

STANDARDIZING REQUIREMENTS NOTATIONS: URN, AND WHAT ELSE?

CSRS, May 26, 2003

Daniel Amyot

ITU-T Q.18/17 Rapporteur
SITE, University of Ottawa, Canada
damyot@site.uottawa.ca
http://www.UseCaseMaps.org/urn/

URN and What Else?, CSRS, May 26, 2003

OKN and what Eise!, CSKS, May 20, 2003

What is a Standard?

- Guideline documentation that reflects *agreements* on *products, practices, or operations* by nationally or internationally recognized industrial, professional, trade associations or governmental bodies,
- or is accepted *de facto* by industry or society.

Source: F. Coallier, An Introduction to International IT Standardization, 2002

URN and What Else?, CSRS, May 26, 2003

Types of Standards

Organization Standards

• Such as internal company standards

Market Standards (De Facto)

• Such as Microsoft Windows

Professional Standards

• Developed by Professional organizations (e.g. IEEE)

Industry Standards

• Developed by industrial Consortia (e.g. OMG)

National Standards

• Developed by national standards organization (e.g. CSA)

International Standards

• Developed by formal international standard organization (e.g. ITU, ISO, IEC, ...)

URN and What Else?, CSRS, May 26, 2003

-

Added Value of International Standards

In addition to the Brand:

- They represent an international **consensus** attained through a very rigorous and uniform process
- They represent sets of conventions and/or technical requirements or practices that are **relatively stable**
- The development process makes it relatively difficult and costly for special interests to take over a given standardization project, especially if the topic is controversial.
- They are beneficial to users, companies, and tool vendors

Requirements Engineering and Standards

Focus mainly on templates and processes!

- IEEE 830-1998: Software Requirements Specifications
- IEEE 1233: Guide for Developing System Req. Specs.
- ISO/IEC 12207: IT Software Life Cycle Processes
- ESA PSS-05-02, 03: Guide to the User (resp. Software) Requirements Definition Phase

Languages and notations

- OMG: Unified Modeling Language 1.5
- ITU-T: MSC, SDL
- ISO/IEC: LOTOS, Estelle

But are these really for RE???

URN and What Else?, CSRS, May 26, 2003

-5

URN Standardization Effort at ITU-T

- Question 18 of Study Group 17 is the User Requirements Notation (URN)
- Z.15x family of standards
- URN Focus Group
 - Progress on URN between SG17 meetings
 - <u>http://www.UseCaseMaps.org/urn/</u>

URN - Main objectives

- Focus on early stages of development with goals and scenarios
- From user requirements to system functional and nonfunctional requirements
- No messages, components, or component states required
- Reusability
 - of argumentations (goal patterns and analysis)
 - of scenarios (patterns and architectural alternatives)
- Early performance analysis
- Traceability and transformations to other languages
 - Particularly MSC, SDL, TTCN, and UML

URN and What Else?, CSRS, May 26, 2003

Proposal for URN

Combined use of two complementary notations:

- Goal-oriented Requirement Language (GRL)
 - for goals and non-functional requirements
 - http://www.cs.toronto.edu/km/GRL/
- Use Case Maps (UCM)
 - for functional requirements
 - <u>http://www.UseCaseMaps.org/</u>

URN Family of Standards

Z.150 URN

- Recommendation Z.150, User Requirements Notation (URN) – Language Requirements and Framework.
- Approved in February 2003.

Z.151 GRL

Z.152 UCM

Z.153 Methodological Approach

Z.159 UML 2.0 profile for URN

To be available by March 2004...

URN and What Else?, CSRS, May 26, 2003

-

GRL in a Nutshell

Goal-oriented Requirement Language

- graphical notation
- connects requirements to business objectives
- allows reasoning about (non-functional) requirements

GRL models the "why" aspect

- objectives, alternatives, as well as decision rationale
- no operational details

Supports goal analysis and evaluations

Evaluations with GRL

- *Evaluations* of GRL graphs show the impact of qualitative decisions on high level softgoals
- Propagation is usually bottom-up
- Fuzzy evaluation of satisfaction level
- Takes into consideration the contributors:
 - —Contributions and correlations (help, hurt, ...)
 - —Degrees of satisfaction (satisficed, denied, ...)
 - —Composition operators (AND, OR)
- One could use numerical values and functions instead of qualitative (fuzzy) values

UCMs in a Nutshell

Use Case Maps

- graphical scenario notation
- causal relationships between responsibilities
- scenario elements may (optionally) be allocated to components

UCMs model the "what" aspects

- functional requirements as scenarios
- integration and reusability of scenarios
- guidance for architecture and detailed behaviour

Performance analysis, conflict detection

GRL - UCM Relationship

Goal-based approach

• Focuses on answering "why" questions

Scenario-based approach

• Focuses on answering "what" questions

Goals are *operationalized* into tasks and tasks are elaborated in (mapped to) UCM scenarios

• Focuses on answering "how" questions

GRL goals can guide the selection of a particular architecture for the UCM scenarios

URN and What Else?, CSRS, May 26, 2003

19-

Conclusions

- Allows engineers to specify or discover requirements for a proposed system or an evolving system, and review such requirements for correctness and completeness.
- Is usable in industry and in standardization bodies
- Combines goals and scenarios
- Helps bridging the gap between informal and formal concepts, and between requirements models and design models
- Big benefits for little modelling investment, even when used informally

GRL

- For incomplete, tentative, (non-functional) requirements
- Capture goals, objectives, alternatives and rationales

UCM

- For operational and functional requirements
- · Enables analysis and transformations
- · Architectural alternatives and dynamic systems

Ongoing Work on URN at U. of Ottawa

- URN Meta-model and Semantics
- UCM Scenarios to MSC, UML, TTCN
- URN and Requirements Management (DOORS)
- URN for Reverse Engineering
- URN and Requirements-based Design (synthesis of SDL and LOTOS specifications from UCMs)
- URN and Performance Engineering (UCM2LQN)
- UCM for Feature Interaction Detection
- Tool Development
- Case Studies

URN and What Else?, CSRS, May 26, 2003

22

Related Work on RE Languages/Notations

ITU-T

• MSC, SDL, eODL, UML profiles

OMG

• UML 2.0

ISO/IEC JTC1 SC7

- High-Level Petri Nets
- UML 1.4.1
- UML profile for EDOC, UML for ODP viewpoints

FIPA

• Tropos and UML for multi-agent systems

URN Focus Group Meeting

Tomorrow morning, 9:00-12:00 McMaster U., ITB 225

7th Feature Interaction Workshop

Ottawa, June 10-13, 2003

URN and What Else?, CSRS, May 26, 2003

25-