

Commercial Government Industrial Solutions Sector

 MOTOROLA **TORONTO DESIGN CENTER**

Formal Methods at MOTOROLA's Toronto Design Center

Canadian Software Requirements Symposium
May 26, 2003

1

Commercial Government Industrial Solutions Sector

 MOTOROLA **TORONTO DESIGN CENTER**

We Don't Use Them!!

**We don't build nuclear power plants or
airplanes**

Canadian Software Requirements Symposium
May 26, 2003

2

Commercial Government Industrial Solutions Sector

 MOTOROLA **TORONTO DESIGN CENTER**

Should we??

Is the FM 'cake' fully baked yet?

Canadian Software Requirements Symposium
May 26, 2003

3

Commercial Government Industrial Solutions Sector

 MOTOROLA **TORONTO DESIGN CENTER**

Outline

- Who we are - TDC
- What we do – CGISS products, TDC projects
- How we do requirements
- Are there opportunities for us to use Formal Methods?

Canadian Software Requirements Symposium
May 26, 2003

4

Commercial Government Industrial Solutions Sector

MOTOROLA **TORONTO DESIGN CENTER**

TDC Background

TDC is a regional Design Center in Motorola's **Commercial Government Industrial Solutions Sector (CGISS)**

- 150 S/W engineers
- SEI level 3 since 1995
 - **Future Goals: SEI level 4 in 2004, SEI level 5 in 2005**
- Previously: developed products for the **CANADIAN** market
- Now (for the last few years): in collaboration with other MOT groups contribute to our worldwide product portfolio
- Recently, existing projects have been transitioned to TDC from other Centers
 - **We inherit the project's existing processes/techniques, but have ownership of the roadmap to improve them**
- Our projects are typically 'box' s/w or subsystem s/w
- Requirements come from System Design group
 - usually natural language + MSCs
- We need to be 'cost' competitive with other Design Centers
 - defects, cycle time, \$

Canadian Software Requirements Symposium
May 26, 2003

5

Commercial Government Industrial Solutions Sector

MOTOROLA **TORONTO DESIGN CENTER**

CGISS Products

CGISS Products

We develop (radio) communications systems for private & government customers: e.g. Police, Ambulance, Fire. Including: radios, base stations, call processing 'switch', dispatcher stations.

~3K engineers, 3K staff months per system release (of new features)

System Characteristics:

- Available 99.999% of the time (unavailable 6 mins/yr):
 - > Link & box redundancy
 - > System failure scenarios important -> s/w requirements
- 'mission critical' – lives could be in danger if system fails to meet reqs (shoot/don't shoot)

Systems have long product life (~10 years)

Customers expect 'few' defects

Canadian Software Requirements Symposium
May 26, 2003

6

Commercial Government Industrial Solutions Sector

MOTOROLA **TORONTO DESIGN CENTER**

TDC Project Background

Current types of s/w projects :

- Client GUI for radio system configuration
 - JAVA + XML
- Embedded real-time s/w for radios, base stations
 - *Call processing state machines*
- AutoTest tools, simulators
- + System Testing, System Design, H/W Design, & RF groups

Canadian Software Requirements Symposium
May 26, 2003

7

Commercial Government Industrial Solutions Sector

MOTOROLA **TORONTO DESIGN CENTER**

Formal Methods?

So why don't we use formal methods?

- Ignorant of more recent work
 - Not aware of data to justify their benefits
- Not mandated by our customers
- We believe they're not applicable to our domain
 - Only for nuclear power plants, flight control, etc.
- We believe they're too complicated – require expert help to construct & expert practitioners to implement
- We believe it's faster to find defects in reviews/testing

Canadian Software Requirements Symposium
May 26, 2003

8

Commercial Government Industrial Solutions Sector

MOTOROLA **TORONTO DESIGN CENTER**

Experiences with Semi-formal Methods

Structured Methods (Hatley Pirbhai) 10 years ago

Produced a complete, detailed requirements specification (H/W & S/W) of the MTP radio communications system

- To be used to validate customer requirements
 - in the end it was too technical for them to understand
- Very successful project – very few defects

Canadian Software Requirements Symposium
May 26, 2003

9

Commercial Government Industrial Solutions Sector

MOTOROLA **TORONTO DESIGN CENTER**

Experiences with Semi-formal Methods

Structured Methods (Hatley Pirbhai)

- **Pros:** (i.e. Characteristics we would like to see in a Formal Method)
 - Easy to convert to an implementation model: implementation went very smoothly
 - Leveling: different levels of abstraction/detail – you could see the 'big' picture as well as the details
 - 'Fun': tools were easy to use
- **Cons:**
 - didn't know when to stop: at some point we started adding implementation to the requirements model, but we weren't aware of it

Canadian Software Requirements Symposium
May 26, 2003

10

Commercial Government Industrial Solutions Sector

MOTOROLA **TORONTO DESIGN CENTER**

Requirements - Now

We recently completed a review of how we do requirements at TDC. To:

- improve reqs within projects
 - better techniques/methods
- improve s/w engineer competency in reqs

Some results:

S/W Engineers –

- Natural language requirements are their first choice
 - Because it's easiest (trained in English language since baby)
 - But have difficulty (because natural language is so imprecise)
- Unaware of other techniques
 - No training/schooling (only seen 'toy' examples using FMs)
- More interested in doing architecture & design

Canadian Software Requirements Symposium
May 26, 2003

11

Commercial Government Industrial Solutions Sector

MOTOROLA **TORONTO DESIGN CENTER**

Requirements - Now

Projects

- Reqs deliverables are of inconsistent quality – reviews are important
 - Reflection of engineers' competencies
- Natural Language reqs dominate
 - Some use of UML, RUP
- Not enough time allocated to do reqs properly
 - Just using English language – shouldn't take long
- Project improvement roadmaps just being drafted
 - Desire to improve
 - Don't know what different reqs techniques are appropriate

One Outcome – TDC S/W engineer competency matrix
(SWEBOK)

Canadian Software Requirements Symposium
May 26, 2003

12

Commercial Government Industrial Solutions Sector

 MOTOROLA **TORONTO DESIGN CENTER**

Formal Methods?

How do I decide if a Formal Method is the appropriate reqs technique for my project? Which Method?

Some Questions:

- What is the ROI for increased formality?
- Is there a 'spectrum' of methods with differing levels of formality that I can choose from?
- Are there case studies describing the payback for using formal methods for different problem domains?
- Is there a 'catalogue' of FMs showing the applicability of different methods in different problem/project domains?

Canadian Software Requirements Symposium
May 26, 2003

13

Commercial Government Industrial Solutions Sector

 MOTOROLA **TORONTO DESIGN CENTER**

A Proposed 'Catalogue'

Match Project Characteristics to (Formal) Method Characteristics

Project Characteristics (ROI + S/W domain):

- Criticality (ROI)
- Product life, time to market (ROI)
- S/W size, complexity (ROI)
- Defects – cost to fix, ease of insertion (ROI)
- S/W Domain (GUI, RT, Client-Server)

Canadian Software Requirements Symposium
May 26, 2003

14

Commercial Government Industrial Solutions Sector

 MOTOROLA **TORONTO DESIGN CENTER**

A Proposed 'Catalogue'

Method Characteristics:

- Expressiveness
 - Narrow or broad domain applicability
- Degree of formality
- Maturity: industry acceptance, case studies
- Tool support
- Usability
- Development capabilities:
 - Simulatable
 - Autocode
 - Test case generation

Canadian Software Requirements Symposium
May 26, 2003

15

Commercial Government Industrial Solutions Sector

 MOTOROLA **TORONTO DESIGN CENTER**

Summary

- We (like all other companies involved in S/W development) want to use the best reqs specification technique for our product
- Are Formal Methods right for us? We don't think so, but we're not sure.
- Need:
 - Guidance & advice
 - Data to base a decision on

Canadian Software Requirements Symposium
May 26, 2003

16