
:
Mapping Specification Notations to

Analysis Tools

Jianwei Niu Yun Lu Joanne Atlee Nancy Day
{jniu, y4lu, jmatlee, nday}@uwaterloo.ca

University of Waterloo

2

Current Approaches for Constructing
Analysis Tools

Focus on model-based specification notations
(e.g., statecharts variants, process algebras)

Spec in
Formal

Notation
M

Model Checker
for

Notation M

3

Current Approaches for Constructing
Analysis Tools

Spec in
Formal

Notation
M

Existing
Model

Checker
(Notation X)

Translator
from

M to X

It is difficult to maintain a customized analysis
tool or a translator when the notation evolves

4

Current Approaches for Constructing
Analysis Tools

Spec in
Formal

Notation
M

Existing
Model

Checker
(Notation X)

Model
Compiler

Semantics for
Notation M

Next state relation

(e.g., Kripke structure)

It is hard for users to write the semantics of
notation in a semantic description language

5

Our Approach for Mapping Specification
Notations to Analysis Tools

Spec in
Formal

Notation
M

Existing
Model

Checker
(Notation X)Common Semantics

Model
Compiler Next state relation

(e.g., Kripke structure)

Specific Semantics
for Notation M

6

Our Approach for Mapping Specification
Notations to Analysis Tools

Spec in
Formal

Notation
M

Existing
Model

Checker
(Notation X)Common Semantics

Model
Compiler Next state relation

(e.g.,Kripke structure)

Specifics of M
given by parameters

7

Outline

Ø Hierarchical Transition Systems
Ø Template semantics
Ø Step semantics
Ø Composition operators

Ø --- mapping notations to analyzers

8

Computation Model

Ø Hierarchical Transition Systems (HTS) with
Ø States and state hierarchy
Ø Internal events
Ø External events
Ø Variables
Ø Transitions

<source_state, trig_event, condition, action, destination_state>

Ø No concurrency
concurrency introduced when composing multiple HTSs

9

Semantics of HTS --- Snapshots

Ø Snapshot: observable point in execution

Basic
Elements

current states
current internal events
current variable values
generated external events

Auxiliary
Elements

used to determine
which transitions
are enabled

auxiliary states
auxiliary internal events
auxiliary variable values
auxiliary external events

10

Semantics of HTS --- Steps

Ø Operational semantics: a relation over pairs of
snapshots (steps)

Ø Micro-steps: execute a single transition
Ø Macro-steps: execute a sequence of micro-steps

until reach a stable snapshot

macro-step

micro-step micro-step micro-step

stable snapshot : no transitions are enabled in the snapshot

stable

11

Template Semantics of HTS

Common semantics

Ø enabled transitions

Ø apply

Ø init

Template parameters

Ø enabling states
Ø enabling events
Ø enabling variable values

Ø change state
Ø generate events
Ø change variable values

Ø initialize state info
Ø initialize event info
Ø initialize variable info

12

Outline

Ø Hierarchical Transition Systems
Ø Template semantics
Ø Step semantics
Ø Composition operators

Ø --- mapping notations to analyzers

13

Composition Operators

CP1

CP2 CP3

CP4
HTS3

HTS1 HTS2

HTS4 HTS5

14

Semantics of Composition Operators

Ø Represent concurrency, communication, and
synchronization

Ø Constrain
Ø Which components to execute
Ø When to transfer control between components
Ø How to exchange events and data

Ø Composition at micro-step and macro-step levels

15

Seven Composition Operators

Ø Interleaving
Ø Parallel
Ø Synchronization

Ø Environmental
Ø Rendezvous

Ø Sequence
Ø Choice
Ø Interrupt

16

Template Semantics for Specification
Notations

Ø Instantiation of the template semantics
Ø Define parameters
Ø Choose composition operators

Ø Descriptions of notations’ semantics using our
template semantics
Ø CCS, CSP, LOTOS
Ø Statecharts variants

Harel’s, Pnueli & Shalev’s, RSML, STATEMATE
Ø SCR
Ø SDL
Ø Petri Nets

17

Outline

Ø Hierarchical Transition Systems
Ø Template semantics
Ø Step semantics
Ø Composition operators

Ø --- mapping notations to analyzers

18

Ø Our template-based semantics framework, ,
can be used to generate effectively a transition-
relation, which then can be used as an input to
formal analysis tools

Ø We are implementing in higher-order logic
Ø We have implemented a slice of to handle
Øbasic transition systems
Øhierarchical machines

19

Mapping Specification Notations to
Analysis Tools

Spec in
Formal

Notation
M

Existing
Model

Checker
(Notation X)Common Semantics

Model
Compiler Next state relation

(e.g.,Kripke structure)

Specifics of M
given by parameters

20

Optimization

Spec in
Formal

Notation
M

Existing
Model

Checker
X
.

.

.

Common Semantics

Model Compiler

Specifics of M
given by parameters

Existing
Model

Checker
Y

Structure Recognizer

E
xp

ress

21

Current Results

Ø We have developed template semantics to capture
the common semantics and specify a notation’s
distinct behaviours as parameters (FSE’02)
Ø template semantics separate step-semantics from

composition operators

Ø We have defined the semantics of specification
notations as instantiations of our template (e.g.,
statecharts variants, SCR, SDL) (RE’03)
Ø understand and compare the semantics of notations

22

Future Work

Ø Complete the implementation of
Ø seven composition and concurrency operators

Ø Optimization of the mapping from specification
notations to analysis tools

Ø Case studies to validate the approach

23

Questions?

