

 1

© Steve Easterbrook, 2003 1

University of Toronto Department of Computer Science

Reasoning with
Uncertainty and Inconsistency

Prof. Steve Easterbrook

Dept of Computer Science
University of Toronto

sme@cs.toronto.edu

2

University of Toronto Department of Computer Science

© Steve Easterbrook, 2003

Outline of Talk
‹ Modeling Requirements

ƒ Current modeling languages are too constraining
ƒWe’d like to be able to express our uncertainty, our disagreements, etc.

‹ Models that express inconsistency and incompleteness
ƒ Use of multi-valued logics
ƒ truth orders and knowledge orders
ƒMV model checking

‹ Potential Applications
ƒ Abstraction
ƒ Disagreement & negotiation support
ƒ Reasoning about relative priority / criticality
ƒQuery Checking

 2

3

University of Toronto Department of Computer Science

© Steve Easterbrook, 2003

Modeling…
‹ Modeling can guide elicitation:

ƒ Does the modeling process help you figure out what questions to ask?
ƒ Does the modeling process help to surface hidden requirements?

ÿ i.e. does it help you ask the right questions?

‹ Modeling can provide a measure of progress:
ƒ Does completeness of the model imply completeness of the elicitation?

ÿ i.e. if we’ve filled in all the pieces of the model, are we done?

‹ Modeling can help to uncover problems
ƒ Does inconsistency in the model reveal interesting things…?

ÿ e.g. inconsistency could correspond to conflicting or infeasible requirements
ÿ e.g. inconsistency could mean confusion over terminology, scope, etc
ÿ e.g. inconsistency could reveal disagreements between stakeholders

‹ Modeling can help us check our understanding
ƒ Can we test that the model has the properties we expect?
ƒ Can we reason over the model to understand its consequences?
ƒ Can we animate the model to help us visualize/validate the requirements?

4

University of Toronto Department of Computer Science

© Steve Easterbrook, 2003

Lkjoijasd
eprojp
aer
eokpoaipoekrg
aergokp

Rteaertcv
aertav
aergWEAR
aerg
ergaergaergaer

Rteaertcv
aertav
aergWEAR
aerg
ergaergaergaer

Rerewe
wewrtw
wrtsds
ewtwreeqw
erweqwrq

The
World

Shared
properties

Properties only
true of the model

Properties only
true of the world

The
Model

But formal notations are inflexible
‹ Formal modeling languages demand:

ƒ preciseness
ƒ completeness
ƒ consistency

‹ but all models are approximations:
ƒ phenomena in the model that are not present in the application domain
ƒ phenomena in the application domain that are not in the model

ƒ …and we want to express our uncertainty, disagreement, priorities, etc.

 3

5

University of Toronto Department of Computer Science

© Steve Easterbrook, 2003

Incompleteness and Inconsistency
‹ Most models are incomplete and/or inconsistent most

of the time

‹ Sources of incompleteness
ƒ aspects of the model undeveloped
ƒ properties are not fully understood
ƒ complete model has been abstracted

‹ Sources of inconsistency
ƒ multiple stakeholders

ÿ affects both models and properties

‹ Goal:
ƒ want to reason about software systems at all stages of software

development
ƒ … and to do so automatically (e.g. tools such as model-checking)

6

University of Toronto Department of Computer Science

© Steve Easterbrook, 2003

How can we make progress?

Current modelling
techniques are

a poor fit
abandon

classical logic
modelling

E.g. Non-monotonic logics
Epistemic logics

Paraconsistent logics

abandon
formal

modelling

E.g. soft
systems
models

abandon
all

modelling

E.g. ethnomethodology

model other
phenomena

E.g. Goal modelling,
Agent modelling

enhance existing
modelling

approaches

E.g. viewpoints

 4

7

University of Toronto Department of Computer Science

© Steve Easterbrook, 2003

TT

FF

TF FT

True

False

Maybe

Example Multi-Valued Logics
‹ 3-valued logic (Kleene logic)

ƒMiddle value represents “maybe”.
ƒ Useful for:

ÿ Partial models - some behaviours unknown.
ÿ Open systems - some behaviours will be defined by other

components or features.
ÿ Abstracted systems - some behaviours are elided to reduce

the state space.

‹ 4-valued logic
ƒ Results from combining two sources of information.

ÿ TF and FT represent disagreement between the sources.

ƒ Useful for:
ÿ Feature interaction
ÿ Viewpoint integration

8

University of Toronto Department of Computer Science

© Steve Easterbrook, 2003

Formally … Quasi-Boolean logics
‹ Truth values form a (finite) distributive lattice
ƒ True at the top, False at the bottom
ƒ conjunction is lattice meet (greatest lower bound)
ƒ disjunction is lattice join (least upper bound)
ƒ negation is chosen to preserve involution, i.e. ÿÿA = A
ƒ implication is material, i.e. AÆB ≡ ÿA v B

‹ Properties:
ƒ associativity, idempotency, distributivity, and De Morgan’s laws
ƒ But not (necessarily):
ÿ Law of excluded middle: A ⁄ ÿA = T
ÿ Law of non-contradiction: A Ÿ ÿA = ^

‹ More examples: T

F

TT

TM
TF

MT

MMFT

FM MF
FF

Must

Don’t
Care

Should

Shouldn’t

Mustn’t

Likely

UnknownDisputed

Unlikely
F

T

 5

9

University of Toronto Department of Computer Science

© Steve Easterbrook, 2003

Other variants are possible

T

F

TT

TM

TF

MT

MMFT

FM MF

FF

TT

FF

(Disputed)

(Unlikely)

(Likely)

(Unknown)

TM,MT

TF,FTMM

FM,MF

TT

FF

TF,FT
(Maybe)

TT

FF

TF FT

T

F
x =

T

F

M =x

TTT

FTTTFT

TFF

FFF

TTF

FTF FFT

TT

FF

MF

MT
(Majority true)

(Majority false)

T

F

T

F
x =

T

F
x

T

F

M

T

F

M
(Maybe)

10

University of Toronto Department of Computer Science

© Steve Easterbrook, 2003

Truth Order vs. Knowledge Order

(Underspecified)

F T

Truth order

Kn
ow

le
dg

e
or

de
r

Maybe

F T

Truth order

Kn
ow

le
dg

e
or

de
r

Unknown

Truth order

Kn
ow

le
dg

e
or

de
r

Likely

TrueDisputed

Unlikely

False
(Overspecified)

‹ Can distinguish two partial orders on truth values:
ƒ a truth order - gives the logics we use in the model checker

ÿMust be a quasi-boolean lattice to give us a coherent logic

ƒ an information order - for reasoning about refinement of models
ÿDoesn’t need to be a lattice

‹ Related to bilattices
ƒ as developed by Belnap, Ginsberg, Fitting

 6

11

University of Toronto Department of Computer Science

© Steve Easterbrook, 2003

Multi-Valued Models
‹ Generalize conventional state machines:

ƒ variables take any value from the logic
ƒ transitions between states take any value from the logic

ÿ False transitions are not shown (by convention)

Pressed = F
Request = F

Pressed = T
Request = F

Pressed = M
Request = T

Pressed = FF
Request = FF

Pressed = TT
Request = FF

Pressed = TF
Request = TT

T

T

T

M

TT

TT

FT

TF

TT

FF

TF FT

T

F

M

12

University of Toronto Department of Computer Science

© Steve Easterbrook, 2003

What is MV model checking?
‹ Classical Model Checking…
ƒ Inputs:
ÿ a state machine model, M
ÿ a correctness property, P (in a suitable temporal logic)

ƒ Calculates:
ÿ the value of M = p (does the model satisfy the property?)

‹ Multi-Valued Model Checking…
ƒ generalization to more truth values than just “true” and

“false”.
ÿ the meanings of these depend on the domain

ƒ Inputs:
ÿ A state machine model, M (variables and transitions may be

multi-valued)
ÿ A correctness property, P (in a multi-valued temporal logic)

ƒ Calculates:
ÿ does the model satisfy the property?
ÿ …but now the value of M = p might be multi-valued

Answer +
Counter-example

Answer +
Counter-example

Checker
Engine

Checker
Engine

Temporal
logic

property

Temporal
logic

property

Model of
System

(state-based)

Model of
System

(state-based)

 7

13

University of Toronto Department of Computer Science

© Steve Easterbrook, 2003

Correctness properties: cCTL
‹ CTL (Computation Tree Logic)
ƒ propositional temporal logic
ƒ branching-time logic, allowing explicit quantification over possible futures
ÿ every atomic proposition is a CTL formula
ÿ T and F are CTL formulae
ÿ if p and q are CTL formulae, then so are: ÿp, pŸq, p⁄q,
ÿ EX p - p is true in some next states; AX p …in all next states
ÿ EF p - along some path, p is true in some future state; AF p along all paths…
ÿ E[p U q] - along some path, p holds until q holds; A[p U q] along all paths…
ÿ EG p - along some path, p holds in every state; AG p along all paths…

‹ cCTL - multi-valued extension of CTL
ƒ Each truth value in the logic is a CTL formula
ƒ replace existential quantification by disjunction, universal quantification by

conjunction, so

[EX f](s) = ⁄tŒS (R(s,t) Ÿ [f](t))

14

University of Toronto Department of Computer Science

© Steve Easterbrook, 2003

Implementation
‹ Our model-checker is named cChek

ƒ Implemented in Java
ƒ Symbolic model checker

ÿ uses decision diagrams to represent and manipulate the state space and transition
relation

‹ Input:
ƒMulti-valued model

ÿ expressed in XML, using a GXL derived language
ÿ or built directly using Java

ƒ A specification of the multi-valued logic
ÿ expressed in XML

‹ Visualising the output:
ƒ Counter-example/witness generator (KEG)
ƒ Interactive front-end for exploration and visualization of counter-examples

and witnesses (KegVis)

 8

15

University of Toronto Department of Computer Science

© Steve Easterbrook, 2003

Pressed = F
Request = F

Pressed = T
Request = F

Pressed = M
Request = T

Model for each button:

Abstraction Example
‹ A simple elevator controller

ƒ Logic: 3-valued
ƒ Number of floors: 4
ƒ A door that can be opened and closed
ƒ Buttons inside the elevator and on floor

landings
ÿ Pressed - button’s physical state
ÿ Request - outstanding request

‹ Abstraction
ƒWe don’t care about the state of ‘Pressed’

when there is a request pending for any of the
buttons

ƒ Two alternative implementations:
ÿ each button press just sends signal to controller
ÿ button remains latched once pressed

T
T

T M

16

University of Toronto Department of Computer Science

© Steve Easterbrook, 2003

Relative Priority
‹ Uses total orders:

ƒ Intermediate values of the logic represent relative
criticality.

‹ Basic example:
ƒ 5-valued model can represent a set of layers
ƒ each layer specifies values for properties left

unspecified at previous layers.
ƒ Analysis:

ÿ If a property is ‘Must’ in the model, it is true in the
core layer

ÿ i.e. it doesn’t matter what other layers do.

ƒWe can reason about which properties are
preserved if functionality at lower layers is lost.

Must

Don’t
Care

Should

Shouldn’t

Mustn’t

 9

17

University of Toronto Department of Computer Science

© Steve Easterbrook, 2003

Query-Checking
‹ For discovering properties
ƒ A query is a CTL formula containing unknowns,

indicated by ‘?’
AG(send Æ AF ?)
“What condition always follows a ‘send’ event?”

ƒ A solution is a propositional formulae that, when
substituted for ‘?’ results in a valid CTL formula
ÿ e.g. ? = receive ⁄ ack ? = receive
ÿ Often we just want the strongest such formula.

ƒ Can restrict the placeholder to variables of interest:
AG(send Æ AF ?{receive})

‹ As a multi-valued model checking
problem:

ÿ Uses upset lattices

{p, ÿp,
true}

{ÿp,
true}

{p,
true}

{true}
{}

{false, p,
ÿp, true}

18

University of Toronto Department of Computer Science

© Steve Easterbrook, 2003

Uses of Query Checking
‹ Finding invariants

E.g. What is invariant for the whole model:
AG ?

‹ General model exploration
ƒ provide partial explanation when property holds

ÿ e.g. instead of AG (a ⁄ b), ask AG ?{a, b}
ÿ answer a Ÿ b is stronger!

ƒ provide diagnostic information when property fails
ÿ e.g. if AG (req Æ AF ack) fails - ask AG (req Æ AF ?)

‹ Other
ƒ Test case generation
ƒ Guided simulation

 10

19

University of Toronto Department of Computer Science

© Steve Easterbrook, 2003

Conclusions & Future Work
‹ Motivation

ƒ most of our models are incomplete or inconsistent most of the time
ƒ It would be nice to reason about the incompleteness/inconsistency

‹ We’re investigating multi-valued logics
ƒQuasi-boolean logics - truth values form a lattice
ƒWe’ve built a multi-valued model checker
ƒWe’re investigating applications:

ÿ abstraction, negotiation, layered systems, query checking

‹ Future work:
ƒ Apply these ideas to existing (real) modeling languages
ƒ Framework for composing multi-valued models
ƒ Framework for reasoning about refinement, using the knowledge order
ƒWe’re looking for more case studies
ƒWe’re looking for other possible applications

