&
&% . .

University of Toronto
i

Department of Computer Science

Reasoning with
Uncertainty and Inconsistency

Prof. Steve Easterbrook

Dept of Computer Science
University of Toronto

sme@cs.toronto.edu

© Steve Easterbrook, 2003

University of Toronto
{2 i
A
A, A

Department of Computer Science

Outline of Talk

- Modeling Requirements

% Current modeling languages are too constraining

% We'd like to be able to express our uncertainty, our disagreements, etc.

- Models that express inconsistency and incompleteness
% Use of multi-valued logics
% truth orders and knowledge orders
% MV model checking

- Potential Applications
% Abstraction
% Disagreement & negotiation support

% Reasoning about relative priority / criticality
% Query Checking

© Steve Easterbrook, 2003

&

W

University of Toronto Department of Computer Science

Modeling...

- Modeling can guide elicitation:
% Does the modeling process help you figure out what questions to ask?

% Does the modeling process help to surface hidden requirements?
> i.e. does it help you ask the right questions?

- Modeling can provide a measure of progress:

% Does completeness of the model imply completeness of the elicitation?
> i.e. if we've filled in all the pieces of the model, are we done?

- Modeling can help to uncover problems
% Does inconsistency in the model reveal interesting things..?
> e.g. inconsistency could correspond to conflicting or infeasible requirements
> e.g. inconsistency could mean confusion over terminology, scope, etc
> e.g. inconsistency could reveal disagreements between stakeholders

- Modeling can help us check our understanding
% Can we test that the model has the properties we expect?
% Can we reason over the model to understand its consequences?

% Can we animate the model to help us visualize/validate the requirements?
© Steve Easterbrook, 2003 3

&

University of Toronto Department of Computer Science

But formal notations are inflexible

- Formal modeling languages demand:
% preciseness
% completeness
% consistency

- but all models are approximations:

% phenomena in the model that are not present in the application domain
% phenomena in the application domain that are not in the model

Model

Properties only
true of the world

Properties only
true of the model

properties

% ..and we want to express our uncertainty, disagreement, priorities, etc.

© Steve Easterbrook, 2003 4

&

University of Toronto Department of Computer Science

Incompleteness and Inconsistency

\\]j

- Most models are incomplete and/or inconsistent most
of the time

- Sources of incompleteness
% aspects of the model undeveloped
% properties are not fully understood
% complete model has been abstracted

- Sources of inconsistency

% multiple stakeholders
» affects both models and properties

- Goal:

% want to reason about software systems at all stages of software
development

% .. and to do so automatically (e.g. tools such as model-checking)

© Steve Easterbrook, 2003 5

* University of Toronto Department of Computer Science

How can we make progress?

E.g. soft
systems abandon E.g. ethnomethodology
models all

abandon

t/\/ formal modelling
modelling (\)

Current modelling
techniques are model other
a poor fit _/"” phenomena

abandon
classical logic
modelling enhance existing E.g. Goal modelling,
. Agent modelling
modelling
E.g. Non-monotonic logics approaches
Epistemic logics
Paraconsistent logics E.g. viewpoints

© Steve Easterbrook, 2003 6

& . .
’{Q University of Toronto Department of Computer Science

&

Example Multi-Valued Logics
- 3-valued logic (Kleene logic)
% Middle value represents “maybe”. T
% Useful for:
> Partial models - some behaviours unknown. M
> Open systems - some behaviours will be defined by other
components or features.
> Abstracted systems - some behaviours are elided to reduce
the state space.
- 4-valued logic
% Results from combining two sources of information. TT
> TF and FT represent disagreement between the sources.
% Useful for:
> Feature interaction TF FT
» Viewpoint integration
FF
© Steve Easterbrook, 2003 7
+* _University of Toronto Department of Computer Science

¥ Formally .. Quasi-Boolean logics

- Truth values form a (finite) distributive lattice
% True at the top, False at the bottom
% conjunction is lattice meet (greatest lower bound)
% disjunction is lattice join (least upper bound)
% negation is chosen to preserve involution, i.e. ==A = A
% implication is material, i.,e. A>B=-AvVvB

- Properties:
% associativity, idempotency, distributivity, and De Morgan's laws

% But not (necessarily):
> Law of excluded middle: A -A =T
» Law of non-contradiction: A A =A = L T

- Must
H Likely Should
. M
- More examples: ™ Dot
TF Disp Unknown | Care
i Shouldn’t
F FM MF Unlikely
EE F Mustn’t

© Steve Easterbrook, 2003 8

@ N
= University of Toronto Department of Computer Science

R, A& . .
Other variants are possible
T T
T T
[x] el e~
F F
FF FF
TTT
T
T o7 T T FTT
I X I X I = /\/\b (M;'j-ority true)
F F F TFF FFT (“l\ﬂ;-ority false)
FF
FFF
LS T
T T
MT, TM
M X M - FT TF W (Un'l\!rlw) W (Maybe)
E FM MF
F FF F
© Steve Easterbrook, 2003 9
& . .
" University of Toronto Department of Computer Science

¥ Truth Order vs. Knowledge Order

- Can distinguish two partial orders on truth values:

% a truth order - gives the logics we use in the model checker
>Must be a quasi-boolean lattice to give us a coherent logic

% an information order - for reasoning about refinement of models
>Doesn’t need to be a lattice

- Related to bilattices
% as developed by Belnap, Ginsberg, Fitting

(Overspecified) /

© o)

s B ke

o o o

() ()

3 F T 5| F T 3

= o o

g 3 3
Underspecifie Maybe

o (p d} g ybe g

Truth order Truth ord/er Truth order/

© Steve Easterbrook, 2003 10

&

University of Toronto

Multi-Valued Models
- Generalize conventional state machines:
% variables take any value from the logic
% transitions between states take any value from the logic
» False transitions are not shown (by convention)
T fJ_\ i KJ—\
M <) Pressed = FF
Pressed = F TF
- kT > Request = FF
Request = F -4
) —
T T
A\ 4
A 4)
T (.) FT
Pressed =T ;ressedt = "I:';
Request = F EopEE=
— | —
T T
A 4
\ 4
M (.)
| | Pressed =M | | Pressed = TF
Request=T Request = TT
—
—

TF

Department of Computer Science

© Steve Easterbrook, 2003

1

&

University of Toronto

ng?

Department of Computer Science

What is MV model checki

- Classical Model Checking...

% Inputs:
> a state machine model, M

/

Model of Temporal
System logic
(state-based) property

» a correctness property, P (in a suitable temporal logic)

% Calculates:
» the value of M E p

- Multi-Valued Model Checking...

% generalization to more truth values than just “true” and
“false”.
» the meanings of these depend on the domain
% Inputs:
» A state machine model, M (variables and transitions may be
multi-valued)
» A correctness property, P (in a multi-valued temporal logic)

(does the model satisfy the property?)

% Calculates:
» does the model satisfy the property?
> ..but now the value of M F p might be multi-valued

Checker
Engine

Answer +
Counter-example

© Steve Easterbrook, 2003

12

& . .
’;‘é University of Toronto Department of Computer Science

¥ Correctness properties: XCTL

- CTL (Computation Tree Logic)
% propositional temporal logic

% branching-time logic, allowing explicit quantification over possible futures
» every atomic proposition is a CTL formula
> T and F are CTL formulae

if p and q are CTL formulae, then so are: -p, paq, p q,

v

» EX p - p is true in some next states:; AX p ..in all next states
> EF p - along some path, p is true in some future state: AF p along all paths...
» E[p U q] - along some path, p holds until q holds; Alp U q] along all paths...
» EG p - along some path, p holds in every state; AG p along all paths...

- XCTL - multi-valued extension of CTL

% Each truth value in the logic is a CTL formula

% replace existential quantification by disjunction, universal quantification by
conjunction, so

[EX 01(s) = 1es (R(s.1) A [](1))

© Steve Easterbrook, 2003 13
= _University of Toronto Department of Computer Science

2 Implementation

- Our model-checker is named XChek

% Implemented in Java

% Symbolic model checker
> uses decision diagrams to represent and manipulate the state space and transition
relation

- Input:

% Multi-valued model
» expressed in XML, using a GXL derived language
> or built directly using Java

% A specification of the multi-valued logic
> expressed in XML

- Visualising the output:
% Counter-example/witness generator (KEG)

% Interactive front-end for exploration and visualization of counter-examples
and witnesses (KegVis)

© Steve Easterbrook, 2003 14

=" _University of Toronto Department of Computer Science

Abstraction Example

- A simple elevator controller

% Logic: 3-valued Model for each button:

% Number of floors: 4 ——

% A door that can be opened and closed 5| Pressed =F
Request = F

% Buttons inside the elevator and on floor
landings
» Pressed - button's physical state
> Request - outstanding request

- Abstraction

% We don't care about the state of 'Pressed’
when there is a request pending for any of the

buttons
% Two alternative implementations: Pressed = M
» each button press just sends signal to controller Request =T

» button remains latched once pressed

© Steve Easterbrook, 2003 15
o i i £T .
= _University of Toronto Department of Computer Science

4 Relative Priority

- Uses total orders:

% Intermediate values of the logic represent relative

criticality. & Must
- Basic example: ®should
% 5-valued model can represent a set of layers
% each layer specifies values for properties left ‘(D;gpet
unspecified at previous layers.
% Analysis:
> If a property is 'Must' in the model, it is true in the Shouldn’t
core layer
> i.e. it doesn't matter what other layers do.
% We can reason about which properties are © Mustn’t

preserved if functionality at lower layers is lost.

© Steve Easterbrook, 2003 16

= University of Toronto

e Query-Checking

- For discovering properties

% A query is a CTL formula containing unknowns,
indicated by '?’
AG(send — AF ?)
“"What condition always follows a ‘send’ event?”
% A solution is a propositional formulae that, when
substituted for '?' results in a valid CTL formula
> e.g. ? = receive ack ? = receive
» Often we just want the strongest such formula.
% Can restrict the placeholder to variables of interest:
AG(send — AF ?{receive})

- As a multi-valued model checking
problem:

» Uses upset lattices

{false, p,

-p, true}
°®

{p! =P,

Department of Computer Science

true}

{-'p!
true}

© Steve Easterbrook, 2003

17

+* _University of Toronto

B9

- Finding invariants

E.g. What is invariant for the whole model:
AG ?

- General model exploration

% provide partial explanation when property holds
> e.g. instead of A6 (a b), ask A6 ?{a, b}
» answer a A b is stronger!

% provide diagnostic information when property fails
> e.g. if AG (req — AF ack) fails - ask AG (req — AF ?)

- Other

% Test case generation
% Guided simulation

Department of Computer Science

Uses of Query Checking

© Steve Easterbrook, 2003

18

$ el .
= University of Toronto Department of Computer Science

¥ Conclusions & Future Work

- Motivation
% most of our models are incomplete or inconsistent most of the time
% It would be nice to reason about the incompleteness/inconsistency

- We're investigating multi-valued logics
% Quasi-boolean logics - truth values form a lattice
% We've built a multi-valued model checker

% We're investigating applications:
» abstraction, negotiation, layered systems, query checking

- Future work:
% Apply these ideas to existing (real) modeling languages
% Framework for composing multi-valued models
% Framework for reasoning about refinement, using the knowledge order
% We're looking for more case studies

% We're looking for other possible applications

© Steve Easterbrook, 2003

19

10

