py).

Assume the passenger list P is totally booked. Then the number of actually

recpr\/pd geats M (P toosether with the not vet releaced ceate M (o) evhancgte
IeserveQ scats A7) togeiner wiin tn€ not yet reieased seats M (g) €Xnausts

92 Net Invarnants

Z|

Fig. 78. Decomposition of self-loops in Fig. 77

the capacity K of P. x is marked if an only if the system answers a booking

arder hvu addino the cnictomer to the \'ll’)itip ict In thig cag

UVilUbl Uy dauliiig v Luostviiive LU v we hqup using i,

ol e

vaiting list. In this case we have, using i,
M(P) + M(q) — M(k) — K- M(x)=01ie. M(P)+ M(q) = M(k) + K- M(X)
= M (k) + K = K. This proves (P,).

Let us now conversely assume a situation in which booking orders are an-
swered by adding the customer to the waiting list. For the corresponding
marking M, we have by (P»): M, (k) =K. Using i3, K- M (X) + M (y) + M (k)
+ M(k)=K and hence M, (k)=0. Now, the updating module may release

some seats for re-reservation and thus allow the system to react to a customer’s

t; tor ftag tz Py sy ts g tp oty ty My
* 1 -1 -k X 1
y 1 -1 I 1 r
k| 2 -K K -1 -1 1
k| -1 1 1 1 K
W 1 -1 -1 1
W -1 1 -L L 1 1|z
P 1 1 -1 1 1
q -1 -1 1 1 1

Fig. 79. Matrix, invariants /|, ..., {4 and the initial marking My of the net shown in Fig. 78

6.6 The Verification of Facts in C/E-Systems by Means of S-Invariants 93

booking by adding him to the passenger list (firing of #,): K is marked. This
1s realised by firing 14, and requires that y was marked under some marking
M, e [M). Using iy, M(x)+L-M(y) +M(W)+M(W)=L and hence
M, (W) = 0. This proves (P;3).

6.6 The Verification of Facts in C/E-Systems by Means
of S-Invariants

Since C/E-systems may be regarded as special P/7T-nets, the invariant calculus
1s also applicable to them. In particular, it may be used for the verification of

facts. Looking at the proof of Theorem 6.1 (d), we see immediately, for in-
variants /i, that M-i= My -i holds for all markings M which are reachable
from My by forward and backward reasoning. This means for a C/E-system X,

all d,d’ € Cs and an invariant i, that ¢4 i = ¢4 - i (again c; denotes the charac-
teristic vector of d, see A20). If i itself is a characteristic vector of some set of
conditions B< By, i=cp,thenc,; cg=|d N B|.

Consider again the two systems shown in Fig. 51 and Fig. 52. We shall
show that the T-elements ¢ and ¢,, 1,, respectively, are facts by regarding these
systems as P/T-nets with capacity one. The initial markings are the cases rep-
resented in Fig. 51 and Fig. 52 respectively.

First, we consider the system of Fig. 51. ¢z, B={b,,..., bs}, is an S-in-
variant and we have, for the represented case d,|d N B|=1, i.e. ¢g-cp=1.
Using Theorem 6.1 (d), we have, for all reachable markings d’,c; - cg =1, i.e.

d'nB|=1.Since |t n B| =2, 1 will never be enabled.

e, e, e e, 5 1 d
bz -1 1
b2 1 -1 1
b3 1 -1
b4 1 -1
b5 -1 1 1 1
bé' -1 1 -1 1
b7 -1 1 -1 1

94 Net Invariants

Figure 80 shows the matrix, an invariant / and the initial marking 4 of the
system of Fig. 52. This yields d-i=—1. Using i, we find, for all reachable
markings M, M (bs) — M (bg) — M (b;) =—1 and hence M (by) + M (b;) =
M (bs) + 1. So, if bsg and b, are marked then bs is also marked and ¢, is a fact.
On the other hand, if bs is marked then, in partlcular b, is also marked and
t, 1s a fact.

There is no general rule how invariants can be applied for the verification
of facts. How they can be applied depends on the particular case.

6.7 T-Invariants

In this section, we are concerned with solutions of systems of equations of the
form N-x=0. Let v:Ty—> N be such a solutlon If 1t is p0531ble startmg

agam yleldS the markmg M Thls 1s explamed by the followmg argumem

If ¢, is the characteristic vector of {t}, 1 € Ty, then 1= N ¢. If My[1) M,
en]\/f +1=M ((‘nrn"qru W) (h\\ an" hpnr\p A, + N = M. Tf AL rl \

194 *471] \“Viviialy J.a vy iVE() 7 4y — iV . 1VE() L& l/

M, 1) M2 we have M,+1 +t,=M, and hence My+ N - c,l +N-c,=M, +
N (¢, + ¢,) = M,. Generalising this, with My [1,) ... [t,) M,,

t
[

i1

M, =M, + Z_[: 0+ZN'C1.~:MO+N'ZCH'
i=1

i=1

We formalize these considerations in the following way:

(a) Theorem. Let N be a P/T-net, let M, ..., M, € [My) and let t,,...,t,€ Ty
such that My[t,) M,...[t,y My. Let v:Ty— N be given by v(f)=
{ill<i<nAt,=t}]. Then My+N - -v=M,.

Proof. By induction on n. n=0: My+ N-0=M;+ 0= M,. Now assume the
proposition is true for n —i. For v": Ty = N, defined as v’ (1)=|{i|1<i<n—1
At,=t} we have by the induction hypothesis My+ N v’ =M, _,. Further-
more M, =M, +t, =My + N-v'+t,=My+N-v' + N-c,, = My +
N +c)=M,+N-v. O

The converse of this theorem is in general not true since, for the realization
of some vector v: Ty = N, enough tokens and enough free capacities are
needed.

(b) Theorem. Letr N be an unbounded P/T-net. Let M, M': Sy = Z and let
v: Tn=N. Then M+ N-v=M"iff AM"”:Sy - N 3¢,...,t, €T, such that
(M+M")[t)...[tay (M +M") and VYieTy:v () =|{il1<i<nA=t}].

Proof. “<=” Theorem 6.7 (a).

6.7 T-Invariants 95

“=” Induction on k=Y v(t;). k=0: Then M= M’. The result follows with

i=1

arbitrary M” since M + M" [@> M’ + M".

Now assume that the proposition is true for k —1. Let 1 € Ty such that
n

v=v'+c¢. Then > v'(t)=k—1. We have M+ N -v =M. Now let M=
i=1

M-t Then M+N-v'=M+N-(v—-¢)=M+N-v—-N-c,=M+N-v—1=

M/ _ ! — M’”.

By the induction hypothesis, there exists » € N, some marking M”, and
ti,...,1, €T, such that (M+M")[1,)...[t,) (M +M"), where v'(f)=
[{ili<i<nAt;=1t}|. Nowlet M: Sy — N be given by
Wy(s,t) if se’t
0 otherwise.

-~ ~ ~ ~

143 243 143

M (s) =

(M”’+1+M”+A7I),_ ly1=t, since VseSy:Ky(s)=w. M +t=M" and
VieTy:v()={i1<i<n+|A;=1}]. O

We are now able to investigate the relation between solutions of N+ x =0
and reproducible markings.

(c) Definition. A marking M of a P/T-net N is called reproducible iff IM’ € [M)
with M’ # M and M € [M’).

(d) Proposition. Ler N be a P/T-net with Yse Sy: Ky (s)=w. If M is a re-

producible marking and M’ is an arbitrary marking of N then M + M’ is repro-
ducible.

(e) Definition. Let N be a P/T-net. A vector i: Ty — Z 1is called a T-invariant
iff N-i=0.

(D Corollary. If i) and i, are T-invariants of a P/T-net N and z € Z then i) + i,

and = -1 are alen Toinvariante
ana 2 ° i) are aw5o 1 -invaridris.

(g) Theorem. Let N be a P/T-net with ¥s€ S: Ky (s) = w. N possesses a posi-
tive T-invariant v * 0 if and only if N possesses a reproducible marking.

Proof. N1 =0<=0+N v=0<«< 3IM” 3I1,...,1,€ Ty such that (0+M")
1) ... [ty (0O+M”) and VieTy:v()=|{i|1<i<nAt=t}] (Theorem
6.7 (b)). 0

(h) Definition. A T-invariant i of a P/T-net N is called realizable iff there
exists an M, e [My) and a firing sequence M,[t;)...[t,) M, such that
VieTy:i()={jl1<j<nAt=1}]

Not every positive T-invariant i of some P/T-net N is realizable; even if N
is live and bounded and each marking of N is reproducible and i is not the

crremn AL Atlenae sm e a femsi e o
SUILL OI OLIICT POSNILIVC 1HIVAlldII.

96 Net Invariants

/\
X
)t

N

|

Y‘“
\J_L/
J

LiIX

A
S
©
N

Fig. 81. The T-invariant i, given by i (t))=i(t))=i(ts)=i(ts)=1 and i (¢;3) =i (t;) =0, is
not realizable

Figure 81 presents an example.
To conclude this section, we show that live and bounded P/T-nets are
covered by T-invariants.

(i) Definition. A P/T-net is called covered by T-invariants iff, for each transition
t € Ty, there exists a positive T-invariant i of N with i (¢) > 0.

(j) Corollary. If a P/T-net N is covered by T-invariants then there exists a T-
invariant i of N such that ¥Vt € Ty :i (1) > 0.

Proof. For t € Ty, let i, be a positive T-invariant with i, () > 0. Then, using

Corollary 6.7 (f), i = D i, is a T-invariant fulfilling the requirements. O
teTy

(k) Theorem. Every P/T-net which is finite, live and bounded is covered by T-

invariants.

Proof. If N is finite and live then VM e [My) AMe [My: My[))...[t,)y M,
with My =M and M,=M and Ty = {1y, ..., 1,}. If, furthermore, N is bounded,
then g='[My)| € N. Then, for i=0,...,q, there exist firing sequences
Mty...[t,) M, with Ty={,...,1,}, My=My and M;=M,,,. Then
there exist two indices 0 <j < k < g such that M;= M, and a firing sequence

M[11> tmy My such that Vie Ty Ell<i<m:t,’—t Let the vector
'T'. —»th(’lpﬁnpr" qcn('_” |1(1(mA 1’— Tlg Thpr\rpmﬁ7(9\

UL BLiiIva GO U ¢ . US1 LlivVviv P\ @A)

1|

I
M+N v =M, and therefore N v=20, because MJ Mk. Since Vie Ty:
v (1) >0, v 1s a T-invariant which covers N. O

Exercises for Chapter 6

1. a) Compute some S-invariants of the P/T-net in Fig. 12.
b) Is this net covered by S-invariants?

Exercises for Chapter 6

2. Show that the net in Exercise 6, Chap. 5, is not covered by S-invariants.

3. Show that the following net has T-invariants which are not realizable:

S,

97

Chapter 7

Liveness Criteria for Special Classes of Nets

In this chapter, we investigate marked nets; these are special P/T-nets which
are suitable for many applications. The liveness analysis for such nets is not
much simpler than for P/T-nets in general, but there are special classes of
marked nets for which criteria for liveness or safeness are known. These cri-
teria are the main topic of this chapter.

7.1 Marked Nets, Deadlocks and Traps

(a) Definition. A P/T-net is called a marked net iff, for all s € Sy, My(s) € N,
Ky (s)=w,and forallp € Fy, Wy (p) = 1.

When investigating liveness it is important to consider parts of the net
which will never be marked or which will never lose all their tokens. In this
section we shall consider such parts of nets and in particular we shall consider
those in which such situations are easily recognizable.

A set S of places will never be marked again, after losing all tokens, if and
only if no transition which contains in its postset a place belonging to S may
ever fire again. In particular, this is the case if all these transitions also contain
a place belonging to S in their preset that is, Ve Ty:te'S=1€S§" or,
equivalently, ‘Sc§ (Frg 82) A set of places which meets this condition is
called a deadlock. A deadlock may be found using the following procedure:
Let s, be a place which belongs to a deadlock, S, we want to construct. Then,
as wei as 3, for all transitions 7 € .)0, at least one place S| € ‘t must bcrOi‘lg
to S; that is "so = S°. Now we iterate this and always require, for new elements

s e S that 's c S' The iteration terminates whenever VseS:'sc S, that is

N,
™\ trap

required

_~

Fig. 82. Deadloks and traps

7.1 Marked Nets, Deadlocks and Traps 99

Deadlocks are critical system parts for liveness analysis, because transitions
may never be enabled again if they contain places of an unmarked deadlock in
their preset.

Dual to deadlocks, there are also system parts which will never lose all
tokens again after they have once been marked. This is the case for some set
of places, S, if every transition removing tokens from S also puts at least one
token onto S. For this, we must have, for the set of transitions S°, that S*c °S

Ei

using the following procedure: Let s, be a place which belongs to the trap, S,
we want to construct. Then, as well as s,, for all transitions 7 € s;, at least one
place s, € 1" must belong to S; that is, s, = °S. Now we iterate this and always
require for new elements s € S, that s°c°S, we terminate when Vse S:

s'c'S. Thisis equlvalent to the condltlon S*c S derived above.

Examples of deadlocks and traps are shown in Fig. 83.

TN, deadlock
) and
;) ‘trap

-~

—

a deadlock but
not a trap

a trap but not a deadlock
Fig. 83. Deadloks and traps

100 Liveness Criteria for Special Classes of Nets

(c) Corollary. Let N be a marked net with a positive S-invariant i and let S =

{s€dSn|i(s) >0f. Then 5 is a deadlock and also a trap.

Proof. This follows immediately from Corollary 6.1 (¢). O

(1) If S is a deadlock which is unmarked under M then S is unmarked under
each reachable marking M’ € [M).
(1) If S is a trap which is marked under M then S is marked under each reach-
able marking M’ € [M).
(i1i) The union of deadlocks is a deadlock.
(iv) The union of traps is a trap.
(v) S contains a maximal deadlock and a maximal trap.

Proof. (i) Let S be unmarked under M, let M [t) M’. Assume S is marked under
M. Then t€°S. If S is a deadlock then 7 € S°, but this is not possible
since 7 1s M-enabled.

(ii) Let S be marked under M, let M[t) M’. Assume S is unmarked under
M. Thent e S If Sisatrap thent € °S. So S is marked unter M.

(1) ‘S SIA'S S = (S1uS)="STuU'S;,cSTUS;=(S1USy)".

(lV) Sl. c .Sl /\Sz. o .SZ = (Sl U Sz). = Sl. U Si c .Sl U .Sz = .(Sl U Sz)

(v) follows using (iii) and (iv), since @ is a deadlock and a trap. O

For the class of all marked nets, we have the following relation between
deadlocks, traps and reachable dead markings.

(e) Definition. Let N be a marked net and let M: Sy —» N be a marking of N.
M is called dead iff no transition of Ty is M-enabled.

() Lemma. Ler N be a marked net. If M: Sy — N is a dead marking then
S={seSy|M(s) =0} is a non-empty, unmarked deadlock of N.

Proof. Clearly S+ @, otherwise all transitions would be M-enabled. S is a

deadlock: Each transition ¢ € 'S is, by hypothesis, not M-enabled. Hence
‘1S #*0ie1eS". Bydefinition, S is unmarked.]

(g) Theorem. Let N be a marked net. If each non-empty deadlock of N contains a
trap which is marked under My then there is no dead marking in [My).

Proof. Let M € [My). Using Corollary 7.1 (d) (ii), each deadlock S # @ of N
contains a trap which is marked under M. Hence each non-empty deadlock of
N is marked under M. The Theorem follows from the above Lemma 7.1 (f). O

7.2 Free Choice Nets 101

—— T2 Free Cheice Nets

In marked nets, a situation is called “confusion” (compare Sect. 2.1), if the
enabeling of a transition ¢ depends on the order in which two other transitions
t’, t” fire. The analysis of liveness is particularly difficult in the presence of

confusion. We shall now consider nets which exclude confusion by their struc-
ture, without regard of the marking class. A conflict between transitions
!,..., 1, may only be resolved in favour of some transition f,, 1 < i< n; that
is, #; fires. This is achieved by the requirement that 7,,..., ¢, possess only one
common place s € '; and no further places in their presets. This means, in
short, that the output transitions of a forward branched place may not be
branched backwards. This is equivalent to the requirement that, for each arc
(s, 1) € Fy, s={t} or "t ={s}. Since, in such nets, one transition out of several
transitions involved in a conflict may be chosen freely and independently to
fire, they are called free choice nets.

(a) Definition. A marked net N is called a free choice net iff, for each arc
(5,0) e Exn (SyxTy), s ={t} V' ={s}.

(b) Theorem. The following properties of a marked net N are equivalent :
(1) N is a free choice net.

() seSyAls'|>1 = Vies :'t={s}.

(i) 51, € SyAs N s, F 0= 31 e Tywiths; =s,={1}.

(iv)seSyA s | >1 = (s) = {s}.

Proof. (1) = (i1): If | s°| > | then, for each 1 € s°, s" # {¢}. Using (i), "7 = {s}.
(1) = (1): Let (s,7) € Fyn (SyxTy). If |s’| =1 then immediately s° = {r}.
If |s°| > 1, using (ii), ‘1 = {s}.

[N
iz S,

;-\/E’____%O\ts
/J\J\‘ k] 4 /LK
W N

Fig. 84. A free choice net

102 Liveness Criteria for Special Classes of Nets

(i) = (iii): Let 7 € 5y N s5. Since {s1,5;} < 1, "t #+ {51} and 't # {s,}. Using (i),
si = {t} and 5, = {1}.
(iii)= (1): Let (s5,0) € Fxn(SyxTy). If “t=*+{s], there exists s, € Sy,
s, * s5;,with 7 € 55. Then t € s; n 53 + @ and, using (iii), s; = {}.
(iv) is obviously equivalent to (ii). O

The rest of this section is devoted to the derivation of a theorem, which
states that a free choice net N is live if and only if each non-empty deadlock
of N contains a trap which is marked under My. First we prove that this cri-
terion is sufficient for liveness, and then that it is also necessary for liveness.

We start with some technical lemmas. Given a set of transitions, T, none of

which may ever be enabled again, we show how to find further transitions of
this kind.

(c) Lemma. Let N be a free choice net and let T < Ty. If ("'T)" may be enabled in
[My) then T may be enabled in [My) too.

Prgof Let 1 T, s €'ty and 1, € s'\T (Fig. 85). Since 1, # 1,, we have 5" {1}

and s* =+ {1 2} y the deﬁmtlon of free ch01ce nets, ‘t; = "1, = {s}. 1, is enabled
ifand only if 5 1 1s marked. But, in this case, 7, is enabled too.

L e I7 b t, 10 7) AT
|

_‘—;'__14 ‘75_-1__2_ J

Fio, 8S5. Nlustrating the nroofof Lemma 7.2 (¢)
&J. aaustrating in€ proci of ».émma /.2 (C)

10
=

(]

(d) Definition. Let M be a marking of a net N. Then M denotes the set of
places which are unmarked under M.

(e) Lemma. Let N be a free choice net and let T < Ty be a set of transitions none
of which is enabled by any marking in [My). Then there exists a marking
M € [My) such that none of the transitions in “("T ~ M) is enabled by any mark-

ing in [M).

Proof. Let M,e[My) be a marking such that there exists a transition
1€ (TnM,) which fires to a marking M, and thereby marks a place
s € 'T nM, (Fig. 86). Using Lemma 7.2 (c), the transitions firing from My to
M, do not belong to ("T)". Hence all places of "T\My are marked under M,
too, and therefore, in "7, only the places of ‘'T N My are unmarked. Since s is
marked under M, , we have 'T N M, €'Tn Myc'TnMy.

By iterating this procedure (starting from M)), we find in finitely many
steps a marking M such that *('T n M) may not be enabled in [M). Otherwise
all elements of *T could be marked. O

7.2 Free Choice Nets 103

'('Tnn70) 7 (*7)°

— A0
]]
i _J

N

s — N
< N \em
!/ 3 \ — 4
n 1
\NT i

Fig. 86. Illustrating the proof of Lemma 7.2 (e)

We shall show indirectly that a free choice net N is live if every deadlock

contains a trap marked under My. To do this we start from a set T < Ty of tran-
sitions which may not be enabled in [My). We construct a deadlock Q ='T
which is unmarked under some reachable marking M’ € [My). Q contains traps
(Corollary 7.1 (d) (v)). Using Corollary 7.1 (d) (ii), these traps must already be
unmarked under My.

(f) Lemma. Ler N be a marked net and let T< Ty. If (T My) < T then
either there exists a transition in T which is My-enabled or T N My is an un-
marked deadlock.

Proof. Assume no transition in T is My-enabled. Let Q ="Tn My and let
t € Q. By the hypothesis, 7 € T. Since T is not My-enabled, 't n My * @ and
hence 't " Q # @, that is 1 € Q" (Fig. 87). Since this is true for each 1 € "Q we
have '‘Q c Q".

Fig. 87. Illustrating the proof of Lemma 7.2 (f)
0

(g) Theorem. Let N be a free choice net and let T < Ty be a set of transitions none
of which is enabled by any marking in [My). Then there exists a marking
M € [My) and a deadlock of N which is unmarked under M.

Proof. By induction on | T\\T'|. | T\\T'| = 0: Since Ty = T, trivially (‘T n My)
< T. Using Lemma 7.2 (f), 'T n My is an unmarked deadlock. Induction hypo-

S VRS b NP SIS DA S o | o ~wx; le — LnNng
thesis: The proposition is true if | Ty\T|=n. Now let |Ty\T|=n + 1. Using

104 Liveness Criteria for Special Classes of Nets

Lemma 7.2 (e), there exists a marking M € [My) such that no transition in
‘(‘TA M) may be enabled in [M). If "("T~ M) < T the result follows using
Lemma 7.2 (f). Otherwise, let t € "(‘"Tn M)\T. Since Tu {1} may not be
enabled in [M) (Lemma 7.2 (e)) and | Ty\(T U {t})| = n, we have by the induc-
tion hypothesis: There exists a marking M’ € [M) such that some deadlock of
N is unmarked under M. In particular, M’ € [My). O

(h) Corollary. Let N be a free choice net. If every non-empty deadlock contains a
trap which is marked under My then N is live.

Proof. If N is not live then there exists a marking M € [My) and a non-empty
set of transitions which may not be enabled in [M). Then, using Theorem
7.2 (g), there exists a marking M’ € [My) and a deadlock Q which is unmarked
under M’. Corollary 7.1 (d) states that Q may not become empty in [My) if Q
contains a trap which is marked under My .

We have derived a criterion for the liveness of a free choice net and shown
that 1t is a sufficient condition. Next, we shail show that it is also a necessary
condition. For this, we assume a non-empty deadlock Q which does not con-
tain a marked trap under the initial marking. By firing the appropriately
chosen transitions of 0"\"Q the token count on @ is reduced untii no transition
of Q" may fire any more. This is possible if all traps of Q are unmarked. Then
only tokens of the places in Q\Q,, where @, is the maximal trap in the dead-
lock Q, have to be removed as far as possible. To each place s € Q\Q,, a tran-
sition o (s)es is allocated. One difficulty is that these transitions o (s) have to

be fired in such a way that those transitions o (s) which are not enabled may
not be enabled again.

(i) Definition. Let N be a marked net and let S < Sy. A mapping a: S — S is
called an allocation.

An allocation « is called cycle-free iff there is no set of places {s;,...,5,} < S
such that 5, e a(s;_;)" (i=1,...,n) and s, € a(s,)". An allocation a partitions
S” into the set « (S) of images of « and the set & (S) = S\« (5).

(j) Lemma. Let N be a marked net and let S < Sy be an arbitrary set of places.
Let Q) c S be the maximal trap in S and let Q, = S\Q,. Then there exists a
cycle-free allocation o Q, — Q5 such that a. (Q,) n"Q, =0

Proof. By induction on |Q,]. |Q,]| =0: Then a: @ — @ fulfils the requirements.
Induction hypothesis: The proposition is true if |Q,| = n. Now let |Q,| =n + 1.
Then there exists some place s, € Q, and some transition 7 € Ty such that
sp €t and 1 n Q, =0 (Fig. 88). With Q3 = Q,\{sy}, O, is the maximal trap in
0O, U Q3. Then, by the induction hypothesis, there exists a cycle-free alloca-
tion a’: Q5 — Q5" such that o’ (Q3) n'Q, =0. Now we define the allocation
o:Q, > Oy bya(s)=a’(s)forse Q;,a(so) =1 Since x(sg) N Q1 =t "0, =0
we have a(Q2) N "Q1 = (Q3 U {s0}) Nn"Q;=0. Since a(s)" N Q=1 Q,=0,

7.2 Free Choice Nets 105

L)
this arc is excluded
//‘)[_ \\\
- N

/ -3 N \

/ /7 \ \
\ {) (S

\ /

A\ /

)

=
®

o/
d
\ - /
N 2 Q Q
N 1 S
~— —

— —

Fig. 88. Illustrating the proof of Lemma 7.2 (j)

so does not belong to any cycle of Q,. Therefore, as &’ is cycle-free by the in-

duction hypothesis, « 1s also cycle-iree. O

Figure 89 shows an example illustrating this lemma.

a(sz) a(s2)

trap Ql

Fig. 89. An example for Lemma 7.2 (j)

(k) Theorem. Let N be a free choice net and let Q < Sy be a deadlock such that
the maximal trap of Q is unmarked under My. Then there exists a marking
M € [My) such that Q" may not be enabled in [M).

106 Liveness Criteria for Special Classes of Nets

Fig. 90. A deadlock Q with the maximal trap Q,. The thick arcs represent a cycle free allo-
cation of Q5. The sets By, ..., B3 of places are also represented

Proof. Let Q| be the maximal trap of Q and let 0, = Q\Q,. Using Lemma
7.2 (), there exists some cycle-free allocation a of Q, such that « (Q,) N 'Q, =

The following notions will be applied during this proof: Call a marking
M, e[MN> properly reached iff there exists a firing sequence My [1,) M,...

AL AL ich that Y1 « 7 < n- a4 A (NN
lV_ln lll /1'1" Oubll tiiae v 1 =t > 1, llv:\‘«\zzj

For s, 5" € O, let s < & iff sy, ..., s, with oc(s;) esim(i=1,...,n Asp=s
NS, =5 SCinsleﬁclosediff‘v’seS s’ eQ f<s=¢ eS

nnnnnnnnn Py a ma MY oo B e A ee

A subset S - gz is detached uy muifuug M iff for au propei ly reached
markings M’ € [M), no transition in « (S) is M’-enabled. The proof will be based
on five propositions:

Proposition 1. For some place s € Q, let S={s" € Q,|s’ < s} be detached by a
marking M. Then there exists a properly reached marking M’ € [M) such that

S U {s} is detached by M.

Proof. As S is detached, no transition ¢ € s N o (Q,) can be fired by markings
which are properly reached from M (as ‘s < 2 (Q,) U @(Q,)). So, in the class
of properly reached markings, o (s) can not be fired more than M(s) times.
Hence there exists some properly reached M’ such that S U {s} is detached
by M'.

Proposition 2. There exists a properly reached marking M such that Q, is
detached by M.

Proof. Let Q,={s,...,s,} such that, for all 0 <i<n, S;={s,...,s} is left
closed. As Q, 1s finite, this can easily be achieved.

For each subset S; (0 < i < n) we show by induction on i that there exists
a properly reached marking M; € [My) such that S; is detached by M;. For
i =0, S; =0 and the Proposition holds with M = M.

By induction hypothesis assume a properly reached marking M; € [My)
such that S; is detached by M;. With Proposition |, there exists a properly
reached marking M;,, € [M;) such that S;,, is detached by M;,,. Obviously,
M; . is properly reached from My. For i = n, the Proposition follows.

7.2 Free Choice Nets 107
Proposition 3. If M is a properly reached marking, Q| is unmarked.

Proof. By induction on the set of properly reached markings: By assumption of
the Theorem, Q) is unmarked by My. Assume Q, to be unmarked by M and let
M|[t) M. We have to show that 7 ¢ "Q,. Note that ‘Q; c'QcQ =QiuQ;=
Qi vua(0Qy) v x(Q,). Obviously 7 ¢ Qy as Q, is unmarked by M. t ¢ @ (Q,), if
M is to be properly reached. If 1 € 2 (Q,), by construction of 2,7 ¢ "Q,.

Proposition4. Let M be a properly reached marking such that Q, is detached
by M. Then no transition te Q" is M-enabled.

Proof. By construction, Q°' = Qi U % (Q,) U &(Q,). For t € Q}, apply Proposi-
tion 3. For 1 € « (Q,) notice that Q, is detached by M. So, let 1 € ¥ (Q,). Then
there exists a place s € Q, such that 1 € s° and ¢ # « (s). By the free choice
properly of N, 't ="a(s)=s. As a(s) is not M-enabled, M (s) = 0, hence ¢ is

also not M-enabled.

Proposition S. Ler M be a properly reached marking such that Q, is detached
by M. Then each marking M’ € [M) is properly reached and Q; is detached by M’.

Proof. By induction on the structure of [M). For M the Proposition holds by
assumption. So, let M’ € [M) be properly reached and let Q, be detached by
M. For M’'[t) M” we have to show that 7 ¢ & (Q,). This follows from Pro-

position4,as % (Q,) c Q.

We show the Theorem now as follows:

By Proposition 2, let M € [My) be properly reached such that Q, is
detached by M. By Proposition 5, each M’ € [My) is properly reached and Q,
1s detached by M’. The Theorem follows with Proposition 4. (]

(D) Corollary. 4 free choice net N is live if and only if every non-empty deadlock of
N contains a trap which is marked under M.

Proof. “<=” Corollary 7.2 (h).

“=" Let Q be a deadlock such that all traps of Q are unmarked. Then the
maximal trap of Q (the union of all traps of Q) is also unmarked and the result
follows using the above theorem. a

Using this corollary we can easily verify that the marked net shown in
Fig. 84 is not live, moreover that there is no initial marking under which it is
live. Clearly, Q = {5, s,, 53, 56, 57} is a deadlock, since Q"= Ty = *Q. But this
deadlock does not contain any non-empty trap.

As an immediate consequence of this result we obtain that any enlargement
of the initial marking of free choice nets preserves liveness.

(m) Corollary. Let N and N’ be free choice nets such that (Sy, Ty; Fy) =
(Sn', Tys Fy) and My < My.. Then the liveness of N implies the liveness of N’.

108 Liveness Criteria for Special Classes of Nets

Proof. N is live = each non-empty deadlock of N contains a trap which is
marked under My (Corollary 7.2 (l)) = each non-empty deadlock of N’ con-

PR, [y RS ~

tains a marked trap under My = N’ is live (Corollary 7.2 (1). O

Figure 61 shows that this conjecture turns out to be false for the general
case of marked nets.

To conclude this chapter, we investigate nets with only unbranched places. As
in such nets every place possesses exactly one pre- and one post-transition, no

conflict situations are possible. Such nets describe systems which are only
structured by synchronization of their active elements. They are wellknown
under the name marked graph.

Liveness and safeness of marked graphs are characterizable by very simple
properties.

(a) Definition. A marked net is called a marked graph iff
(1) V1, t,€ Ty: 1, (FY) t; (N is strongly connected),
(if) Vs e Sy:|'s| =|s’| =1 (places are unbranched).

Examples of marked graphs are shown in Figs. 1, 2, 3, 21 and 42.
An 1mportant property of marked graphs is that the token count on each
cycle does not change when transitions fire.

(b) Definition. Let N be a marked graph. A sequence w = (s, ..., s,) of places
is called a path of length n iff, fori=1,...,n, s;_="s;and forall 1<i*j<n
s; Fs5; N's; ¥ s, wstarts at 'sy and ends at s,. w 1s called a cycle iff w is a path
such that "sg = s,,.

(¢c) Lemma. Let N be a marked graph and let (sy, ..., s,) be a cycle of N. Then,

for all markings M e [My), >, M(s) =Y. My(s,).
i=0 i=0
Proof. Let M, [t) M2 denote a firing in N.

First case: 1 ="s; for some 0 < i < n. The firing of ¢ decreases the number
of tokens on s; by one and increases the number of tokens on s,,, by one (let
Sp+1=5). The marking of all other places of the cycle is not affected. Second
case: I ¢ "{s,...,5,}. The marking of all places belonging to the cycle remains

unchanged. O
(&) Corollary. If a set of places of a marked graph is a cycle then its characteristic
vector is an S-invariant.

Exercises for Chapter 7 109

Liveness of marked graphs may be characterized in a simple way:

(e) Theorem. Let N be a marked graph. N is live if and only if every cycle of N

contains ai least one place which is marked under My.

Proof. If there is a cycle which has all places unmarked under My then, using
Lemma 7.3 (c), these places are also unmarked under all markings reachable
from My. Hence the transitions belonging to this cycle may not be enabled
1n [MN>

Conversely let M e [My). Using Lemma 7.3 (c), every cycle contains at
least one place which is marked under M. Since N is finite, there may not be
arbitrary long paths in N such that all places on the path are unmarked un-
der M.

Now let 1 € Ty and let n be the maximal length of the unmarked paths
under My, ending with ¢. The start transition of each such path is enabled

(otherwise there would be a tonger unmarked path). Now it is possibie to fire
all these transitions independently of each other. This yields a marking
M € [My) such that the maximal length of the paths unmarked under M, ending
at ¢, 1s n — 1. The iteration of this procedure yields, after n — 1 steps, a marking
such that 7 is enabled. 0

(f) Definition. A P/T-net N is called safe iff, for all M e [My) and all s€ Sy,
M(s) < 1.

{(g) Theorem. Let N be a marked graph which is live. N is safe if and only if each
place s € Sy belongs to a cycle, which possesses exactly one place which is
marked under My .

Proof. By Lemma 7.3 (¢), this condition is sufficient for safeness.

Now let s € Sy be a place, which belongs only to cycles which carry more
that one token. Since N is live, the transition in ‘s may be enabled and there
exists a marking Me [My) with M(s) =1. Now we remove temporarily this
token from s. By Theorem 7.3 (e) this does not affect liveness, since every cycle
still possesses at least one marked place. Again the transition in ‘s may be
enabled. After its firing, s now contains two tokens, including the token which
we removed temporarily. So N is not safe. O

(h) Corollary. A marked graph N is live and safe if every cycle of N contains at

least one marked place and if every place of N belongs to a cycle which contains
exactly one marked place.

Exercises for Chapter 7

ch initial markings My of the following net N do not any dead
e markings M € [My) exist?

110 Liveness Criteria for Special Classes of Nets

S

2
\DSB
51?

, :

2. Does an initial marking exist such that the following net is live?

/

3. Construct an initial marking such that the following marked graph is live
and safe:

™~
~———

*4. Show that the initial marking of each marked graph can be modified such
that a live and safe marked graph is obtained.

Part 3. Nets with Individual Tokens

The markings of the nets considered so far are fully determined by the number
and the distribution of tokens on the S-elements. Now we shall allow indi-
vidual objects as tokens. A marking then also depends on the nature of its
tokens. We have already seen an example for such a net, called a predicate/

event-net, with the library system in Fig. 18. As in Sect. 4.5, we shall show how
relations between individuals which hold in all cases may be formulated in
predicate logic. Again, they may be represented, in such nets as T-elements
which are never enabled. A concept of “invariants” (as used for P/T-nets in
Chap. 6) again helps us to verify properties of such nets. Such invariants will
be defined for relation nets, which are introduced in Chap. 9.

The step from predicate/event-nets to relation nets is the same as from
C/E-systems to P/T-nets: Instead of single individual objects we allow several
individuals of the same kind. Then a linear algebraic calculus may be used to
compute invariants.

Chapter 8
Predicate/Event-Nets

8.1 An Introductory Example

We consider an example which is well known as “The Dining Philosophers
Problem”. To start with, we represent it as a C/E-system.

Three philosophers are sitting around a round table. Each philosopher has
a plate in front of him. Between any two neighbouring plates lies a fork

(Fig. 91). Whenever a philosopher eats he uses both forks, the one to the right
and the other to the left of his plate. When a philosopher has finished eat-
ing he replaces both his forks on the table and starts thinking. Figure 92 shows
this as a C/E-system using the following conditions: d; (philosopher p; is think-
ing), e; (philosopher p; is eating) and g; (the i-th fork is not being used). In the
case represented, p, is eating, the other two philosophers are thinking and only
fork 3 is not being used. Now, the thinking philosophers have to wait until p,
puts the forks back (u;) and starts to think. Then a conflict over fork 3 arises
and either p, or p; may start to eat, or p, starts eating again.

The three conditions d; (philosopher p; is thinking) (i=1, 2, 3) are now
combined into one predicate d (“thinking philosophers”). For each case ¢ of
the system, it must now be specified for which philosophers the predicate d is
true. We now represent the predicate d as an S-element and the philosophers p;
as tokens and mark 4 with those philosophers for which 4 is true. Figure 93
illustrates this step.

Analogously, we construct the predicate e (“eating philosophers”) and the
predicate g (“available forks”). The set of objects for which some predicate is

Fig. 91. The dining philosophers

8.1 An Introductory Example 113

. — | N\ 9 ~ .
U | t2
Uy S t‘
(o)
A
(22
(2
"

Fig. 92. A C/E-system of the philosophers

true may be modified by events. Such events are again represented as T-ele-
ments connecting the predicates. The arcs are labelled to indicate which ob-
jects are affected by an event. In this way we obtain the representation in
Fig. 94, equivalent to the system shown in Fig. 92.

In Fig. 94, the events ¢/, 1, and #; have equal pre- and postsets; they only
differ with respect to the affected objects. These three events can be repre-
sented by one single T-element as shown in Fig. 95; the affected sets of objects
are indicated by arc inscriptions consisting of variables and functions. The
functions / and r associate with each philosopher his left and his right fork,
respectively. It is possible to derive the concrete events #; (1 < i < 3) from the
event schema ¢ by substituting for the variable x the respective philosopher p;.
Correspondingly, the T-element u in Fig. 95 is a unification of the events u,,
u, and u; of Fig. 94.

d,@ g,O e‘@

114 Predicate/Event-Nets

P = {p,.pyps }
G = {91’92’93}

UIV = PUG

Using the representation shown in Fig. 95 we are able to model a meal of
arbitrarily many philosophers: in the initial case let d be marked by {pi, ..., p.},
and g by {g1,...,g.}. Now the two functions / and r are defined as /(p,) =
~ 7 1 [TR G (v — 1 2 1IN aemd 2l n N\ — ~
gluU=1,....0), r\pg)=g+1U=1,..., 7 1yana iy =4¢gi.

8.2 Predicate/Event-Nets

Now we are going to precisely formulate the concepts introduced informally
in 8.1. We start with algebras and define terms over algebras which we shall
use as arc inscriptions in the definition of predicate/event-nets.

8.2 Predicate/Event-Nets 115

(a) Definition. Let D be an arbitrary set.

(1) For ne N and Mc D", f: M — D is called a partial operation on D. Let
@ be a set of partial operations on D. Then D = (D, ®) is called an al-
gebra. In particular, @ may contain functions d: D° — D, which may be
identified with elements of D.

(11) Let X be a set of variables. The set .7 (D, X) of terms over D and X is the
smallest set of expressions such that
() Xc.7 (D, X)

(b) if¢y,....4, €7 (D, X) and f: D" - D € @ then f(¢,...,4) e (D,X).
In particular, an element of D which belongs to @ as a function
D% — Dis a term.
(i) A mapping B: X — D is called a valuation of X. It induces, canonically, a

mappmg b’ 7(D X)—’D by />’(f(t|,.. tn)) f(/)’(fn) B ¢n). Fi-
. of te .) B = B L

Using these notions, we are now able to define the class of nets we dis-
cussed informally in the previous section and for which Fig. 95 shows an

example.

(b) Definition. N = (P, E;, F, D, A, ¢) is called a predicate/event-net (P/E-net) iff
(1) (P, E;,F) is a net without isolated elements, the elements of P and E are
called predicates and events, respectively,
(i1) D is an algebra,
(ii1) 2. F - 2(7 (D, X))\{0} is a mapping, (¢ denotes powerset),
(iv) ¢: P —> # (D) is the initial case of N.

We denote the six components of a P/E-net N by Py, Ey, Fyx, Dy, An, Cn.
In the following we assume the set of variables X and write 7 (N) for
(DN,X) andffor in (f) (f € Fy). In Fig. 95, the sets of terms, f, are written

WlLllUuL UldLKCLb

To decide whether an event e of a P/E-net is enabled, one has to consider
valuations £ and to apply them to the arc inscriptions around e. For arcs (p, e)
the set f#(p, e) must be contained in the marking of p, for arcs (e, p) no element
of f(e, p) may already be contained in the marking of p. When e occurs, the
elements of #(p, ¢) are removed from the predicates p € "e, and the elements
of # (e, p) are added to the predicates p € e”. Figure 96 shows an example.

() = (%

; N—— \-\{\ N———
g (67 95 93y F g, &

Gy

Fig. 96. The occurrence of the event in the system of Fig. 95 with 8 (x) =

116 Predicate/Event-Nets

(c) Definition. Let N be a P/E-net.

(i) Amapping c: Py = #Z(Dy) is called a case (by analogy with C/E-systems).
(ii) Let e € Ey and let f be a valuation such that for all fe Fy n (Pyx {e} U
{e} x Py): if 4,4, € A(f) and ¢, F ¢, then B (¢)) * B (¢2). For a given case c,
e is called c-enabled with f iff Vpe’'e: f(p,e)cc(p) and Vpee':

ﬂ(ﬂ\mc(n\:ﬂ
yr7 \V v ~

(ii1) An event e which is c-enabled with £ yields a follower case ¢’ of ¢ under

p by

c (DNB(F2) iff p e e,
ey v p) iff peee,
O =\ (N (o) UB@EP) iff peence,

c(p) otherwise.

We say, e transforms the case ¢ to ¢’ under 8, and we write c[e)zc’. Let
[cn) be the smallest set which contains ¢y and which is closed with respect
to event occurrences.

To represent a case ¢ graphically, the elements ¢ (p) are written into the
circle for p.

start of cycle

initialization

initial values

O

N

N
~

T < N
N

compute new
values

\é\ ‘ 5
AR

computed values

20
40

delete values

values are deleted

Fig. 97. The System of Fig. 11, represented as a P/E-net with D = ({0, 1}, {Vv, A})

8.3 An Organization Scheme for Distributed Databases 117

Figure 97 shows a P/E-net representing the same system as the C/E-system
of Fig. 11. The algebra of this P/E-net is the boolean algebra with the carrier
{0, 1} and the logical operations A and V.

In most cases, the carrier D of the algebra Dy will naturally be the disjunct
union of several sets D,, where each predicate p will only be true for elements
of one of these sets D,, for all reachable cases. For the system represented in
Fig. 95 we find that the set of forks belongs, in this way, to the predicate g and
the set of philosophers belongs to 4 and e.

8.3 An Organization Scheme for Distributed Databases

We assume a situation where geographically distributed sites access a common
database, in which reading operations occur much more often than writing
operations. To minimize the costs of data transmission, it is convenient in this
case to have one copy of the data base at each site and to organize an updating
mechanism which handles writing operations correctly.

returmed

f \'e:rp ty packages

P& g o
waitirg

sender wnactive

passive

ackages
b 9 processing

watting for
Rk recetvers

acknowledgement

{do,...,dn}

KU (K xK)U {m}

]

h

P K - KxK
di"' (di,d.)

i+j modn

packages wiin
transact - O*

Fig. 98. An organization scheme for updating a distributed database

118 Predicate/Event-Nets

All updates of the database have to be carried out in the same way in all
copies of the database. An update is invoked by a particular site, called the
sender, which sends a message to all other sites. Each receiver of such a
message updates its copy of the database and sends an acknowledgement back
to the sender. The update is successfully completed when the sender has

received acknowledgements from all other sites. Since all sites act according to

tha gama crnha ara nhla tA mAadal tl. Q tnl Ano nat
tnec same scneme we are aovi€ to mode: tnem as tokKens in one 011151 i1

(Fig. 98).

The message interchange is realized by packages which contain the update
message and which are labelled with the identification of the sender and the
receiver. Since we are only interested in the organization of the updates and
not in the contents of the update messages, we represent each package by a
pair consisting of sender and receiver identifications.

Let K={dy,..., d,} be the set of involved sites. As long as no messages are
being interchanged, the predicate “idle component” is true for all sites d, and
the predicate “inactive package” is true for all packages (d,, d)) (see Fig. 98).
A site d, € K invokes an update procedure by occurrence of the event e; with
f(x) =d,. Then all packages p| (d), ..., p»(d) with p,(d) = (d,, d,+,)mod n) are

retwmed
empty packages

Pzﬁr)

watting
sender

nactive

passive
sites

packages
waiting for
acknowledgement

processing
recetvers

Y a
- /

packages with
transaction

Fig. 99. A case of the system of Fig. 98 with n =2

8.4 Facts in P/E-Nets 119

initialized. 4, is now waiting for the acknowledgements. The event e, causes
the receivers of the packages to accept and to process the message, indepen-
dently of each other. When the processing is finished each receiver gives the
“empty” package back to the sender by e;. After all acknowledgements for

processed updates have arrived in the form of empty packages, the sender
returns to its idle state with e,. Thereby the packages become inactive. Ad-
ditionally a token m is put onto s which enables a new cycle.

In Fig. 99 a reachable case is shown for n = 2.

8.4 Facts in P/E-Nets

The set of objects for which some predicate of a P/E-net is true changes by
event occurrences. Nevertheless there may be relations between predicates
which hold for all cases. By analogy with C/E-systems, such relations may be
expressed as logical formulae and may be represented as 7-elements which are
never enabled. In this section we shall derive, as in 4.5, a dependency between
the validity of logical formulae and the possibility of events to be enabled.

First, we define those logical formulae which we need to build facts. In
terms of the predlcate calculus, we have first order formulae in prenex normal

£ +ho~ ol fiave Thao tiemicineon 1 N L"n QL oy ;L en ha
10Tim WllllUuI. CAlblCllllal quauuucla lllC ulllVClDdl quau 111CId Iiiay wicih ve

omitted.
(a) Definition. Let NV be a P/E-net.
(1) The set 7y of (logical) formulae over N is the smallest set such that
(a) 1fte 7 (N) and p € Py then p (¢) e oy,
(b) ifa),a; € 7y then (@) A &) €y, (@1 V @y) €y,
(@ 2 az) €y, (Nar) EAy.
As in 4.5, unnecessary brackets will be omitted.

(1) Each case ¢ of N induces, for each formula 2 € #y and each valuation f,
a value c; (2) € {0, 1}, defined by
Cpt oty — {0, 1}
o 1 iff B(¢) ec(p) (1= true),
P 0 iff f()¢c(p) (0= false),
a N\ap — min {Cﬁ (al), Cp (aq)},
@ V a; > max {cg (@), ¢5 (@2)},
ay > aH > Cp (‘1@! Vaz),
na = 1= ().
(ii1) For each case ¢ of N, let the function ¢ be defined as ¢é:.oy — {0, 1},
where ¢ () = 1 iff, for ?ll valuations f, ¢ (@) =1,
0 otherwise.

(iv) Two formulae @,,a, € #/y are called equivalent (we write @) = a,) iff, for
each case c of N, ¢ (@) = ¢ ().

120 Predicate/Event-Nets

By analogy with Chap. 4.5, we construct for each event e of a P/E-net N a
formula « (e) such that « (e) is true in all cases in which e is not enabled under
any valuation £. This will be used in the fact calculus.

(b) Definition. Let N be a finite P/E-net, let p € Py and lete € Ey.
(i) For (p,e)eFy and (p,e)=1{,..., 4}, a(p,e) denotes the formula
PN ... Ap().
(1) For (e,p) € Fy and (e,p)=1{t,...,¢,}, a(e,p) denotes the formula
p) V...V py,).
(iii) Let "e={p\,...,p,} and e = {p,41,..., pm}. Then a(e) is the formula

(@(pr,e) A ... N @(pn, €)) = (@(e,Pae1) V... V @(e, pm))-
(iv)If ‘e=0 and € ={p,...,p,} then z(e) is the formula a(e,p)V ...

V (e, Pm).-
W) If "e={p,...,p.} and e =0 then a(e) is the formula 71 (a(p;,e) A ...

N a(py,e)).

Intig. 95, wehave: a(u) = e(x) > d(x) Vg(U(x)) Vg ({rx),
a(l)=dx)NngU(x) Ng(r(x) —e(x).

(c) Theorem. Let N be a finite P/E-net and let e € Ey. Then, for each case
c € [en): é(a(e)) =1 iff e is not c-enabled with any valuation B.

Proof. ¢ (a(e)) =1 <= Vf:cs(a(e)) =1
<= Vf:(dpe‘ewithcg(a(p,e)) =0V Ip e e” with ¢y (a(e, p)) =1)
<= Vf:(dpe’eand ¢ € (p,e) withcs (p(¢)) =0
V dpee and 3 /€ (e, p) witheg (p(¢)) =1)
<= Vf:(Ap e ’e JLe(p,e) with f(£) ¢ ¢ (p)
VvV dpee Jte (e, p) with f(¢) € ¢ (p)
<= V. (IpeewithB(p,e)Ec(p) VvV Ipee withf (e, p) nc(p)*0)
<> e is not c-enabled with any valuation £. O

By analogy with 4.5, we saw in the previous section that T-elements which

never UCL«UlllC ClldUlCU ICPICHCIIL lUIlIluldC Wlllb[l arc Vd.llu lUI d.ll CddOdS. INUW
we shall show that each valid formula may be represented by such T-elements.

(d) Definition. Let N be a P/E-net.
(1) A formula @ € o is called valid in N iff, for all cases ¢ € [cn), ¢ (@) = 1.

(i) For P\,P,c Py and PyUP,*+ (), let t=(P,,P,) be a new T-element
with 't =P, and "= P,. For each new arc f'e (P, x {t}) U ({t} xP,), let a
set of terms A (f) .7 (N) be given by a mapping 4. (¢, 2) is called a
fact of N iff 1 is never enabled for any case ¢ € [cy) and any valuation g.

(ii1) Corresponding to Definition 8.2 (b), we also use with respect to a fact ¢
the notations (p,7) and (7, p) for A (p,1) and A(t, p), respectively. The
formula «(¢) is defined as «(e) for events e.

In the graphical representation of P/E-nets, a fact is drawn as [, as for
C/E-systems; the associated arcs are appropriately inscribed.

8.4 Facts in P/E-Nets 121

" " 5 &

Fig. 100. Some facts in the system of Fig. 95

Figure 100 shows some facts in the system of the dining philosophers.

Thair meaning mavy nad ag Fallawrg
11C1L ILICaliliiyg 1midy UC CAylalucu ad> 01U WS,

t1: 71 (d(x) Ae(x)): A thinking philosopher is not eating and an eating phi-
losopher is not thinking.

I: p(x) = d(x) V e(x): Each philosopher is either eating or thinking. There
1s no other activity represented in this system.

13: g (I(x)) = d(x): Whenever the left fork of some philosopher is not being
used then he is thinking.

14: Ast3, with respect to the right fork.

ts: 1(e(x) A g(l(x)): whenever a philosopher is eating then his left fork is
not available, and whenever his left fork is available he is not eating.

1s: As ts, with respect to the right fork.

(e) Theorem. Let N be a P/E-net and let a € o/y. a is valid in N iff there exist
Jactsty, ..., 1, such that a is logically equivalent to a(t)) N ... N a(l,).

Proof. The if-part follows immediately using Theorem 8.4 (c). Conversely,
can be transformed into a logical equivalent formula @’ =a; A ... A @ in con-
junctive normal form. Eacha, (1< g < k) is a term of the form 1¢,(¢) V ...
Vg) V Guit €ns1) V...V gum(¢m) With qy,...,qn € Py and ¢, ..., ¢, €7 (N).
For each pe Py, let 7,={{|1<i<nAg=p} and T,={{|n+1<j<m
Ag =pj. Now let 1, he a new element with "1, ={p|7,+0} and ;=
(17,0, and let (p,1,)=7, and (i,,p)=.7,. Clearly, a,=a(l,)
(g=1,...,k). Hence each 1, is a fact and a is logically equivalent to
a(t)) N... N a(ly). O

As for C/E-systems, we again have the problem of how to verify facts. We

shall gee thf Fnr P/FEF _nete alea the concent of |nuqr|cnnfc iQ hplﬁﬂl] Fnr fhlc
lllllllllll A [/ A4 RAIWRO ulou, Lilw VU[‘V\;HL Vil 111vVvAalidalivo 19 ll\/lylu Vi Liix

To deal w1th invariants, we shall introduce a slightly different net model,
called “relation nets”. P/E-nets are transformable into relation nets, using the
normal form which is introduced in the next section.

122 Predicate/Event-Nets

8.5 A Normal Form for P/E-Nets

In the normal form we are going to construct, we shall reduce the number of
variables 1n the environment of events. Instead of variables x|, ..., x, which
are valuated by single elements of Dy we use one variable x which is now

valuated by objects of (Dy)". The variables x, are then simulated by projec-
tions. So only the arc inscriptions have to be changed and other valuations of
the variables have to be used for event occurrences.

(a) Definition. Let N be a finite P/E-net and let X = {x, ..., x,} be the vari-

ables occuring in terms of N.

(i) With Dy = (D, ®), let D:= (DU D", ® U {pr.|<i<n}). We associate with
each term /€. (N) aterm {e€.7 (D, {x}) in the following way:
i=pr(x)iff¢=x, (1<i<n),

I=fh, ..) ifft=f(t,....tn).
(ii) Let N=(Py, Ey; Fn, D, i, cy), where A (f) = {£|¢ € in (f)}.

(b) Definition. A P/E-net is called in normal form iff | X | = 1.

(c) Corollary. Let N be a finite P/E-net. Then N is in normal form.

The net shown in Fig. 95 is in normal form. Figure 101 shows a scheme for
the construction of the normal form.

(d) Definition. Two P/E-nets N and N’ are called equivalent iff Dy = Dy A
Ex=Ex - ANFy=Fy A (Yci,c € [cny, Vee Ey:there exists a valuation g
with ¢; [e)s ¢; in N iff there exists a valuation £’ with ¢, [e)y ¢, in N').

(e) Lemma. Each P/E-net N is equivalent to its normal form N.

Prnnf Let X=

variables of N and let x be the

valuation £ induced by f: X = D a valua-
Conversely, if f/: {x} = D is given, then

;—-.
><
S~
o
o
o
>
(3]
[72]
@
-
©
=

varlable of N. We ass ociate with the

tion f" by £ (x) = (B(x1), ..., B(xx)).
r \g)

let thdpﬁnpdh Rix) =
J M\

Uv aviiiavia

m

Fig. 101. Construction of the normal form of a P/E-net

Exercises for Chapter 8 123

ditional predicates which must be fulfilled before an event occurs and which
are not changed by the occurrence of this event. In the calculus of P/E-nets
they have to be represented as additional S-elements.

Enr syste Aa it nf rAIrca ra ndad that more I—snn ANAa vari_
1 J\)L\zlll uboxsu, l(, 10 Ul vuUulow l\a\/Ullllll\vllU\'U Lllal 111V v Llla 1 ViIL valil
able is used and that events are labelled by conditions. Such conditions have

only to be substituted if system properties are represented as facts. Also the
restriction to one variable in the environment of events is necessary only if
invariants are to be calculated.

Exercises for Chapter 8

1. Represent the four season system (Fig. 1) as a P/E-net with a minimal
number of predicates and events.

2. InFig. 98 represent the following facts:

a) Whenever a package is waiting for acknowledgement, its corresponding
receiver is processing.

b) Whenever an empty package is to be returned, its sender is waiting.

*3. Supplement the system of dining philosophers (Fig.95) with a fair
schedule such that each philosopher who wants to eat, will eventually be
able to eat.

Chapter 9
Relation Nets

After introducing P/E-nets, we now present a further net model using in-
dividuals as tokens. This new model, in particular, supports a calculus of in-
variants.

In Chap. 6 we introduced the idea of invariants for P/T-nets. Now we
generalize the notion of markings of P/T-nets to individual tokens in the same
way as we generalized the notion of cases of C/E-systems, when defining P/E-

nets. A marking will now indicate, for each place, not only the number but also
the sorts of its tokens. Thus a marking M (s) of some place s is a mapping
M (s): D - N giving for each sort d € D the number of tokens of this sort d
on s. Whenever a transition fires, the distribution of the typed tokens over the
places is changed.

We recall, from Chap. 6, some prerequisites for the construction of S-
invariants. For expressions of the form N’-x=0 or i-M=i-My to be sen-
sible it must be possible to multiply matrix entries with each other and with
markings, the results of these operations have to be summed. With respect to
addition, a neutral element “0” is required and the multiplication must be
distributive over the addition.

As the arc inscriptions are used as matrix entries, these inscriptions and the
whole net model must be chosen in such a way that such operations are pos-
sible. As the arcs will be labelled using relations, the resulting nets will be
called relation nets.

We shall show in which way P/E-nets may be considered as special

e zm b cinme PO i ema o e d b Py N Aamdic 1o Al

relation nets. Using a matrix representation, a calculus for S-invariants is ob-
tained. This may be used to verify facts.

9.1 Introductory Examples

We start with the illustration of the main idea underlying the concept of rela-
tion nets, by considering a special case. We show how to represent P/E-nets as
relation nets. Every P/E-net may be transformed into a relation net in the fol-
lowing way: Each arc inscription f of a P/E-net in normal form yields, for each
valuation g of the variable x, the set §(f) = D. Hence we may consider the
meaning of f as a set of tuples (f(x),y) with y € f(f), i.e. f denotes the
relation {(a, b)| 3 valuation g with a= f(x) and b € # (f)} < D x D}. A transi-
tion ¢ fires with respect to some parameter d by removing, from each place

Introductory Examples 125

Fig 102. The dining philosophers represented as a relation net (cf. Fig. 100)

s €1, the elements (s,7)[d] and by adding to each place s € ¢°, the elements
(1,5) [d] (see A6 (iv)). Figure 102 shows a relation net with the same meaning
as the net shown in Fig. 100. Thereby the graph of a function is considered as
a relation (1d denotes the identity relation).

We see that, when constructing a relation net N’ from a P/E-net N,
markings M (s) < D are represented by their characteristic mapping M (s):
D — {0,1}. Each arc inscription f=.7 (D, {x}) of N is transformed into a
relation f = D x D which again may be considered as a characteristic mapping
f:DxD —{0,1}. In the general case, we shall have markings of the form
M (s): D > N and arc inscriptions of the form f: D x D — N in relation nets. A
transition 7 fires with respect to some parameter a by removing, from each

Let Dp={a,b}.
oz(a,a) =2 pg(a,x):l p.la,a) =0 o (x,y) =2
po.(a,b) =1 o (b,x) =2 03(a’b):1 for x,y€D
ol(bra) =1 For zep 03 (bya) =2
o,(b,b) =2 0,(b,b) =3
L A =3 >
— TN — —
b o1 ab
03/' a o1 g aaa bbb
. o~ — N — N g - N
P
4

marking after firing with a marking after firing with b

Fig. 103. The firing of a transition, ¢z, of a relation net

126 Relation Nets

S; Id id

Fig. 104. The system of reader and writer processes of Fig. 66, identifying single processes

] . N el : , .
place s € 1°, (,5) (a, d) elements of each sort d € D.
It 1s convenient to use relation nets if several individuals of some sort do
not have to be distinguished. One should not be forced to distinguish indi-
viduals if one doesn’t wish to. This would lead to overspecification. The sys-
tem of reader and writer processes shown in Fig. 66 is an example of this.
There it might be convenient to distinguish the processes but it is certainly not
necessary to distinguish the k control tokens. Figure 104 shows a representa-
tion as a relation net where this is realized. Mappings of the form 4: D - Z

and o: DxD — Z will, in the following, be called multisets and multirelations,

respectlvely. These names reflect their nature as generalizations of charac-
teristic mappings of sets and relations, respectively.

9.2 Relation Nets

In the previous section, we gave an introduction to the use of multisets and
multirelations in relation nets. A multiset M defines for each element, d, of
some set of sorts, D, how often 4 is contained in M. Thereby we allow that
some element d may also be contained in M “negatively often”. It is therefore
possible to calculate with multisets as with integers. In particular, they can be
added, subtracted and multiplied with integers by performing the correspond-
ing operations for each sort separately. Multirelations are multisets over the
cartesian product D x D of a set of sorts D.

(a) Definition. Let D be a set.
(1) A multiset over D is a mapping M: D — Z. Let .# (D) denote the set of all
multisets over D.
(1) A multiset 4 € .# (D) 1s called positive iff Vd e D: A(d) = 0. Let .#, (D)

denote the set of all positive multisets over D.
(11 \X/n dafine the addition product with i

7
u 11 VYL UL il hbiaiUne, protaails Wedre o

multlsets A, B e.# (D) as

9.2 Relation Nets 127

+
&
t:
s

d I—>A(d)+B(d)

d - z-A(d),

(#)) A<B <—=VdeD A(d) < B(d).

For the handling of multisets in our calculus the following notations and short-
hands are convenient:

(b) Definition. Let D be a set.

(1) For4,Be.#(D),let —A=(—1)-Aand A— B=A + (— B).

(11) For z € Z, let the multiset z € .# (D) be given by z(d) = z. In particular,
0 denotes the empty multiset.

Multisets 4 with images 4 (d) € {0, 1} for all d € D are (characteristic map-
pings of) sets. In this case, the addition + may be interpreted as the disjunct
union u, and the ordering < as the inclusion <. If Bc 4 we then have
A—B=A\B.

If D={d,,...,d,}, we shall write multisets 4 € .# (D) also as linear com-
binations m, d, + ... + m, d,, where m,=A(d) (i=1,..., n). It is sufficient to
specify those elements d, for which m, # 0. In this sense, each summand m, d,
denotes a multiset M (by M (d)) = m,, M (d) = 0 for d=+ d)) and it is possible to
calculate using this representation according to .#,, .#, and .#; as with integer
vectors. When the multiplicity 1 is not explicitly written, each element d € D
is a multiset itself and we write D also for the multiset Y. d.

de D
(c) Definition. Let D be a set.
(1) #(D) =.# (D? denotes the set of all multirelations over D.

A (D) =.#, (D? denotes the set of all positive multirelations over D.
(n\ Pnrn .:/p(m anda e D, lptnr/ﬂ D - 7/ de ola

AN W L A iwiL E L u \M u/
Hence o [a] 1s a multiset.
(111) Let 1d € #, (D) be given by

Ipfncdﬂ (n\kn d

isvil v T +\7) Vv Ubl ll

9
194

id (x,p) = llffx ¥, id (x,y) = 0 iff x *+ y.
l ’-n

1 Nnr

(X,) ioran X,y €

job]

As multirelations are special multisets, it is possible to calculate with them

according to the rules of 9.2 (a).

Now we define relation nets as nets with positive multisets as markings and
positive multirelations as arc inscriptions.

(d) Definition. A 7-tuple N = (S, T F, K, D, 1, M) is called a relation net iff
(1) (S, T; F) 1s a net, the elements of S and T are called places and transitions,
respectively,
(1) K: S = (D - N uU {w}) defines a (possibly unlimited) capacity for each
place,
(1) D 1s a set, and A: F — %, (D) associates with each arc a positive multi-
relation as an inscription,

128 Relation Nets

(iv) M: S —.#, (D) is an initial marking respecting the capacities, i.e. Vs € S:
M(s) < K (5).

Again, we denote the components of a relation net N by Sy, Tw, Fy, Ky,
Dy, iy and My. As for P/E-nets we write f for A (f).

(e) Definition. Let N be a relation net.
(1) A mapping M: Sy — .#,(Dy) is called a marking of N iff Vs e Sy: M(s)
< KN (S)
(i) For de Dy and a marking M of N, a transition ¢ € Ty is called M-
enabled with d iff Vse't:M(s)=(s,1)[d] and Vser:M(s)<
Ky (s) = (1, 9) [d] and Y (5,7) [d] + 2 (1, 5) [d] > 0.

SE"L ser
(ii1) A transition ¢ € Ty which is M-enabled with d yields a follower marking
M’ of M by
M(s) = (s, 1) [d] iff se I\,
M(s) + (¢, 5) [d] iff se '\t
M(s) = (50) [d] + (55) [d] iff se'1nr,
| M (s), otherwise.
We say ¢ fires from M to M’ and we write M 1), M.
(iv) Let [M> be the smallest set of markings which contains M and which is

Alaoad aridle cengamnn ~ b PR

L«IUDCU Wllll ICDPCL«L I.U LI dllblllUll LIT1HIEDS.

M (s) =

In the graphlcal representatlon arcsfare labelled by f A markmg M is
represented by drawing, into each place s, M (s) (d) tokens of each sort d.

The nets shown in Fig. 102 and Fig. 104 are relation nets. In most cases, the
carrier Dy of a relation net N will naturally be the disjunct union of several
sets D,, such that, for each place s, the reachable markings consist only of ele-
ments of one set D,. In the net of Fig. 104, the set of processes {p, ..., P}
belongs to sy, ..., 843 the k control tokens belong to ss.

All the different net models considered until now (C/E-systems, P/T-nets,
P/E-nets) are special classes of relation nets. Figure 105 shows how the mark-

ings have to be restricted to obtain the corresponding special classes.

C/E-systems M(s): 1@} ~»{0,1} M(g):D~»{0,1} P/E-nets

P/T-nets M(g):{@} >V M(s):D- IV relation nets

Fig. 105. Relations between different net models

9.4 Calculation with Multirelations 129
9.3 The Translation of P/E-Nets into Relation Nets

In Chap. 8.5, we derived a normal form for P/E-nets. Now we shall associate
with each P/E-net a behaviourly equivalent relation net. The idea of this con-
struction has already been introduced in Sect. 9.1.

(a) Definition.
Q(t):_l)2—> {0,1} be gi\;en by o (¢) (a, b) = l_i,ff thére exists a valuation f
with a= f(x) and b = S (¢).

(i1) Let N be a P/E-net in normal form with terms over {x}. Let gy: Fy —
%, (Dy) be defined as oy (f) =D, 0(¢). By Definition 8.2 (b) we have

lef
. ow(f)(a,b) <1 For arbitrary cases ¢ of N let M,: Py > . #, (Dy)bede-

fined as M, (p) (d) =1 iff d € ¢ (p), and M, (p) (d) = 0, otherwise.

(b) Theorem. Let N=(P,E; F, D,)

iy Ay

relation net N’ be given by N’ _(P,

e a P/E-net in normal form and let the

c) b
FK D,on, M) with Vpe P: K(p)=1.
ns B {x} -

Then, Y¢,c’e Cy Vee EVY valuation :{x} > D:cledpc’ in N iff M.[e)p
M, in N'.

Proof. Letp ee\e’. ¢’ (p)=c(@)\B(p,e)

c(\;/def;’\p ey:dec{ppnd¢c(p) and, Vd¢p(p,e):dec(p)<=

dec d))

= (VdeD with oy(p,e) (B(x),d)=1: M, (p) (d) =1 A M, (p) (d) =0 and,
Vde D with gy (p,e) (B(x),d)=0: M. (p) (d) =M. (p) (d))

< M. (p) =M. (p) — on (p, €) [B(X)].

Analogously, VpeeNe:c'(p)=cp)upf(p,e) <= M.(p)=M.(p)+
on (P, €)[B(x)]. By a similar treatment of the remaining cases the result fol-
lows. C

9.4 Calculation with Multirelations

lculnc OF lnvanan{g nF rp]ohnn pe{g, we sha!! use a matrlv rpprpcpn-

tation. Therefore it must be possible to add and to multiply matrix entries,
which are arc inscriptions and hence multirelations. The summation of multi-
relations was previously defined in Chap. 9.2. Now we shall define a product,
which turns out to be a generalization of the relation product (see A6 (1)) to
multirelations. In particular, we shall show that addition is distributive for the

e Lianall, chall somtrn~ds a ralanls FAr vvartare rnngigting nf m

}JIUUULL 1 ulau_y WC Sinadii 1uuuuu\.c a Lal\,ulub 101 VvECiIOoIs bUllOlOtills Vi lllultl"
sets and multirelations. At this point we shall have prepared all the pre-
requisites for the calculus of invariants.

We start by presenting all operations for multirelations.

130 Relation Nets

In 9.2, we defined the application of a multirelation g to a single element
a € D to be the multiset g [a] with g[a] (d) = o (a, d). Applying p to a multiset
A yields a multiset o [4] as follows: To determine ¢[A4] (d), we consider, for
each e € D, the integer 4 (e) as a factor modifying ¢ (e, d).

So A (e) o (e, d) yields the contribution of e to ¢ [4] (d). ¢ [A4] (d) is obtained
as the sum of all products of this form.

The composition o © ¢ of two multirelations ¢ and ¢ is again a multirela-
tion. To compute ¢ © o (a, b), we consider, for each e € D, the integers p (a, €)
and o (e, b). Their product yields the contribution of e to o ° o (a,b).
0 © o (a, b) is the sum of all products of this form.

Af' Y PR
(a) Definition. Let D be aset. Letae D,4 € .#(D),0,0 e #(D)and z € Z.

The addmon and the product with integers for multirelations are given as
the corresponding multiset operations:

#) o+o: D> - Z) z-0: D> - Z

(@ by o(a, by+o(a,b) (a, by =z (o(a, b))-
The application of a multirelation to a single element and to a multiset,
respectively, are defined as

(#) olal: D - Z and (#y) 0[A]l: D - Z
d - o(a, d) di 3 Ae)-o(e, d).
eeD

The composition of multirelations is defined as

(%5) Q° o. D2 -7
@by 2 0(a,e) a(eb).
eeD
As an example, with the multiset 4, defined as 4 (a) =2 and 4 (b) = —
we find using the relations o, and g; of Fig. 103:

aldl@24@ e (aa)+A(b) o b,a)=2-2-1-1=3,
oAl ()2 A4(@) @ (a,b)+A(b) o (bb)=2-1-1-2=0,
000 (@, b)) 20 (a,a) 0;(a,b) +0,(a,b)-os(b,b)=2-1+1-3=35,

=4 I\ ¥ K1 A") KJ A"y ¥ T R A™

o c0os(b,a)Zo (b,a) 0s(a, a)+ o (b, b)- 93(a)=1-0+2-2=4.

(b) Lemma. Let D be a set. Let ae D, A, B e # (D), 0,0, 1€ #(D) and z € L.

(i) A+B =B+A4

(i) o+o =0+

(i) z-(e+0)=(z-0)+(z°0)

(iv) e°(z-0) =z (0 ° o)

(v) (e+o0)[a]l=¢[a] +o[a]

(vi) e[4+B] =¢[A] +¢[B]

(vi) (¢ °o0)[a]=0[e[a]]
(viii) go(o+1)=(¢° o)+ (Q°7)

Proof. Leta,b € D.
(i) A+B)(@)2A(a)+B(a)=B(a)+A4(a)Z(B+A4) (a)

9.4 Calculation with Multirelations 131

(11) (o + 0) (a,b)ég(a,b)+o—(a,b)=a(a,b)+g(a,b)§(o+Q) (a, b)
(i) z-(e+0) (@) 2z ((e+0) (a,b) 2z (e(a,b) + o (a b)) =z-e(a, b)
+z-0(a,b)2(z 0)(a,b)+ (z-06) (a,b) 2 ((z- 0) + (- 7)) (a,).

(iv) 0°(z-0)(@b)Z Y o(ae)-(z-a(e,b) =z o(a,e)- aleb)

eeD eeD

iéz-(g_) ° g) (a,b).

(v) (e+0)[a] ()2 (o+ o) (a,b) 2o (a,b) + 0 (a,b)Zo[a] (b) + o [a] (d)
£ (ola] + o[a]) (b).
(vi) e[A+Bl (@2 > (A+B)(e)-0(e,a) < Y (A(e) +B(e)) -0 (e, a)

eeD eeD
P
b - b
eeD eeD

(vii) (@°0)[al (®)Z (@ °0) (a,)2 Y o(a,e) o (e, b)

arcr D
ec o

23 (olal (e)) - o (e, b) Z o [o[a]] ()

eeD

(viii) (e° (6+1) (@ b)2 Y 0(a,e)- (6+71) (e, b)

ee D

4 Zg(a,e)-(o(e,b)+r(e,b))= Zg(a,e)-o(e,b)

eeD eeD

Ve
+2.e@e) t(eb) 2 ((0°0)+(e° D) (ab). y
¢ceD
For the calculus of invariants we shall use, analogously to Chap. 6, a rep-
resentation of relation nets as matrices and the description of transition firings
as vector additions. That is why we now consider vectors consisting of multi-
sets and multirelations, respectively, and show how to calculate with them.

(¢) Definition. Let S and D be two sets. Let X, Y:S — .# (D) be vectors con-
sisting of multisets, and let @, ¥ : S — % (S) be multirelation vectors. Let d € D
and let z € Z. As usual, we define addition and product with integers:

1)) X+Y: S—>.#(D) 7y) z-X: S —.#(D)
s> X () +Y(s) sz (X (s)

(73) ©+¥: S —>#(D) 74) z-D: S > #(D)
s D(s)+¥(s) sz (D(s))

For multirelation vectors, the application to elements of D is defined com-
ponentwise:

(75) @ {dy: S >4 (D)

Finally, we define two operations for multirelation vectors which yield
multisets and multirelations, respectively:

132 Relation Nets

the vector application (¥5) @ [X]= D, @ (s) [X ()] €.# (D)

SED

and the vector product (¥3) @ *¥ =) ®(s) °¥(s) € #(D).
ses

The nullary relation vector O is defined as O : S — # (D)

0O
ST

(d) Lemma. Ler S and D be sets, let &, ¥, Q: S — % (D) be vectors and let z € Z.
) D*xWP+Q2)=(D*¥) + (D *Q)

()P*(z-¥) =z-(P*YP)

(ii) 2 [P{D)] =¥ *D)[d].

Proof. (i) & * (P+2)2 Y. D (s) ° (FP+R) (5)) 23 @ (5) © (¥ (5) + 2 (5))

e ACIOR v (:;) +(@(s) °2(s)°"F T';iab (5) °¥(s)
+2 00 CQ()E (D *P) + (D *Q).
(ii) @ * (2 ¥) ’=’$EZS¢> (%) ° ((z-¥) (S”Qsezs‘p (%) ° (z* (¥ (5))
"“‘@'”ng(qb () °""“’)949m2'(ﬁzs¢(” W ()72 (@x¥).

(i) [P(D] 2 Y. @ () [¥{d) (5)] = Zscb) [¥ () [d]]

seS

94(b)wn z (P(s) ° @ (5)) [d] r i (Z Y(s)od (5)) [d]y;7 (¥ * D) [d]. O

s€ES seS

9.5 A Matrix Representation for Relation Nets

(a) Definition. Let N be a relation net.
(1) For transitions 7 € Ty, let the vector z: Sy = % (Dy) be defined as
—(s,1) iff se i\,
VYOREPAN MY oo o o~ 2\ %4
_1&3) _our sern
L) i(t,S)—(s,t) iff se‘tnt,
0, otherwise.

(i1) Let the matrix N : Sy x Ty = %#(Dy) be defined as N (s, 1) = 1 (s).
(iii) For ¥: Sy — #(Dy), let N’ *¥: Ty — % (Dy)
SN EL

(b) Theorem. Le: N be a relation net, let M, M’ € [My), let t € Ty and d € Dy.
If't is M-enabled with d then M [t); M’ iff M+t {d) = M".

w

Proof Let se'r\i. Then M'(s) 29 M(s)— (51)[d]

2 M(s) + 1 4{d) (9).

(

Y M () +1(5) [d]

9.7 An Example for Applying S-Invariants: The Verification of Facts 133

t u Z, 7,'2 g M[V
d|-id id id 1+r {pz,...,pn}
g | =(l+r) 1+r -id d {g],...,gn}
elaa - | r |

Fig. 106. Matrix, invariants and the initial marking of the system shown in Fig. 102

For set’\'t, set"n 't and s¢ 1 U ‘1, it can be shown analogously that

1t can 10Will ial 1xly tlldt

M’ (s) = M(s) + 1 {d) (s). The result follows. O
9.6-S-I cantsfor Relation Net

(a) Definition. Let N be a relation net. A place vector i: Sy = #(Dy) is called
an S-invariant of N iff N * i = Q.

(b) Corollary. Let iy and i, be two S-invariants of a relation net N and let z € Z.
Then iy + iy and z - i) are also S-invariants of N.

Proof. Lett € Ty.
d) 1 by hypothesis

() 1% (i +h) = t*i+1%i 0+0=0.

.. : 4(d . by hypoth
(1) 2% (z-1)) 9(=)"2'(g*1,) YWERSE 2. 0=0. O

(c) Theorem. Letr N be a relation net. Then, for each S-invariant i of N and each
reachable marking M € [My), i [M] = i [My].

Proof. Let M, M’ € [MN> letd € Dy and let ¢ € Ty such that M[t),; M’.
iM 2V M+ ({2 i () [(M + 14d) (9)]

SESN

23 i) M)+ 14d) ()] Z (i () [M ()] + i () [1{d) (5)])

sESy se Sy

T Z OO+ X6 [(dy (5)]) 21 [M] + i [1{d))

s €Sy s€ Sy

94 (b)w

0 A 7a\
%4(d)

=',[M]+(,*,)[d]_1[M]+0[d]—z[M]+O—z[M] -

9.7 An Example for Applying S-Invariants: The Verification of Facts

riants for provmg Syste p

11 o £~ Cmman
dail >IIOw llllb 101 lllC ldblb DPCL«

opertles which are
P‘
11

Often it is possibl to use inva
£ <
D>

£ a
1ormbu d C

n.
[
Q
(‘)
U:
-
<
a

a 1NN
C lll I 15. IUU lll

134 Relation Nets

the system of the dining philosophers. Figure 102 shows this system for an
arbitrary number, n, of philosophers, represented as a relation net, N. The
capacity Ky is given as Ky (s) =1 for all s € Sy. The matrix and some in-
variants of the system are shown in Fig. 106. In the following, we use the nota-
tion and abbreviations of 9.2 (b).

Proposition. The T-elements t,, ..., ts of the system shown in Fig. 102 are facts.

Proof. The proof is based on seven propositions.

Proposition 1. Let M: Sy —.# (Dy) and let a € Dy such that t, is M-enabled
with a. Then M(d) + M (e) = 2a.

Proof. Using Definition 9.2 (e), we have M (d) = id [a] and M (e) = id [a], and
hence M(d) + M (e) = 2a.

Proposition2. VM e [M y): M(d) + M (e) =

Proof. M(d) + M(e)

UGy, iy 7 V4

= id [M(A
+1d [My (€)] =My (d) + My(e) =P+ 0 =P.

Ta chow t

1V o1L1IVUVvY Lllﬂ

enabled with a, then M(,+M e)
forallMe[MN> M)+ M(e) <a.

"‘
O
*]
D

e~
3

Q

o~

t Q
2a. But, using Pro posmon2 we have
ence M ¢ [My) and 1, is a fact.

EIV

Proposition3. Let M: Sy — .# (Dy) and let a € Dy such that t, is M-enabled
with a. Then M (d) (a) + M (e) (a) < 0.

Proof. Using Definition 9.2 (e¢), we have M(d)<1—a and M(e) <1-—a,
hence M(d)+M(e) <2—2a, and M(d) (a) +M(e) (a) < (2—-2a)(a)=2(a)
—-2a(a=2-2=0.

To show that #, is a fact, notice that according to Proposition 3, if 7, is M-
enabled with a, then M (d) (a) + M (e) (a) < 0. Since ‘s=0, M(s) < My (s)
=P. Since s € 't and (s,) = id, a € P. But using Proposition 2, for all M’ € My:
M’ (d) (a) + M’ (e) (a) = 1. Hence M ¢ [My) and 1, is a fact.

Proposition4. Let M be a marking of N and let a € Dy such that t; is M-enabled
with a. Then ([+ r) [M (d)] - M (9) * G.

Proof. Using Definition 9.2 (e), M(d)<1—a and M(g) = /[a], hence
(+nN[M@@D]<({+r)[l-a] and —M(g) <—[[a]. This yields (/ +r)[M (d)]
~M(g) < I+ [L-a]~I[a]= (I +) [L] - (+ 1) [a] - {[a] = [[+r1[L] - 2/[a]
—rlal=I{1)+r[l]=2I[a] - r[a]=G+G—2l[a] - r[al=2G — 2l[a] — r[a] ¥ C.

Proposition 5. VM e [My): (I +r)[M(d)]-M(g)=G.

9.8 Relation Net Schemes 135
Proof. (I+r)[M(d)]-M(g) = ((+r)[M(d)]—-1d [M(g)] = i, [M] = i, [My] =
({+n[PI-G=2G-G=0G.

To show that 73 1s a fact, notice that according to Proposition 4, if #; is M-
enabled with a, then (/+r)[M (d)]— M (g) + G. But using Proposition 5, for
all M e[Myy: (I+r)[M’'(d)]—M’'(g) =G. Hence M ¢ [My) and 1, is a fact.

For 1, the proof is analogous to that for 5.

ion 6. Ler 15 be M-enabled with a. Then (I +r e)|+ Mg

Proof. Using Definition 9.2, M (e) = a and M (g) = [/ (a), hence (/ + r) [M (e)]
> (I+r)[a] and M(g)=1(a). This yields (/+r)[M(e)]+ M (g) = (I +r) [a]
+[al=1[a]l +rlal +[[a]=2!][a] + r[a] ¥ C.

Proof. (I +1r) [M(e)]+ M (g) = i3[M] = i3[My] = (I +1r) [0] + G = GC.

To show that 75 1s a fact, notice that according to Proposition 6, if t5 is M-
enabled with a, then (/+r)[M(d)]—M(g)=*+ G. Using Proposition7,
M ¢ [My). Hence s is a fact.

For t; the proof'is analogous to that for zs. O

9.8 Relation Net Schemes

In many cases it is possible to derive properties of a relation net without spe-
cifying the underlying algebra. These properties then hold for all algebras with

S3

So
Fig. 107. A net scheme with two facts, ¢, and (5

136 Relation Nets

t] t2 t3 7 MIV
s, -1id id a
85 zd -id f
5, T =Zd zd
Sz i -1d -id

Fig. 108. Matrix, an invariant and the initial case of the net shown in Fig. 107

corresponding operations, or if additional assumptions are made, for special
classes of such algebras. So we now consider relation net schemes which are
labelled by element and function symbols instead of concrete elements and
functions, respectively.

(a) Figure 107 shows such a relation net scheme with two facts. Indeed, 1,
and 15 are facts for each concrete interpretation of fand a. We prove this using
the invariant which is given in Fig. 108.

Proposition. The T-elements 1, and ts of the net N shown in Fig. 107 are facts for
any algebra Dy = (D, { f}), assuming the capacity Ky = 1.

Proof. Let Dy (D;{f}) be an arbitrary algebra for N. The proof is based on
three propositions.

Proposition 1. Ler M : Sy = Dy and let d € Dy such that t4 is M-enabled with d.
Then f[M(s))]+ M(s;) — M (s;3) £ 0.

SIM(s)]+M(s) —M(s3) = fld]+M(s)) —1+f[d] = 2f[d]-1+M(sy) =
2/[d]-1%*0.

Proposition 2. VM € [My): f[M (s1)] + M (s;) — M (s3) = 0.

Proof. Using Definition 9.2 (e), M(s;) >d and M(s;) <1 - f[d], hence

Proof. fIM (s:)] + M (s5) — M (s3) = i [M] = i [My] = 0.

To show that 74 is a fact, using Proposition 1 and Proposition 2, we find that
14 1s not enabled for any marking M € [My) and any d € Dy.

Proposition 3. Ler M: Sy = Dy and let d € Dy such that ts is M-enabled with d.
Then f[M(s))] + M (s;) — M (s3) *+ 0.

Proof. Using Definition 9.2 (e), M (s3) = fa], M(s)) <1—a, M(sy) <1- f]a],
hence f[M(s))] + M (s;) =M (s3) < f[L—a]l + (L - f[a]) — fla]l = f[1] - fla] +
1-fla] - fla] =1+ f[1] = 3 f[a] * 0.

To show that 75 is a fact, using Proposition 2 and Proposition 3, we find
that 75 is not enabled for any marking M € [My) and any d € Dy. O

9.8 Relation Net Schemes 137

$3
3L D)
¢ 1o Y 2 t
\\ h
\\
\\\ ".‘ t
¢ -
b N ty
\
. \k
\g \ g/
\\
\
id 9
S, 1, 2
s O
So

Fig. 109. A net scheme

(b) In the relation net scheme shown in Fig. 109 we assume, for each place
s € Sy, the capacity Ky (s) =1. N contains a T-element ¢, drawn with broken
lines, which is a fact for some but not for all interpretations. For the free al-

gebra, generated by the (unary) operations f, g, & and k, ¢ is certainly a fact: If 1

could be M-enabled with some a then we would have k (a) € M (s,). Since no
arc ending at s, is labelled with k, this is impossible. 7 is also a fact if
f=g=h=k or, as we shall see later, k=g cg '=idorh=g ' °f tis not a
fact if k = g~! and h * f; because 1 would then be enabled with d for the mark-
ing (0,0,9[d],f[d]) (a marking M of N is here represented as (M (sp),...,
M (s3)).

t] t2 tS ; iy g 24 g MN
) —li ’L_d g f d
s, | zd -id g id fog f
s, g -9 id g1 f glof
85| F -f id -1 -g -id

iff iff iff
fof~1 fog gog~I

id gof zd

gog~!
Fig. 110. Matrix, invariants and the initial case of the net shown in Fig. 109

138 Relation Nets

Accordingly, we find for the invariants of N (see Fig. 110) that only i, and
i are invariants under all interpretations. The vectors i3 to is are only in-
variants if the interpretation fulfils the respective conditions.

Again, we can use the knowledge about invariants to verify facts. We show

that 7 is a fact for all interpretations withk =g c g~ '!=idand h=g ' ° f.

Proposition 1. Let M : Sy — Dy and let d € Dy such that t is M-enabled with d.
Then f[M (s))] + h[M (s5;)] — M (s3) * 0.

Proof. Using Definition 9.2 (a), M (s;) 2 id [d] A M (s3) <1 — h[d], i.e. M (5,)
>dA=M(s;) = h[d)— 1. This yields h[M(s)]= h[d] A — M(s3) = h[d] - L.

Hence h[M(s;)]—M(s;) =2h[d]—1 and, since M(s;)) =0, f[M(s)]+

h[M(sy))]—M(s3) = 2h[d]—1. In particular we have (2h[d]—-1) (h[d]) =
2h[d] — h[d] =h|d] and the result follows. O

Proposition 2. VM e [My) : f[M (s))] + h [M (s2)] = M (s3) = 0.

Proof. fIM(s))] + h[M(s)] =M (s3) = fIM(s)] + g~ ° f[M(s2)] — id [M (53)]
= i[M]=i[My] = 0. 0

Using Proposition 1 and 2, it follows immediately that 7 is not enabled for
any marking M € [My) and any d € Dy .

Appendix
Mathematical Notions and Notation

I. Sets

Al. As usual we use, for sets M, the notation x € M and 4 < M to denote that
x is an element of M and A is a subset of M. Z (M) denotes the powerset of M.

A2. Let 4, B, C be sets. As usual, AU B, AnB and A\B = {a € A|~(a € B)}
denote the union of 4 and B, the intersection of 4 and B and the complement
of Bin A.

A3. From set theory, we use the distributive laws An (Bu C)=
AnNnB)u(ANC),AUBNC)=(AUB)n(4uC)and

(1) AN(Bu O) = (4\
(ii) A\(A\B)
(i11) (4 U B)\C
(iv) (A\B)\4 =0

(v) A\(Bu C) = (.
(i) (AAB)NC =
(vii) Ac B = A\B =0.

A4. N denotes the set of natural numbers {0, 1, 2,...} and Z denotes the set of
integers {... —2,—1,0,1,2,...}.

II. Relations

AS. Definition. Let M be a set. For x, y € M, (x, y) is called a pair over M. For
A BcM, let AxB={(x,y)|[xeAANyeB}. pc MxM is called a relation
and we write x o y for (x, y) € o.

A6. Definition. Let M be a set and let 9, 6 € M x M be two relations over M.
We define:

) o' ={(rx)(x,y) €0l

(i)oeo={(x,2z)|IyeM xoy Ayoz} ©

(iii) With ¢°={(x,x)|x e M} and @*'=p'°cp (i=0,1,...), let o*={] ¢
and o* = o* U °. =1

(iv) Fora e M, letg[a]l = {b € M|a o b}.

140 Appendix. Mathematical Notions and Notation

A7. Corollary. If o, 0 < M x M are relations then
() e=¢',

(3N n— 7 — Nk — %
Wjeso= g <a,

(i1) g* U o* < (e U 0)*,
(1v) (0*)* = o*.

AS8. Lemma. Ler g, 0, T, y = M x M be relations. Then
(oS o*ATcy*= (U D*C (6L Y)*
(M pco*= (cuo*co*

Progf ()eutc o*uy*c (cLy)* = (U)*<S (0L Y)*)* = (d U Y)*
(i) o< o* = puU 0* C 0* = (QU o*)* C (0*)* = o* = (pU 0)* < o*. a

HL. Mappings, Functi

A9. Definition. Let 4, B be sets and let M < A.
(1) /- A — B denotes a (total) function (or mapping) from 4 to B.
(i1) Forf: A = B,let f (M) = {f (a)|a € M}.
(iii) The mapping f|M: M — B is defined as /| M (a) = f (a) for all a € M.
(iv) The relation {(a,f(a))|a € A} is called the graph of the function
f:4A— B.

A10. Definition. Let 4 be a set.
(1) 1d: A = A with id (a) = a is called the identity function or identity.
(ii) For n,i € N let pr;: A" — A be defined by pr, (a,...,a,) =a

IV. Partial Orders

A1l. Definition. Let M be a set. A relation ¢ € M x M is called a partial or
iff Va, b € M-
(1) 71(@oa) (eisirreflexive),
(il)apgbAboc= apc (pistransitive).
Note that (i) and (ii) imply the asymmetry of p:a o b = - (b 0 a).
Without regard to the carrier, we write partial orders o € M x M as
Leta<b<a<bVva=b.
Graphically, we present finite partial orders as graphs such that an arc
a—bisdrawniffa <b A Acia<c<b.

(13

<”

V. Graphs

A12. Definition. A tuple G = (H, P) is called an (arc labelled, oriented) graph
over L iff H and L are sets such that P = H x L x H. The elements of H, L and

Dovn ~ollad oo do0 Iabhodo oA ragimant

[arc cauca rnouc), arc iaopeis ana ulb.), lCD}JC\,llVCly

The graphical representation of graphs is obvious.

VI. Suprema of Sets of Natural Numbers and Calculations with w 141

A13. Definition. Let G = (H, P) be a graph over L. For i=1,2,... Let p,=
(hi, l,,h)EeP. w=pp,...1is called a path in G iff, for i=1,2,...,h=h, 4.
Then we also write w=h, [, hy I, w is finite iff for some n € N, p,,, is not
constructed. In this case, n is the length of w. The empty path ¢ is of length 0. w
is a circle iff, for some n € N, wis of length n and A, = h,.

A14. Definition. Let G, = (H,, P;) be graphs over L; (i=1,2). G, is called a—
p-isomorphic (isomorphic, for short) to G, iff «: H, - H, and f: L, = L, are
bijective mappings such that (4, /, /') € P, < (o (h), B (I), x (h’)) € P,.
A1l5. Definition. Let G = (H P) O¢€ a gi ap 1.
(1) G 1s acyclic iff G contains no circles
(ii) & € H is an initial node iff {(h,, I, hz) ePlhy=h}=0.
(ii1) G is finitely based iff G has only finitely many initial nodes.
(iv) G is finitely branched iff for each node h e H, {(h;,l, h;) € Plhy=h} is

finite.

We state now the well known Lemma of Konig in a form which is appro-

A16. Theorem. Ler G = (H, P) be an acyclic, finitely based and finitely branched
graph. If every path of G is finite then G itself is finite.

Proof. For h € H, let suc (/) be the set of nodes 4’ € H such that there exists a
path from A to /".

Assume G is infinite. We construct an infinite path 4, /; h, [, ... as follows:
As G is finitely based there exists at least one initial node 4 such that suc (k) is
infinite. Let 4, = h. By induction assume A4, being given, and let suc (h;) be
infinite. As 4, is finitely branched, there exists at least one arc (h,, /, h’) such
that suc (4’) is infinite. Then let /,=/and h,,., = h’. (]

VL. Suprema of Sets of Natural Numbers and Calculation with o

A17. Definition. (i) We expand the canonical ordering < and the operations +
and — on N to N U {w} such that Vrne N:n < w and Vm € N U {w}:
m+o=w+m=w,w—m=wo.

(i) ForAc N u {w}, let

a ff aeAAVa eAd:a <a,

up (4) = .

sup (4) w iff VheN3daed:n<a

A1l8. Corollary Let A,Bc= N u{w} with A={a,,a,,...,} and B=1{b,b,,...}.
Iful < U] ANa < U2 A...,ther sup (A) < sup (B)

142 Appendix. Mathematical Notions and Notation

VII. Vectors and Matrices

We shall use arbitrary finite sets to index vectors and matrices (instead of the
more usual sequences of natural numbers). The components will be integers.

9. Definition. Let 4 be a non-empty
a vector or an A-vector. For two vectors
(1) their sum v, + v, as the vector v: 4 — Z with v (a) = v, (a) + v, (@),
(ii) their product v, - v, as the integer Y., v, (a) - v, (@),
acA
(ii1) for z € Z, the scalar product z-v, as the vector v:A4 — Z with v (a) =

Z*0) (a)

b

A20. Definition. Let 4 be a set.
(1) A vector v: A — {0} is called the null vector and is denoted by 0 (its do-
main A is given by the particular context).
(i1) A vector v: A — {0, 1} is called characteristic.
ForA' cAletcy: A— {0,1},
a1 iff aed,
a0 otherwise.
4 1s called the characteristic vector of A'.
(i1i) A vectorv: A — Z is called positive iff Va e A: v (a) = 0.

A21. Definition. Let 4 and B be non-empty, finite sets which are disjoint.
(1) Amapping C: A xB — Z is called a matrix.
(i1) The transposed matrix C’ of a matrix C:AxB — Z is the matrix C’:
BxA — Z with C’' (b, a) = C (a, b).
(i11) The product of a matrix C: 4 x B — Z with a vector v: B — Z yields the
vector C-v: A4 — Z with C-v(a)= Y, C(a, b) v (b).

n
D

m

Graphically, vectors and matrices are represented as tables, following the
scheme shown in Fig.111. With 4= {a,,...,a,} and B={b,,...,b,}, let
v:A—Z be a vector and C:AxB — Z be a matrix. For i=1,...,n and
j=1L....mletv,=v(a)and C,;= C(a,, b))

sees 002 =\ Yy

v c b_7 o bm
a |V a | %37 - Cm
g | Vg 9 | 21 T Com
\]
: |
- - = c
an Yn an cn] nm

Fig. 111. Graphical representation of vectors and matrices

Further Reading

We start with a very brief review on the development of Net Theory. Then we survey other
text books and mention detailed bibliographies on nets.
Separately for each chapter we will mention a selection of papers which
— are sources of the material presented in this book
— have been the very first ones in the field
— might be considered as typical
— have recently been published and might be a formal basis for further studies.

Finally, we mention modifications and generalizations of place/transition-nets, survey
applications and implementations of nets and outline related system models.

1. Some Landmarks in the Development of Net Theory

As already mentioned in the preface, Net Theory started in the early 60ies with the disser-
tation of C. A. Petri, where the need for a theory of asynchronous machine models is stated:

rnl £ A Datete Ersnnsnnsiandtle ntine sl Aiitnianntnie Qalaesfs
ll] o M T CUL. DNUITHITIRILLAULLOTL ITHLEL Auntorniuiere.,

Mathematik, Bonn 1962.
There is also an English Translation by Clifford F. Greene, Jr.:

[2] C. A.Petric Communication with Automata. Final report, Volume l, Supplement |
RADC TR-65-377-vol-1-suppl 1, Applied Data Research, Princeton, NJ, Contract AF
30 (602)-3324 (January 1966).

Further early publications include:

[31 C. A Petri: Fundamentals of a Theory of Asynchronous Information Flow. Information
Processing 1962, Proceedings of the IFIP Congress 62, Munich. North Holland Publish-
ing Company Amsterdam (1962) pp. 386 — 390

and

[4] C. A Petri: Grundsdtzliches zur Beschreibung diskreter Prozesse. Drittes Colloquium
iiber Automatentheorie, Birkhduser Verlag Basel (1967), pp. 121 — 140.

The late sixties saw the Information System Theory Project which dealt with nets of con-
ditions and events:

[5] A. W.Holt, H. Saint, R. Shapiro, S. Warshall: Final Report of the Information Systems
Theory Project. Technical Report RADC-TR-68-305, Rome Air Development Center,
Griffis Air Force Base, New York (Sept. 1968), 352 pages. Distributed by Clearing-
house for Federal Scientific and Technical Information, US Department of Commerce.

In this context, a basic paper is also

[6] S.S. Patil: Coordination of Asynchronous Events. PhD Thesis (May 1970) Cambridge,
Mass.: MIT Project MAC, Technical Report 72 (June 1970).

which was the beginning of MIT’s short involvement in net theory.

144 Further Reading

As classical examples of papers on place/transition-nets we suggest M. Hack’s introduction
of free choice nets:

[71 M. H. T. Hack: Analysis of Production Schemata by Petri Nets. Technical Report 94,
Project MAC (February 1972).

and Commoner’s investigations on liveness for arc weighted free choice nets and simple nets:

[8] Frederic G. Commoner: Deadlocks in Petri Nets. Applied Data Research Inc.,, Wake-
field, Massachusetts 01880. Report Nr. CA-7206-2311 (1972).

The corcepts of processes and of K-density have their origin in

[9] C. A Petri: Non-sequential Processes. Internal Report GMD-ISF-77-5 (1977), Gesell-
schaft fiir Mathematik und Datenverarbeitung, Bonn.

Nets with individual tokens were introduced by H. Genrich and K. Lautenbach in the
following paper:

[10] H. Genrich, K. Lautenbach: System Modelling with High Level Petri Nets. Theoretical
Computer Science 13 (1981), pp. 109—136.

General Net Theory studies (beside others) concepts to systematically relate the various

and 10). C. A. Petri (and others) developed this theory in various papers, e.g.
[11] C. A. Petri: Concepts of Net Theory. Mathematical Foundations of Computer Science,

Annadinge AF Quminmaciiim and Qe Qala~nl Tateag a,‘ML,‘.. 2 Q 10712

PrU\.CUulllsb O1 u_yluyualuul allud JUullltlcl O\vllUUl, lllsll lalad, OCPLCU el 0O—O0, 17/0.

Math. Inst. of the Slovak Acad. of Science (1973), pp. 137—146

[12] C. A. Petri: General Net Theory. Proceedings of the Joint IBM University of Newcastle
upon Tyne Seminar on Computing System Design, Sept. 1976, B. Shaw (ed.) (1977).

A recent contribution to the basic ideas of Net Theory is

[13] C. A. Petri: State-Transition Structures in Physics and in Computation. International
Jorunal of Theoretical Physics, Vol. 21 Nos. 10/11 (1982).

2. Conferences on Petri Nets

The earliest conferences dealing — at least to some extent — with Petri Nets were the MAC
Conference on concurrent systems in 1970, the GMD Conference “Ansdtze zur Organisation
rechnergestiitzter Informationssysteme” in 1974, the MIT Conference on Petri Nets and Re-
lated Methods, 1975 (unpublished) and the Journées d’¢étude AFCET Réseaux de Petri, 1977,

[14] J. Dennis (Editor): Record of the Project MAC Conference on Concurrent Systems and
Parallel Computation, New York: AMC (June 1970)

[15] C. A.Petri (Editor): Ansdtze zur Organisationstheorie rechnergestiitzter Informations-
systeme. R. Oldenbourg Verlag Miinchen, Wien. Berichte der Gesellschaft fiir Mathe-
matik und Datenverarbeitung Nr. 111 (1979)

.S
o~
[es]
2
-
Q
2
-
S~
[

seaux de Petri, Parls (1977)

An important event was the Advanced Course on General Net Theory of Processes and
Systems in Hamburg, Oct., 8—19, 1979. The course material was published in

[!6] Institute de Prnornmmannn Universite Paris \

[17] W. Brauer (ed.): Net Theory and Applications. Springer Lecture Notes in Computer Sci-
ence, 84 (1980).

This represents the state-of-the-art until about 1979. More recent material is collected in
the proceedings of the European Workshops on Application and Theory of Petri Nets:

4. Bibliographies 145

[18] C. Girault, W. Reisig (eds.): Application and Theory of Petri Nets. Informatik Fach-
bericht 52, Springer Publishing Company (1982)

{19] A. Pagnoni, G. Rozenberg (eds.): Application and Theory of Peiri Nets. In

berichte 66, Springer Publishing Company (1983).

3. Text Books

Until recently, there did not exist any text books on Petri Nets. As a substitute, the proceed
mma (171 lhnen cnevs ads sas a An Q an sembendab Tan smmsdso sl a n,\..on Py

1uga L1 /] have sometime been used as an introauctory text. in par ticular, this volume contains
a proposal for a standard terminology which we observed in this book:

[20] H.J. Genrich, E. Stankiewicz-Wiechno: 4 Dictionary of Some Basic Notions of Net
Theory, in [17].

In the following we refer to books which are distributed by professional publishers. The

many introductory texts in journals or internal reports are not mentioned here.

in English:
1 T T Da sans e Lo AT 12en s o f Cosdnann o 3 211 T
| J. L © CLClbUll l Clll IV et l HCU’_}/ unu l’lC ivi ue ’lg U Dy, ricutlce-riatll, 1

wood Cliffs, N.J. 07632 ISMN 0-13-661983-5
in French:

[22] G. W. Brams (nom collective): Réseaux de Petri, Théorie et Pratique. Masson, Editeur,
120 boulevard Saint-Germain 75280 Paris Cedex 06 ISMN 2-903-60712-5 (1982). Two
volumes

in German:

[23] P. H. Starke: Petri-Netze. VeB Deutscher Verlag der Wissenschaften, Berlin (DDR)
(1981)

[24] U. Winand, B. Rosenstengel: Petri-Netze. Eine anwendungsorientierte Einfiihrung. Vie-
weg-Verlag Braunschweig, ISBN 3-528-03582-X (1981).

The original german version of the present book is published by Springer Verlag. An
Italian translation is published by Arnoldo Mondadori Editore, Milano (Italy).
All four books [21] to [24] concentrate on nets consisting of places and transitions.

i S b (=2l o

4. Bibliographies

Many papers are referenced in the various contributions of [17]. A detailed and annotated
bibliography, covering papers until 1979, is contained in the book of Peterson [21]. The bi-
bliography

[25] E. Pless, H. Pliinnecke: A Bibliography of Net Theory. Second Edition ISF-Report 80.05.
Gesellschaft fir Mathematik und Datenverarbeitung Bonn, Germany (1980)

reports about 500 papers which were published up to 1980. More recent references are con-
tinuously published in the newsletter of the GI-Special Interest Group on Petri Nets and
Related System Models:

[26] Newsletter of the Special Interest Group “‘Petri Nets and Related System Models”. Ge-
sellschaft fiir Informatik (Computer Science Society in Germany), Bonn, Germany.
ISSN 0173-7473.

146 Further Reading

5. References to Chapter 2

Conditions and events have been fundamental notions of Net Theory from the very begin-
ning. The first extensive studies were published in [5], and can also be found in

[27] A. Holt: Introduction to Occurrence Systems. Associative Information Techniques, New
York: American Elsevier (1971), pp. 175—203.

For a further early study see also [6].
The notation we use is based on the following two papers:

[28] C. A. Petri: Interpretations of Net Theory. Internal Report 75-07, second edition, 20. 12.
1976. Gesellschaft fiir Mathematik und Datenverarbeitung, Institut fiir Informations-
systemforschung, Bonn (1976)

[29] H. J. Genrich, K. Lautenbach, P. S. Thiagarajan: Elements of General Net Theory, in
[17].

6. References to Chapter 3

The idea of unfolding a condition/event-system to partially ordered event occurrences was
introduced in [5].

The notion of a process, as defined in 3.3 (a), was first discussed by C. A. Petri in [9].

Petri introduces a lot of properties which a “reasonable” notion of process should meet.
In [28] a collection of five such properties is chosen to define this notion. The theorems which
we prove in Chapt. 3.3 to 3.5 are not given in the literature.

An early paper on K-density is

[30] E. Best: A Theorem on the characteristics of non-sequential processes. Fundamenta Infor-
maticae II1.1 (1980), pp. 77—94.

More recently, occurrence nets have been studied independently of any correspondence to
condition/event systems. As examples see

[31] E. Best, A. Merceron: Discreteness, K-density and D-continuity of Occurrence Nets. 6th
GI Conference on Theoretical Computer Science. Lecture Notes in Computer Science
145, Springer- Verlag (1983)

[32] C. Fernandez, P. S. Thiagarajan: D-Continuous Causal Nets: A Model of Non-Sequential
Processes. Theoretical Computer Science 28 (1984), pp. 171—196.

In the context of schemes for nonsequential systems, the following papers describe pro-
cesses with the use of partial orders:
33

o 107 ~ + D e Caly A
Mazurkiewicz: Concurrent Program Schemes and

A

Aarhus, DAIMI PB-78 (1978)

[34] J
(

121
(B |

Winkowski: Behaviours of Concurrent Systems. Theoretical Computer Science 12

980), pp. 39— 60

1
VAR ¥ altd

[35] W. Reisig: Schemes for Nonsequential Processing Systems. 9th Symposium on Mathe-
matical Foundations of Computer Science, Lecture Notes in Computer Science 88,

Springer-Verlag (1980)

[36] M. Nielsen, G. Plotkin, G. Winskel: Petri Nets, Event Structures and Domains, Part 1.
Theoretical Computer Science 13 (1981), pp. 85—108

[37] J. Winkowski: An Algebraic Description of System Behaviours. Theoretical Computer
Science 21 (1982), pp. 315—340

[38] G. Winskel: Events in Computation. Ph. D. thesis, University of Edinburgh (1980).

8. References to Chapter 5 147

7. References to Chapter 4

Synchronic distance was first mentioned in

[39] C. A. Petri: Concepts of Net Theory. Mathematical Foundations of Computer Science,

s [}

137— 146,

There have been some formal deﬁnmons e.g. in [28], but there are some problems n the
case of l“lOi‘l-Cyul\, systems. In [29] a a definition for Syi‘lCurOi‘liC distance is given which is

equivalent to ours. More on synchronic distances can be found in

[40] C. André, P. Armand, F. Boeri: Synchronic Relations and Applications in Parallel Com-
putation. Digital Processes 5 (1979), pp. 339—354

[41] U. Goltz, W. Reisig, P. S. Thiagarajan: Two Alternative Definitions of Synchronic Dis-
tance, in [18].

The extension to weighted synchronic distances is discussed in [29] and in
[42] U. Goltz, W. Reisig: Weighted Synchronic Distances, in [18].
A typical application of synchronic distances is
[43] A. C. Pagnoni: A Fair Competition Between Two or More Partners, in [18].
‘ The idea of facts was first mentioned in [28]. Further investigations on facts can be found
in
[44] H. J. Genrich, G. Thieler-Mevissen: The Calculus of Facts. Mathematical Foundations of

Computer Science 1976, Lecture Notes in Computer Science 45. Springer-Verlag (1976),
pp. 588—595

Qi iix

[45] G. Thieler-Mevissen: The Petri Net Calculus of Predicate Logic. Internal Report ISF-
76-09 (1976), Gesellschaft fiir Mathematik und Datenverarbeitung, Bonn.

8. References to Chapter 5

To a large extent, papers on Petri Nets deal with place/transition-nets. Indeed, often both
notions are synonymously used.

In order to give a representative survey over the area, we subdivide this section into
several sub-sections.

(a) Coverability Graphs

The first idea resembling the coverability graphs was the introduction of a “reachability tree”
by Karp and Miller:

[46] R. M. Karp, R. E. Miller: Parallel Program Schemata. Journal of Computer and System
Sciences 3 1I0LQ\ e~ 147 _1QK
(1707), PP. 14/ —170.
A construction method for coverability graphs which differs slightly from ours is pre-
sented in

[47] M. Jantzen, R. Valk: Formal Properties of Place/ Transition Nets, in [17].

(b) Liveness

The notion of liveness has often been considered as a mayor problem for analysis. There exist
different reasonable notions of liveness, cf.

148 Further Reading

[48] K. Lautenbach: Liveness in Petri Nets. Internal Report GMD-ISF 72-02.1 (1972).
Papers on liveness include

[49] M. Hack: The Recursive Equivalence of the Reachability Problem and the Liveness Prob-
lem for Petri Nets and Vector Addition Systems. Proceedings of the 15th Annual Sym-
posium on Switching and Automata Theory, New York IEEE (1974)

[50] K. Gostelow: Computation Modules and Petri Nets. Third IEEE-ACM Milwaukee Sym-
posium on Automatic Computation and Control, New York (1975)

[51] H. Schmid, E. Best: Towards a Constructive Solution of the Liveness Problem in Petri

many (1976)

[52] Y. Lien: Termination Properties of Generalized Petri Nets. SIAM Journal of Computing
5, Nr. 2 (1976), pp. 251 —265.

Liveness is also discussed in [8] and [5].

(c) Further Properties

Further properties of place/transition nets which have not been discussed in this book in-
clude persistence, the existence of homestates and equivalence. Homestates are considered
e.g. in the first volume of [22]. Persistency is discussed in the following papers:

[53] L. Landweber, E. Robertson: Properties of Conflict-Free and Persistent Petri Nets.
Journal of the ACM, Vol. 25, Nr. 3 (1978), pp. 352—364

[54] J. H. Miiller: Decidability of Reachability in Persistent Vector Replacement Systems.
9th Symposium on Mathematical Foundations of Computer Science, Lecture Notes in
Computer Science Vol. 88, Springer-Verlag (1980), pp. 426 —438

[55] E Mayr: Persistence of Vector Replacement Systems is Decidable. Acta Informatica 15
(1981), pp- 309—318

[56] H. Yomoasaki: On Weak Persistency of Petri Nets. Information Processing Letters 13,
3 (1981), pp. 94—-97.

The concept of equivalence is discussed in

[57]1 J. R. Jump, P. S. Thiagarajan: On the Equivalence of Asynchronous Control Structures.
13th Annual Switching and Automata Theory Symposium (Oct. 1972), 212—223. Also:
SIAM Journal of Computing, Vol. 2, No. 2 (June 1973), pp. 67— 87

[58] C. André: Use of Behaviour Equivalence in Place/ Transition Net Analysis, in [18].
[59] C. André: Structural Transformations giving B-equivalent PT-Nets, in [19]

[60] F. De Cindio, G. De Michelis, L. Pomello, C. Simone: Equivalence Notions for Con-
current Systems, in [19]

[61] M. Yoeli, T. Etzion: Behavioural Equivalence of Concurrent Systems, in [19].

(d) Analysis Methods

An analysis method for place/transition-nets which we did not mention in this book, is the
reduction of nets. In the first volume of [22], this method is discussed in detail. It is also
presented in

[62] G. Berthelot, G. Roucairol, R. Valk: Reduction of Nets and Parallel Programs, in [17].

Similar methods are presented in the following papers:

Q

[63] J. R. Valette: Analysis of Petri Nets by Stepwise Refinements. Journa
System Sciences 18, No. 1 (1979), pp. 35—46

8. References to Chapter 5 149

[64] M. Toulotte, J. P. Parsy: 4 Method for Decomposing Interpreted Petri Nets and its
Utilization. Digital Processes 5 (1979), pp. 223—234

[65] I Suzuki, T. Murata: A Method for Hierarchically Representing Large Scale Petri Nets.
Proceedings of the 1980 International Conference on Circuits and Computer, October
1980

[66] M. Silva: Simplification des Réseaux de Petri par elimination des places implicites. Digi-
tal Processes 6 (1980), pp. 245—256.

(e) The Reachability Problem

The reachability problem has been open since the introduction of vector addition systems [46]
and was solved recently by Kosaraju:

[67] S. R. Kosaraju: Decidability of Reachability in Vector Addition Systems. Proceedings of
the Fourteenth Annual ACM Symposium on Theory of Computing, San Francisco, Cali-
fornia, May 5—7, 1982, pp. 267 —281.

Some corrections of this proof are given in

[68] H.J. Miller: Filling a Gap in Kosaraju’s Proof for the Decidability of the Reachability
Problem in VAS. Newsletter of the Special Interest Group “Petri Nets and Related Sys-
tem Models”, No. 12, October 1982 (cf. [26]).

Milestones on the way to this solution are [54] and

[69] J. van Leeuwen: A Partial Solution 1o the Reachability Problem for Vector-Addition Sys-
tems. Proc. of the sixth Annual ACM Symposium on Theory of Computing (1974), pp.
303—-307.

[70] G. S. Sacerdote, R. L. Tenney: The Decidability of the Reachability Problem for Vector
Addition Systems. Proc. of the ninth Annual ACM Symposium on Theory of Computing
(1977), pp. 61—-76.

[71] J. Hopcroft, J. J. Pansiot: On the Reachability Problem of five dimensional Vector Addi-
tion Systems. Theoretical Computer Science 8 (1979), pp. 135—159.

[72] E. W. Mayr: An Algorithm for the General Petri Net Reachability Problem. Proc. of the
13th Annual ACM Symposium on Theory of Computing (1981), pp. 238 —246.

(f) Decidability and Complexity
Assurvey on decidability and complexity problems is contained in

[73] M. Jantzen: Komplexitit von Petrinetz-Algorithmen. Unpublished course material, Uni-
versity of Hamburg (1984).

The decidability and the complexity of net properties are treated in [21,47] and in the
following papers:

[74] H. Baker: Rabin’s Proof of the Undecidability of the Reachability Set Inclusion Problem
Jor Vector Addition Systems. Computation Structures Group Memo 79, Project MAC, MIT
Cambridge, Massachusetts (July 1973)

[75] M. Hack: Decidability Question for Petri Nets. Ph. D. thesis, Department of Electrical
Engineering, MIT (December 1974). Also: Technical Report 161, Laboratory for Com-
puter Science, MIT, Cambridge, Massachusetts (June 1976)

[76] M. Hack: The Equality Problem for Vector Addition Systems is Undecidable. Theoretical
Computer Science 2 (1976), pp. 77—95

[77]1 T. Araki, T. Kasami: Some Decision Problems Related to the Reachability Problem for

Petri Nets. Theoretical Computer Science 3 (1977), pp. 85— 104

150 Further Reading

[78] T. Araki, T.Kasami: Decidable Problems on the Strong Connectivity of Petri Net
[79]1 N. Jones, L. Landweber, Y. E. Lien: Complexity of Some Problems in Petri Nets.
Theoretical Computer Science 4 (1977), pp. 277—299

[80] C. Rackoff: The Covering and Boundedness Problem for Vector Addition Systems.
Theoretical Computer Science 6 (1978), pp. 223 — 231

[81] E. W.Mayr: The Complexity of the Finite Containment Problem for Petri Nets. Cam-
bridge, Mass., MIT Lab. for Computer Science, Technical Report 181 (1977)

[82] E. W.Mayr, A. R. Meyer: The Complexity of the Finite Containment Problem for Petri
Nets. Journal of the ACM 28, 3 (1981), pp. 561 — 576

[83] M. Jantzen, H. Bramhoff: Notions of Computability by Petri Nets, in [19].

(g) Petri Net Languages

Much effort was spent in the 70ies on the investigation of Net Languages (assign to each
transition a character or the empty word and consider sequences of transition firings). Typical
papers are e.g. [75], and

[84] M. Hack: Petri Net Languages. Computation Structures Group Memo 124, Project
MAC, MIT (1975). Also: Technical Report 159, Laboratory for Computer Science MIT
Cambridge, Massachusetts (1976)

[85] J. L. Peterson: Computation Sequence Sets. Journal of Computer and System Sciences
13,1 (1976), pp. 1 —24

[86] R. Valk, G. Vidal-Naquet: Petri Nets and Regular Languages. Journal of Computer and
System Sciences 23 (1981), pp. 229—325

[87] S. Crespi-Reghizzi, D. Mandrioli: Petri Nets and Szilard Languages. Information and
Control 33, No. 2 (1977), pp. 177—192

(88] J. Grabowski: The Unsolvability of Some Petri Net Language Problems. Information
Processing Letters 9, No. 2 (1979), pp. 60—63

[89] D. Mandrioli: 4 Note on Petri Net Languages. Information and Control 34, No. 2 (1977),
pp. 169—171

[90] P. Starke: Free Petri Net Languages. Seventh Symposium on Mathematical Foundations
of Computer Science 1978, Lecture Notes in Computer Science 64, Springer-Verlag
(1978), pp. 506—515

[91] Matthias Jantzen: On the Hierarchy of Petri Net Languages. R.A.LR.O. Informatique

[92] T. Araki, T. Kagimasa, N. Tokura: R
15 (19

Theoretical Compuier Science), pp. 51 -75.

(h) Behaviour Representation

As causal dependency and concurrency of transition firings are not represented in firing
sequences, several other methods have been suggested to represent the behaviour of place/
transition nets:

[93] P. Starke: Processes in Petri Nets. Elektronische Informationsverarbeitung und Kyber-
netik, EIK 17 8/9 (1981), pp. 389—-416

[94] G. Rozenberg, R. Verraedt: Subset Languages for Petri Nets. Part1: The Relationship
to String Languages and Normal Forms. Part II: Closure Properties. Theoretical Computer
Science (1983), Vol. 26, pp. 301 —326 and Vol. 27, pp. 85—108

10. References to Chapter 7 151

[95] H. D. Burkhard: Ordered Firing in Petri Nets. Elektronische Informationsverarbeitung
und Kybernetik (EIK) 2/3 (1983), pp. 71— 86.

[96] U. Goltz, W. Reisig: The Non-sequential Behaviour of Petri Nets. Information & Con-
trol, Vol. 57, Nos. 2—3 (1983), pp. 125—147.

The infinite behaviour of place/transition-nets is studied in the paper

[97]1 R. Valk: Infinite Behaviour of Petri Nets. Theoretical Computer Science 25, (3) (1983),
pp. 342—373.

9. References to Chapter 6

S-Invariants and 7-Invariants were introduced by K. Lautenbach in [48]. An overview of
more net properties which can be derived by linear algebraic techniques is given in

[98] J. Sifakis: Structural Properties of Petri Nets. Mathematical Foundations of Computer
Science, Lecture Notes in Computer Science 64, Springer-Verlag (1978), pp. 474 —483

and in
[99] G. Memmi, G. Roucairol: Linear Algebra in Net Theory, in [17].
Detailed considerations are also contained in the first volume of [22] and in

[100] J. Martinez, M. Silva: 4 Simple and Fast Algorithm to obtain all Invariants of a Gen-
eralized Petri Net, in [18].

The seat reservation system of Chap. 6.5 was constructed by Kurt Lautenbach (private
communication) and is based on an example by E. Ashcroft.

As already mentioned above, M. Hack introduced free choice nets in [7]. Errata to this are
collected in

[101] M. Hack: Corrections to “‘Analysis of Production Schemata by Petri Nets”. Computation
Structures Group Note 17, Project MAC (June 1974).

In [7], Hack proves the deadlock/trap criterion for the liveness of free choice nets. Our
proof is a slight modification of his. Further studies on free choice nets include:

[102] E. Best, M. W. Shields: Some Equivalence Results for Free Choice Nets and Simple Nets
and on the Periodicity of Live Free Choice Nets. Preprint of CAAP 83, 8th Colloquium on
Trees in Algebra and Programming, L’Aquila. Lecture Notes in Computer Science 159,
Springer-Verlag (1983), pp. 141—154

[103] K. Dopp: Zum Hackschen Wohlformungssatz fiir Free-Choice-Petrinetze. EIK 19,
172 (1983), pp. 3—15

Generalizations of the liveness criterion for free choice nets are found in the following
two papers:

[104] M. Hack: Extended State Machine Allocatable Nets (ESMA), an Extension of Free
Choice Petri Nets Results, Computation Structures Group Memo 78, Project MAC, MIT
Cambridge, Massachusetts (1973), revised as Memo 78-1 (1974)

[105] W. Griese: Liveness in NSC-Petri Nets, in: Discrete Structures and Algorithms, U. Pape
(ed.), Carl Hanser Verlag, Miinchen (1980)

[106] P. S. Thiagarajan, K. Voss: A Fresh Look at Free Choice Nets. Arbeitspapiere der
GMD, Nr. 58, October 1983

152 Further Reading

[107] E. Best, K. Voss: Free Choice Systems have Home States. Acta Informatica 21 (1984),
pp- 89—100

Similar results on further net classes are discussed in [47]. “Bipolar Schemata” may be
considered as a special class of free choice nets:

[108] H. J. Genrich, P. S. Thiagarajan: 4 Theory for Bipolar Synchronization Schemes. Theo-
retical Computer Science 30 (1984), pp. 241318

They are also mentioned in [29].

(b) Marked Graphs
The first study on marked graphs was undertaken by H. Genrich in
[(109] H. Genrich: Das Zolistationenproblem. Internal Reports GMD-15/69-01-15 and /71-10-
13, Gesellschaft fiir Mathematik und Datenverarbeitung, Bonn (1969 and 1971), .,
immediately followed by
[110] A. W. Holt, F. Commoner: Events & Conditions. Applied Data Research, New York

(1970)
Our proofs in Chap. 7.3 are taken from Genrich’s paper [109]. More detailed investiga-
tions are given in [57] and in the following papers:
[111] F. Commoner, A. W. Holt, S. Even, A. Pnueli: Marked Directed Graphs. Journal of
Computer and System Sciences 5 (1971), pp. 511—523

[112] H. J. Genrich, K. Lautenbach: Synchronisationsgraphen. Acta Informatica 2 (1973), pp.
143—-161.

(c) Further Net Classes
Co-ordination of sequential processes is modelled by the following classes of nets:

[113] O. Herzog: Static Analysis of Concurrent Processes for Dynamic Properties Using Petri
Nets. Lecture Notes in Computer Science 70, Springer-Verlag (1980)

[114]) W. Reisig: Deterministic Buffer Synchronization of Sequential Processes. Acta Infor-
matica 18 (1982), pp. 117—134

[115] K. Lautenbach, P. S. Thiagarajan: Analysis of a Resource Allocation Problem Using
Petri Nets. First European Conference on Distributed Processing, Toulouse, J. Syre (ed.),
1979, pp. 260— 266

[116] F. De Cindio, G. de Michelis, L. Pomello, C. Simone: Superposed Automata Nets, in
[18].

There have been investigations trying to find net classes with more or less simple decision
procedures for liveness. [8] introduced a class called “simple”. They are also studied in [104].
Landweber and Robertson [53] consider “conflict free” nets.

11. References to Chapter 8

An early paper on nets with individual tokens is

[117] M. Schiffers, H. Wedde: Analyzing Program Solutions of Coordinated Problems by CP-
Ners. Mathematical Foundations of Computer Science 1978, Lecture Notes in Computer
Science 64 (1978), pp. 462—473

13. Modifications and Generalizations of Place/Transition-Nets 153

dicate/transition-nets which was introduced in [10]. As a special case of this model one may
consider the predicate/event-nets which we introduced in Chap. 8.
A further study of this model is

[118] H. Genrich, K. Lautenbach: S-Invariance in Predicate/ Transition Nets, in [19].

The distributed database example of Chap. 8.3 is taken from [29].

12. References to Chapter 9

Because the variables in predicate/transition-nets yield difficulties when constructing a cal-
culus of invariants, K. Jensen defined a variable free calculus of nets with individual tokens in

[119] K. Jensen: Coloured Petri Nets and the Invariant Method. Theoretical Computer Sci-
ence 14 (1981), pp. 317—336.

More on this model can be found in

[120] K. Jensen: How to Find Invariants for Coloured Petri Nets. Mathematical Foundations
of Computer Science 1981, Lecture Notes in Computer Science 118 (1981), pp. 327—338

and in
[121] K. Jensen: High Level Petri Nets, in [19].
Relation nets are related to other net models in
[122] W. Reisig: Petri Nets with Individual Tokens, in [19].

In FIFO-nets tokens are assumed to be characters, and S-elements behave according to
the first-in-first-out-principle (hence markings can be considered as character strings):

[123] R. Martin, G. Memmi: Specification and validation of Sequential Processes Communi-
cating by FIFO Channels. 4th International Conference of Software Engineering for
Telecommunication Switching Systems. (IEEE) Worwick 1981

11241 A, Finkel: Rlocage et vivacité dans les réseaux a
1124) AL rnkell blocage resequx a

in Computer Science 166 (1984), pp. 151—162.

13. Modifications and Generalizations of Place/Transition-Nets

1t is often proposed to modify or to generalize the standard firing rule of place/transmon nets

or to cunnly nate with additianal camnanents and dictinonichad intarnre tations. Most of thaca
O 10 Suppiy ncis wiiii aqditiona: wulyuu\,ulc and unauusulou\,u interpretations. viost o1 tnese

generalizations refer to the fact that in place/transition nets it is not possible to test the
emptyeness of a place with infinite capacity.

Typical such modifications, as inhibitor arcs and priority rules, are extensively discussed
in the books [21, 22, 23].

Evaluation Nets and Macro- E-Nets introduce additional types of places:

[125] J. D. Noe, G. J. Nut: Macro-E-nets for Representations of Parallel Systems. IEEE Trans-
actions on Computers, Vol. C-22, No. 8 (1973)

[126] J. D. Noe: Nets in Modelling and Simulation, in [17].
The concept of dynamic change of arc weights (self modifying nets) is found in

[127] R. Valk: Generalizations of Petri Nets. Mathematical Foundations of Computer Science
1981, Lecture Notes in Computer Science 118 (1981), pp. 140—155.

154 Further Reading

This paper gives also an overview of several net models, their modifications and their
properties.
Different types of nets are also compared in

[128] K. Jensen: A Method to Compare the Descriptive Power of Different Types of Petri Nets.

ence 88, Springer-Verlag (1980), pp. 348—361

[129] S. Porat, M. Yoeli: Towards a Hierarchy of Nets. Technion-Israel Institute of Technol-
ogy, Dept of Computer Science Technical Report No. 224 (1981).

Notions of time are introduced in the following papers:

[130] C. Ramchandani: Analysis of Asynchronous Concurrent Systems by Petri Nets. Techni-
cal Report 120, Project MAC, MIT Cambridge, Massachusetts (1974)

{133] J. Skifakis: Performance Evaiuation of Systems Using Nets in [17]
Dept. of Information and Computer Science, University of California, Irvine, California
(1974)

[132] S. Ghosh: Some Comments on Time in Petri Nets in [16]

1. Skifakis: Perf ation of S Using Nets in [17]

[134] W. M. Zuberek: Timed Petri Nets and Preliminary Performance Evaluation. Proceed-
ings of the 7th Annual Symposium on Computer Architecture, May 6—8, 1980, La
Baule, France (1980), pp. 88 —96.

Y75 1

Further modifications are given in

[135] M. Moalo, J. Poulou, J. Skifakis: Synchronized Petri Nets: A Model for the Description
of Non-Autonomous Systems. Mathematical Foundations of Computer Science 1978,
Lecture Notes in Computer Science 64, Springer-Verlag (1978), pp. 374 —384

[136] M. Yoeli, Z. Barzilai: Behavioural Descriptions of Communication Switching Systems

21oimms Dvenmdad Daose: NMaose Migital Deanaccac 2 71077\ cmee 2NT __ 29N
UL L ALCTIUCU 1 LTl INCLS. L1gllal T'I1VLODCS o (LT 7 17), PpP. QU7 LV

[137] H. D. Burkhard: On Priorities of Parallelism: Petri Nets under the Maximum Firing

Strategy. Logics of Programs and their Applications, Lecture Notes in Computer Science
148 (1982)

[138] A. Pistorello, C. Romoli, S. Crespi-Reghizzi: Threshold Nets and Cell-Assemblies. Infor-
mation and Control 49 (1982), pp. 239—264

[139] H. D. Burkhard: Control of Petri Nets by Finite Automata. Fundamenta Informaticae
Series 1V, No. 2, Warszawa (1973)

[140] T. Etzion and M. Yoeli: Super Nets and Their Hierarchy. Theoretical Computer Science
25, (2) (1983).

As more general and abstract models one might consider transition systems and subsitu-
tion systems:

[141] R. M. Keller: Vector Replacement Systems: A Formalism for Modelling Asynchronous
Systems. Technical Report 117 Computer Science Laboratory, Princeton University,
Princeton, New Jersey (December 1972), revised January 1974

[142] H. J. Genrich, K. Lautenbach, P. S. Thiagarajan: Substitution Systems — A Family of
System Models based on Concurrency. Mathematical Foundations of Computer Science
1980, Lecture Notes in Computer Science 88, Springer-Verlag (1980), pp. 698 — 723

[143] J. Sifakis: A Unified Approach for Studying the Properties of Transition Systems. Theo-
retical Computer Science 18 (1982), pp. 227—258.

14. Applications 155
14. Applications

In this book we presented a few examples of applying nets in system modelling and analysis.
Hints on applications in system modelling are also found in the books [20, 22, 23]. A broader
spectrum of applications and implementations is contained in the second volume of [22]. Ap-
plications are also found in the volumes [17, 18, 19].

Early applications include R. Shapiro’s and H. Saint’s translation of Fortran programs
into nets, showing precedence constraints between operations, and J. Noe’s net model of the
SCOPE 3.2 operating system:

[144] R. Shapiro, H. Saint: 4 New Approach to Optimization of Sequential Decisions. An-
nual Review in Automatic Programming. Volume 6, Part 5 (1970), pp. 257— 288.

[145] J. Noe: A Petri Net Model for the CDC 6400. Proceedings ACM SIGOPS Workshop on
System Performance Evaluation, New York, ACM (1971), pp. 362—378.

General remarks on the adequate style of net interpretations are made in

[146] C. A. Petri: Interpretations of Net Theory. Gesellschaft fiir Mathematik und Datenver-
arbeitung, Bonn Internal report ISF-75-07 (1975)

A=

(147} C. A Petri: Modeiiing as a Communication Discipiine, in: H. Beiiner, E. Gelembe (eds.):
Measuring, Modelling and Evaluation Computer Systems North Holland Publ. Comp.
(1977), pp. 435—449

b 22 PP PO N -) acallonle A0 £33 L oasantil.
{148] . A PCtll \,uncurrem_y as a DU.)!.) Uj oyuem llll’ll(,lllg {Ueseuscnait 1ur IVIdtllCllla (99,9

a
und Datenverarbeitung, Bonn Internal report ISF-78-06 (178) alsoin Pro eedmgs from Sth
Scandinavian Logic Symposium, 1979, Aaiborg. F. Jensen, B. Mayoh, K. Molier (eds.),
Universitetsforlag Aalborg (1979), pp. 143—162

[149] A. W. Holt: Net Models of Organizational Systems in Theory and Practice, in [15].
[150] R. M. Shapiro: Towards a Design Methodology for Information Systems, in [15]

{151] C. A. Petri: Some Personai Views in Net Theory, in [19].
n the fo

o
s
=]

llowing we survey some of th

(a) Hardware

Hardware components are modelled in [125, 136] and in the following papers:

[152] S. Wendt: Petri-Netze und asynchrone Schaltwerke. Elektronische Rechenanlagen 16
(1974), pp. 208—216

[153] W. Huen, D. Siewiorek: Intermodule Protocol for Register Transfer Level Modules:
Representation and Analytic Tools. Proceedings of the Second Annual Symposium on Com-
puter Architecture, New York (1975), pp. 56 — 62

[154] Kwan Chi Leung, C. Michel, P. Le Beux: Logical Systems Design Using PLAs and Petri
Nets — Programmable Hardwired Systems. Information Processing 77, B. Gilchrist (ed.),
IFIP, North-Holland Publ. Comp. (1977)

[155] J. Grabowski: On the Analysis of Switching Circuits by Means of Petri Nets. Elektro-
nische Informationsverarbeitung und Kybernetik (EIK) 14, No. 12 (1978), pp. 611—617

[156] K. Zuse: Petri Nets from the Engineer’s Viewpoint, in [17]

[157] C. Chaudouard, J. P. Elloy: A4 Real Time Monitor and its Representation by Petri Nets.
Micro-processing and Microprogramming 7, North-Holland Publ. Comp. (1981), pp.
241-248

[158] M. Morganti: Petri-Net Implementation of Recovery Strategies in a large ESS,
in [18]

156 Further Reading

[159] W. M. Zuberek: Application of Timed Nets to Analysis of Multiprocessor Realizations of
Digital Filters. Proc. 25th Symposium on Circuits and Systems, Houghton, Michigan,
August 1982

[160] W. Kluge, K. Lautenbach: The Orderly Resolution of Memory Access Conflicts among
Competing Channel Processes. IEEE-Transactions on Computers, vol. 31 (1982), pp.
194-207

(b) Performance Evaluation
Performance evaluation is considered in [125, 133, 134] and in the following papers:

[161] J. Sifakis: Use of Petri Nets for Performance Evaluation, in Measuring, Modelling and
Evaluating Computer Systems, H. Beilner and E. Gelenbe (eds.), North Holland (1977)
pp. 75—93

[162] M. Silva: Evaluation des Performances des Applications Temps Reel de Type Logique,
in Eighth International Society for Mini- and Micro-Computers, M. H. Hamza (ed.), Acta
Press, Anaheim, Calgary, Zurich (1979), pp. 152—157

V. ;G SHo us curren
Systems Using Petri Nets. IEEE Transactions on Software Engineering Vol. SE-6, No. 5
(1980), pp. 440—449

17/ AT T AL _sa. D 'y P, .1 a2 Fayan s £V L rr ¢ n_..°* ATl . _ Y o R S,

1 104] J. IVIagOLL rerjormance cvaiuaiion gj Loncurrent sSysiems using reiri ivers. 1nioriation

Processing Letters 18 (1984), pp. 7—13.

(c) Distributed Software Systems

A Distributed Database Scheme is discussed in [10] and in [29]. Further such models are de-
scribed in
[165] K. Voss: Using Predicate/ Transition-Nets to Model and Analyze Distributed Database

Systems. 1EEE Transactions on Software Engineering, Vol. SE-6, No. 6 (1980), pp.
539—544

[166] G. Richter: IML-Inscribed Nets for Modeling Text Processing and Data(base) Manage-
ment Systems. Proceedings of the 7th International Conference on Very Large Data
Bases, Cannes (1981), IEEE, pp. 363—375

[167] K. Voss: Nets as a Consistent Formal Tool for the Stepwise Design and Verification of a
Distributed System. IFIP TC-8 Working Conference on Evolutionary Information Systems,

Budapest (1981), J. Hawgood (ed.): Evolutionary Information Systems North Holland
(1982), pp. 173—-191

[168] P. Rolin: Using Petri-Nets in Measurement of a Distributed Data Base System, in [18]

[169] S. Yau, M. U. Caglayan: Distributed Software System Design Representation Using
Modified Petri Nets. IEEE Transactions on Software Engineering Vol. SE-9, No. 6 (1983),
pp. 733745

(d) Programming Languages
In the following papers nets are used to describe — at least partially — the semantics of pro-
gramming- and specification-languages.

[170] G. Roucairol: Une Transformation de Programmes Sequentielles en Programmes Paralle-
les, Colléque sur la programmation, Paris 1974. Lecture Notes in Computer Science 19
(1974), pp. 327—-349

[171] K. Jensen, M. Kyng, O. L. Madsen: Delta Semantics Defined by P
9

of Aarhus (Denmark) Internal Report PB-95, ISSN 0105-8517 (19

tri Nets. University

i i

e
)
J

14. Applications 157

[172] P. E. Lauer, P. R. Torrigiani, M. W. Shields: COSY — A System Specification Language
Based on Paths and Processes. Acta Informatica 12 (1979), pp. 109 —158

[173] P. Hruschka, A. Kappatsch, U. Kastens: Net Attributed Grammars. University of Karls-
ruhe (Germany), Institut fiir Informatik, Internal Report 16/90 (1980)

[174] K Jensen, M. Kyng: EPSILON, A System Description Language. University of Aarhus
(Denmark), Internal Report DAIMI PB-150, ISSN 0105-8517 (1982)

[175] N. D. Hansen, K. H. Madsen: Formal Semantics by a Combination of Denotational

- Semantics and High Level Petri Nets,in 19y .
[176] M. Kyng: Specification and Verification of Networks in a Petri Net Based Language,
in[19]

[177] W. E. Kluge, H. Schliiter: Petri Net Models for the Evaluation of Applicative Programs
Based on i-Expressions. IEEE-Transactions on Software Engineering, Vol. SE-9, No. 4
(1983), pp. 415—-427

In recent times Petri Nets have been very successfully applied to modelling and analysis of
communication protocols. Some few papers in this area are:

[178] P. Merlin: A Methodology for Design and Implementation of Communication Protocols.
IEEE Transactions on Computers, Vol. 24, 6 (1976)

[179] C. Girault: Proof of protocols in case of failures. Advanced Course on Parallel Pro-
cessing, University of Loughborough, 1980, D-J. Evens (ed.), Parallel Processing Sys-
tems, Press of Cambridge University Press (1980)

[180] J. L. Baer, G. Gardarin, C. Girault, G. Roucairol: The Two Step Commitment Protocol:
Modelling, Specification and Proof Methodology. 5th international Conference an Soft-
ware Engineering, San Diego (1981)

[181] M. Diaz: Modelling and Analysis of Communication and Cooperation Protocols Using
Petri Net Based Models. Tutorial Paper Second International Workshop on Protocol Specifi-
cation, Testing and Verification May 17— 20, 1982. Idyllwild — Los Angeles

[182] F.J. W. Symons: Representation Analysis and Verification of Communication Protocols.
Telecom Australia Research l.ahnmmrim’ Victoria. Australia. Renort 7380 (l980)

CICLOIIT ALLNIIANA RGCAILI 2200410 Ik ClOIld, Allslidlla, Repolt

[183] G. Berthelot, R. Terrat: Petri Net Theory for the Correctness of Protocols. IEEE Trans-
actions on Computers, C-30 (1982), pp. 2497 —2505

[184] P. Estallier, C. Girault: Petri Nets Specification of a New Protocol for Controlling a
Distributed System Organization. Third International Conference on Distributed Com-
puting Systems Miami, Florida (1982)

[185] P. Estallier, C. Girault: Petri Net Specification of Virtual Ring Protocols, in [19].

(f) Further Concepts in Net Applications

There exist applications of nets which are somewhat unexpected, e.g. the net representation of
predicate logic in [45]. The interaction among participants which are involved in a lawsuit is
represented in

[186] J. Meldman, A. Holt: Petri Nets and Legal Systems. Jurimetrics Journal Vol. 12, No. 2

s1om z

(1971), pp. 65—75.

Other applications of this style are:

nnnnn

[187] H. Genrich: The Petri Net Representation of Mathematical Knowledge. Gesellschaft fiir
Mathematik und Informatik, Bonn Internal report SID-76-05 (1976)

158 Further Reading

[188] A. W. Holt: Introduction to Occurrence Systems, in: Associative Information Tech-
niques, L. Jacks (ed.), Elsevier Publishing Company (1971)

[189] H. Oberquelle: Nets as a Tool in Teaching and in Terminology Work, in [17]

[190] M. Jantzen: Structured Representation of Knowledge by Petri Nets as an Aid for Teaching
and Research, in [17]

[191] W. Reisig: A Note on the Representation of Finite Tree Automata. Information Pro-
cessing Letters 8, No. 5 (1979), pp. 239— 240.

15. Implementation and Automatic Analysis of Nets

Early Papers on net implementations are

[192] F. Grandoni, P. Zerbetto: Description and Asynchronous Implementation of Control
Structures for Concurrent Systems. International Computing Symposium 1973, A. Giinther
et al. (eds.), North-Holland Publ. Comp. (1974), pp. 151164

and

[193] H. A. Schmid: An Approach to the Communication and Synchronization of Processes.
International Computing Symposium 1973, A. Giinther et al. (eds.), North-Holland Publ.

10T7A\ e 11L& 171
\,Ulllp (lylﬁf}, pp. 1tvo—1r/1.

Further methods for implementing Petri Nets are discussed in the following papers:

[194] M. Auguin, F. Boeri, C. André: Systematic Method of Realization of Interpreted Petri
Ners. Digital Processes 6 (1980), pp. 55—68

[195] A. A. Torn: Simuiation Graphs: A General Tool for Modeling Simuiation Designs. Simu-
lation, December 1981, pp. 187—194

[196] G. Berger G. Florin, S. Natkin: 4 Tool for the Dependability rformance Evalua-
tion of Data Processing Systems. AFCET Symposium on Ma he tics for Computer

Science, Paris 1982
[197] J. P. Queille: The CESAR System: An Aided Design and Certification System for Distri-

buted Annlications. Second International Conference on Distributed (‘nmnnt;na Q\/ctpmc

GG APPGLRODRS, SOVONG I Ciaiol AV LIV Y Vil srasuaduione LU SYSICHLS

Paris 1981, IEEE, Computer Society Press (1981)

[198] R. A. Nelson, L. M. Haibt, P. B. Sheridan: Casting Petri Nets into Programs. IJEEE
Transactions of Software Engineering, Vol. SE-9, No. 5 (1983), pp. 590—602

Currently a lot of software tools for Petri Net analysis are being developed. A survey of
26 such projects is given in Newsletter 16 of the Special Interest Group on Petri Nets and
Related System Models, c.f. [26].

[199] U. Golze, L. Priese: Petri Net Implementation by a Universal Cell Space. Information &
Control 53 (1982), pp. 121—138.

16. Related System Models

Here we give some pointers to system models which are also used, as are Petri Nets, to de-
scribe concurrent systems.
An actual bibliography on this topic is

[200] D. Bell, J. Kerridge, D. Simpson, N. Willis: Parallel Programming — A bibliography.
Monographs in Informatics Series — Wiley Heyden Ltd.
(a) Papers comparing different models

[201] T. Kasai, R. E. Miller: Homomorphisms between Models of Parallel Computation. Jour-
nal of Computer and System Sciences 25 (1982), pp. 285—331

16. Related System Models 159

[202] R. J. Lipton, L. Syndex, Y. Zalcstein: 4 Comparative Study of Models of Parallel Com-
putation. Proceedings of the 15th Annual Symposium on Switching and Automata
Theory, New York, IEEE (1974)

{203} J. Peterson, T. Breth: A Comparison of Models of Parallel Compuiation. Informaiion
Processing 74, Proceedings of the 1974, IFIP Congress, Amsterdam (1974), pp. 466—470

[204] J. Baer: A4 survey of Some Theoretical Aspects of Multiprocessing. Computing Surveys 5,
Nr. 1 (1973)

[205] R. Miller: 4 Comparison of Some Theoretical Models of Parallel Computation. IEEE
Transactions on Computers, Vol. C-22, Nr. 8 (1973), pp. 710—-717

[206] R. Miller: Some Relationships Between Various Models of Parallelism and Synchroniza-
tion. Report RC-5074 IBM T. J. Watson Research Center, Yorktown Heights (1974)

[207] F. de Cindio, G. de Michelis, L. Pomello, C. Simone: Milner’s Communicating Sys-
tems and Petri Nets, in [19]

[208] U. Goltz, M. Mycroft: On the Relationship of CCS and Petri Nets. ICALP 84 Lecture
Notes in Computer Science 172 (1984), pp. 196 —208.

(b) Related Models

Quite close to Petri Nets are, of course, the generalizations discussed above in (13). Also, the
papers [33—38] describe models which are closely related to nets.
Further Models include:

[209] E. Conry, J. R. Jump: On Functional Equivalence in a Model for Parallel Computation.
Information & Control 41 (1979), pp. 247—274

[210] R. Karp, R. Miller: Properties of a Model for Parallel Computation: Determinacy, Ter-
mination and Queuing. SIAM Journal of Applied Mathematics 14, No. 6 (1966), pp.
1390—1411

2ii] E. W. Dijkstra: Cooperating Sequentiai Frocesses, in F. Genuys (editor): Programming
Languages, New York, Academic Press (1968)

[212] R. Keller: Formal Verification of Parallel Programs. Communications of the ACM, 19,
No. 7 (1976), pp. 371—384

[213] G. Kahn, D. MacQueen: Coroutines and Networks of Parallel Processes, IFIP 77, In-
formation Processing Conference, B. Gilchrist (editor), North Holland Publ. Company
(1977), pp. 993—998

[214] C. A. R. Hoare: Communicating Sequential Processes. Communications of the ACM 21,
No. 8 (1978), pp. 666—677

[215] R. Milner: 4 Calculus of Communicating Systems. Lecture Notes in Computer Science
92 (1980)

[216] A. Maggiolo-Schettini, H. Wedde, J. Winkowski: Modelling a Solution for a Control in
Distributed Systems by Restrictions. Theoretical Computer Science 13 (1981), pp. 61—83

[217] J. W. de Bakker, J. 1. Zucker: Processes and the Denotational Semantics of Concur-
rency. Information and Control 54 (1/2 July/August 1982), pp. 70—120

[218] L. Priese: Automata and Concurrency. Theoretical Computer Science 25 (1983), pp.
221-265

[219] R. Milner: Calculi for Synchrony and Asynchrony. Theoretical Computer Science 25
(1983), pp. 267—310

[220] J. L Castellani, P. Franceschi, U. Montanari: Labeled Event Structures: A Model for
Observable Concurrency, in: Formal Description of Programming Concepts 11, D. Bjerner
(ed.), North-Holland Publ. Comp. IFIP (1983), pp. 383—399

[221] H. J. Genrich, P. S. Thiagarajan: Well Formed Flow Charts for Concurrent Pro-
gramming, in: Formal Description of Programming Concepts-II, D. Bjerner (ed.),
North-Holland Publ. Comp. IFIP (1983), pp. 357—380.

Index

Page numbers in italics refer to definitions

algebra 114, 115, 117,129, 135-137

allocation 704, 106

- cycle free 104, 105, 106

arc 15,30,41,42,61, 64, 67,69, 70, 72, 77,
101, 106, 115, 120, 129, 137, 140

capacity 61, 63, 64—67, 74, 83,91—94,
127,134, 137

case 3,4 18 19-25,38,48 55-5
114, 7115, 116-120, 129, 136, 137

— class 22,23

- graph 18,28, ,29-32,41,42

causality 2,32

coincidence 4, 46, 50

complement 25, 26, 87, 90, 91

complementation 26, 27, 31, 38, 65

composition 39, 40

concession /& 21-24 20

VULIVLOOIVIL 10y, &1 — 4T,

concurrency 1, 30, 32, 33,

COIIUI[IOH L ‘l' lO lb, Li,
38,48, 55,57,61,64, 112

condition/event-system 18, 21, 22, 23-32,
37, 38,42, 45,46, 48,52, 55-58, 64,75, 77,
93, 111-113, 117, 119, 120, 121, 128

— complete 25, 26-28, 38

contact-free 18, 25,27, 28, 31, 37-39, 41,
42, 46,47, 52-54, 57, 58, 64

- cyclic 23, 24,25, 28, 54

— isomorphic 24, 25

— live 23,24,25,28

conflict 21,29, 32,51

confusion 21, 101

contact 19, 64

coverability graph 61, 66, 67, 68-75

covering sequence 67, 69, 70

cut 34,35-37,39,44

cycle 55,108, 109

7 119
114

7y

9

A ‘\r 21

Py
26, 30, 32,

38,49, 50,51, 83
22,24-

]

deadlock 98, 99, 100, 102-107
decomposition 42, 43, 44

element 15, 16, 23, 25, 32, 33, 35, 37, 139
— isolated /15,22
equation system 77, 94

equivalence 24, 25,27-30, 37, 39, 56, 57,
119, 122

event 2-4, 13,16, 18,19, 21-25, 32, 37, 38,
46, 48, 51-53, 55, 58,64, 113, 115, 119,
122, 123

— detached 19,20

— enabled 18, 24-26, 29, 30, 56, 116, 119,
120

- occurring 4, 18, 19, 23, 32, 38, 46, 48-50,
122, 123

fact 55, 56, 57,59, 77, 93,94, 119, 120, 121,

1917 171 29
12D, 1030— 138

firing rule 61,63, 65

flow relation 15, 38

formula

- equivalent 56, 57, 119, 121

— of propositional logic 55, 56, 57
— overa P/E-net 119, 120

— valid 55, 36 57, 120, 121

valiil JI, 0, 2

free choice net 61, 7101, 102-105, 107

graph 28,33, 66, 67, 140, 141
- isomorphic 29

— ofa function 140

- strongly connected 28

lifeness 71,73, 74, 77, 89, 98, 99, 101104,
107, 108
line 34,35-37,41, 44, 50,53

mapping /40

— characteristic 125, 126, 140

marked graph 61, 7108, 109

marking 63, 65,67-72, 76, 77, 80, 83, 87,
92-95, 104-106, 124, 128, 137

— dead 72,100

— detached 106, 107

— initial 63, 64, 66, 83,91, 92-94, 107, 109,

110, 7128, 133

live 74

properly reached 106, 107

— reachable 66, 67, 69, 86,93, 94

reproducable 74,77, 95

— unordered 69, 70

|

matrix 65, 66, 74,79, 83,92-94, 124, 129,
131, 132-134, 136, 137, 142

multirelation 126, 127, 129, 130, 131

- positive 127

multiset 7126, 127, 129, 130, 131

- empty 127

— positive 126

net 14,75,16,21,22,71 -

— isomorphic 16
— marked 98, 100, 103
— pure 15,23,65

- simple 15,22

node 67,68,71,72

normal form 1722, 129

Index 161

— reflexive 33,34

- symmetric 33, 34

— transitive 33, 740

relation net 111, 124-126, 127, 129,
132-134

— schemes 135-137

safeness 108, 109

52,61,111,123

715 62 Q1 Q2
Ji, 54

1, UJ, 9

calf.laaon
SLi1=1UU

similarity relation 33, 34, 44

S-invariant 77, 79, 80, 81, 83, 86, 87,91-94,
96, 100, 108, 112, 124, 132, 133, 134, 136,
138

step 18,19, 20, 21, 22, 24, 28-30, 39, 41

occurrence net 32, 35, 36, 37, 39,42, 44, 47

partial order 32-36, 140

— bounded 34, 35-37

— K-dense 35, 36, 37

path 28, 30,32, 41-44, 67, 108, 14/

permutation 42, 43, 44

Petri net 1

place 2,6, 16,61,62, 64, 68,73, 74, 77-81,
88,90, 91, 98,99, 104, 109, 127, 137

place/transition-net 61, 62, 63-75,77, 79,
80-82, 87, 88,92-94, 98, 128

— bounded 82, 95,96

— contact-free 64, 65, 66, 81

— covered by S-invariants 8/, 82, 96, 97

— — by T-invariants 96

- live 73, 74,75, 80-82,95, 96, 98,
108-110

— safe 98,109, 110

postcondition 4, 18, 21

postset 15,26, 113

precondition 4, 18,21, 38

predicate 112, 113, 115, 117, 119, 123

predicate/event-net 14, 111,112, 114, 115,
116, 117, 119-125, 128, 129

— equivalent 122

preset 15,26,98,101, 113

process 20, 32, 37, 38—47, 50, 53, 54, 57,75

— elementary 40,41, 43,45

— empty 4/

— isomorphic 38, 39, 40

reachability problem 73
region 33, 34
relation 2, 139
- complementofa~ 34

slice 36,37-41, 46,47, 54,76

state machine 53

synchronic distance 46, 47, 48, 49-54,
57-59,61,75

— weighted 52, 58, 59

system properties 1, 71,77, 82

T-element 14, 15, 18, 32, 37,41, 42,47, 53,
55-57,61,93, 111, 113, 119, 120, 134, 137

term 114,715

T-invariant 77,94, 95, 96

— realizable 95, 96, 97

token 3,7, 16, 18,48, 61, 77-81, 83, 88, 91,
94,98, 104, 108, 111, 112, 124, 126, 128

— individual 7,13, 111

transition 2,6, 16, 61,62, 65, 69, 73, 77, 80,
83, 88, 96, 99, 102, 103, 108, 125, 127, 132

— enabled 63, 65, 67, 68, 72, 74, 81, 84, 87,
93,99-104, 128, 132, 134, 136, 138

- firing 6,61, 63, 65, 66, 77380, 84, 93, 94,
98, 101, 104, 124, 131

— live 73, 84

— M-dead 72,75

trap 98, 99, 100, 102-107

unboundedness 71, 75, 81, 89
— simultaneous 71
unification 42, 43

valuation 715,116,119, 120, 122, 129
variance 46,47, 76

vector 65, 80, 81, 131133, 138, 7142
— characteristic 79, 81, 94, 108, 142

<

weight 61,63, 64,77,78,8

EATCS Monographs on

Thanratical Camnntar Qrianca
A 11V VIl uUIvVAl \/UlllP“lCl VAV IIVG

Editors: W.Brauer, G.Rozenberg, A.Salomaa

K.Mehlhorn

Data Structures and
Algorithms 1
Sorting and Searching

1984. 87 figures. XIV, 336 pages.
ISBN 3-540-13302-X

Contents: Foundations. - Sorting. - Sets. - Algo-
rithmic Paradigms. - Appendix. - Bibliography.
- Subject Index.

This three volume work is devoted to data struc-

tures and efficient algorithms, an area which has

gained considerable importance in recent years.

Its in-depth coverage includes

- sorting and searching

- graph algorithms and NP-completeness

- muiti-dimensional searching and computa-
tional geometry

to lead the reader to the forefront of computer

science research in these areas. The EATCS

Monographs present the best algorithms known

for a wide range of problems together with the

over, the work introduces the reader to under-
lying concepts and principles and thus enables
him to develop efficient algorithms and data

structures, analyzes their efficiency, and prove

their correctness. The book can be used as a text-

honl for hath conrcownrl and calfctindy ag waell
UUUN 1Vl UULLL VUUILIJOVYYUIL RN dllu dvll DLUU], ad yvvwlil

as an authoritative reference source.

EATCS Monographs on
Theoretical Computer Science
Editors: W.Brauer, G.Rozenberg, A. Salomaa

K.Mehlhorn

Data Structures and
Algorithms 2
Graph Algorithms and

Springer-Verlag
Berlin
Heidelberg
New York
Tokyo

NP -Completeness

1984. 54 figures. XII, 260 pages.
ISBN 3-540-13641-X

Contents: Algorithms on Graphs. - Path Prob-
lems in Graphs and Matrix Multiplication. - NP-

pnmn]pfpnpec - A]onﬁfhmin parqdlomc -

N VLLLMAIVUWLIWVI T Aviiliiiv A QAL

Blbhography SubJect Index.

K.Mehlhorn
Data Structures and

A WA VAWVHAA WiJ SSAA

Algorithms 3
Multi-dimensional
Searching and
Computational Geometry

1984. 134 figures. XII, 284 pages.
ISBN 3-540-13642-8

Contents: Multidimensional Data Structures. -
Computational Geometry. - Algorithmic Para-
digms. - Bibliography. - Subject Index.

Reisig Petri Nets

Net theory is a theory of systems organization which origi-
nated about 20 years ago in the dissertation of C. A. Petri.
The book is mainly concerned with presenting those parts
of net theory which can serve as a basis for practical ap-
plication, It introduces the basic net theoretical concepts
and ways of thinking, demonstrates them by means of
examples and derives relations between them. Some ex-
tended examples illustrate the method of application of nets.
Major emphasis is given to those aspects which distinguish
nets from other system models.

ISBN 3-540-13723-8
ISBN 0-387-13723-8

