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Abstract

Finite element models were developed for simulating one-dimensional (1D) and two-

dimensional (2D) nonisothermal film casting of a viscous polymer.  These models

accommodate inertia and gravity, allow the thickness to vary across the width of the film (in

the 2D case), but exclude die swell and sag.  The numerical algorithm is based on a Newton-

Raphson approach to solve simultaneously for the velocity, thickness, temperature and the

width of the film.  Numerical simulations using the finite element model found the

following: 

i) upwinding is unnecessary for predicting the temperature distribution;

ii) the average temperature distribution in the air gap is well approximated by a linear

function;

iii) once the film contacts the chill roll the geometry remains essentially unchanged;

iv) for low viscosity polymers, the self-weight of the material can aid in reducing neck-in

and in promoting a uniform thickness;

v) nonconstant thickness and/or velocity profiles at the die could potentially lead to less

neck-in and a more uniform thickness for the finished product; and

vi) cooling of the film, especially when localized cooling jets are employed, reduces

neck-in and promotes a uniform thickness.
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Chapter 1 Introduction and Background

Cast film production is a large component of the polymer processing industry. 

The global output of cast film was 2.79 million tonnes in 1996 and is expected to grow to

3.65 million tonnes by the year 2000 (Gabriele 1996).  This growth trend in the industry

puts pressure on cast film technology to improve both the quantity and quality of the film

produced.  In determining how to accomplish this, the designer of a cast film line is

currently forced to rely on experimental and trial-and-error approaches, rather than on

theoretical analyses and numerical simulations.  Increasing the contribution of theory to

the design phase would make it possible for more design alternatives to be investigated

and optimized, before resorting to experimentation.  This would provide three potential

advantages:

i) a reduction in the time required for design;

ii) a reduction in materials wasted in experimentation; and

iii) a more efficient final design.

These advantages translate directly into economic and environmental benefits.  The

economic benefit is reduced cost because of the reduction in wasted time and materials,

while the environmental benefit is the reduction in wasted materials that have to be

scrapped.  A more efficient final design is important for gaining both benefits because

even a small percentage improvement results in a significant reduction in wastage, given
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the large amounts of film produced.  As a step toward realizing the above advantages, this

thesis contributes to the theoretical and numerical modelling of the cast film process.

This chapter acts as the introduction and background for the subsequent

development of the theoretical model and numerical solution technique.  Section 1.1

provides an overview of the cast film process, which includes the uses of the finished

product, identification of the range of material and processing conditions, and a

description of the overall process.  Section 1.2 consists of a literature review that

identifies the current state of theoretical knowledge on film casting.  This review provides

the context for further studies by showing what has been researched and what areas are

still open to investigation.  Given this context, Section 1.3 details the contribution of this

study through a description of its purpose and scope.

1.1 Description of the Cast Film Process

Film casting produces plastic sheets for many different applications, such as

plastic bags, packaging for food and other consumer products, magnetic audio and video

tape, and air and vapour barriers used in construction applications.  Films are also

produced by the blown film process, but film casting is generally preferred when a

uniform thickness or a smooth surface is needed, or when products are manufactured with

low viscosity polymers (Cotto, Duffo and Haudin 1989).  Cast film is also considered

superior to blown film for clarity, efficiency, and coextrusion operations (Keller 1989). 

Coextrusion is used to produce films with multiple layers where each layer contributes a

desired trait to the finished product, such as impermeability to oxygen or moisture, heat
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sealabilit y, strength, chemical resistance, or colour.  Although this thesis focuses on

polymer films, similar film casting processes are used in the production of metal foils. 

Furthermore, the physics of f ilm casting closely resemble those for curtain coating, which

is used to apply lacquer or paint to a continuously moving substrate.

1.1.1 Materials and Processing Conditions

To produce sheets for the broad variety of uses described above, an extensive

range of materials and processing conditions are used by manufactures.  A few examples

of film casting materials are low density polyethylene (LDPE), high density polyethylene

(HDPE), polyethylene terephthalate (PET), polystyrene (PS), and polypropylene (PP). 

These polymers cover a large range of viscosity values, from 102 Pa#s to 105 Pa#s.  The

range of processing conditions is also large due to the wide range of products

manufactured.  In fact, the processing conditions can be set for film with a width of

between 0.1 m and 10 m (Pearson 1985: 473) and with a thickness of between 20 µm and

2000 µm (Pearson 1985: 473).  Another indication of the diversity of the processing

conditions used, is that the throughput can be between 20 kg/h and 2000 kg/h.

1.1.2 An Overview of the Cast Film Process

Figure 1.1 provides an overview of a typical continuous film casting operation. 

At the left side of the figure the solid polymer, usually in pellet form, enters the extruder

from the hopper.  The extruder consists of a screw that melts the polymer and provides

the pressure for it to exit the centre-fed “T” or coat-hanger die.  After exiting the die, the

film is exposed to the air where it is cooled by convected cold air or an inert gas before it

contacts the thermoregulated chill roll .  To ensure good contact of the film with the chill
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Figure 1.1 Overview of the cast film process

roll and to aid in freezing, an air knife is used to blow a jet of air at the film.   Up to this

point the film is called the primary film; once it is outside the air gap region however, it is

termed the secondary film.  After freezing, the secondary film is hauled off for further

treatment, such as biaxial stretching.  Once treated, the finished product goes to a winder

that puts the film onto rolls, which is the final stage shown on the right of Figure 1.1. 

Some examples of winder technology are described in Kreisher (1993) and Wilder

(1991).

Although the preceding description is typical for film casting, variations on this

approach are possible.  For instance, air jets can be added in the air gap region to freeze

the edges of the film, thereby reducing tearing problems.  Another variation is to replace

the air knife with an electrostatic pinning system (Barq et al. 1992) that consists of a high

voltage wire held parallel to the zero voltage roll.  The wire creates an electric discharge

and the associated electrostatic force is responsible for pinning the film to the roll.  A
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vacuum box is another alternative to an air knife.  This device removes the air, plus air-

born dirt and contaminants, from beneath the film and the negative pressure forces

intimate contact between the film and the roll (Flanagan 1993).  An alternative to the chill

roll shown in Figure 1.1, is to use a water bath to freeze the film.  Many options are also

available when it comes to the secondary treatment phase, with the choice of treatment

depending on the properties required of the finished product.  For the secondary treatment

of magnetic films, the polymer is held at a temperature just below the film’s melting point

while being stretched in the transverse and longitudinal directions.  This is followed by

stabili zation of the film in an oven maintained at a temperature of approximately 100 (C. 

Further details of this process are presented in d’Halewyu et al. (1990).

1.1.3 The Behaviour of the Film in the Air Gap

Studies on film casting, including the one presented in this thesis, focus on how

the film behaves in the air gap because the properties of the finished product are mainly

determined here (Barq et al. 1992).  The air gap behaviour is important as the success of

downstream operations depends on the quality of the film supplied from upstream.  A

close up schematic of the air gap is shown in Figure 1.2.  Just outside of the die, the film

swells due to the sudden change from a confined shear flow to an essentially extensional

flow field.  To keep the reduction in the width (neck-in) as small as possible, the air gap

length is kept short, generally only a few centimetres.  Besides trying to reduce neck-in,

film li ne designers also want to control a defect called “edge bead” or “dog-bone.”  This

defect appears as an increase in thickness at the film’s edges, which is typically several

centimetres wide and can be five times the thickness of the middle of the film (Dobroth
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Die
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Figure 1.2 Overview of the cast film process in the air gap

and Erwin 1986).  Edge beads are a problem, as they can lead to entrapped air between

the film and the roll .  In addition, edge beads have to be trimmed and then either scrapped

or recycled.  For these reasons, manufactures consider it desirable to reduce edge bead

size, although not necessarily to eliminate them entirely, since an edge bead can be

helpful in reducing neck-in and in ensuring the uniformity of the thickness over the rest of

the film’s width (Pearson 1985: 476).  In fact, to gain these benefits, some production

lines intentionally add edge beads.
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Dr 


uroll
udie

(1.1)

1.1.4 The Draw Ratio and Draw Resonance

The properties of the film in the air gap are influenced considerably by the amount

of stretching.  The dimensionless number used to express stretching is the draw ratio (Dr),

which is defined as

where uroll and udie are the velocities of the film, at the chill roll and die, respectively.  The

value of Dr is typically between 2 and 20 (Pearson 1985: 475), although some film li nes

operate with Dr as high as 40 or more.  A potential problem, termed draw resonance,

exists when the draw ratio is too high.  Draw resonance consists of a periodic variation of

the film’s width and thickness, even at steady state operations.

1.2 Literature Review on Cast Film

Compared with other industrial polymer processing techniques, simulation of f ilm

casting has not received as much attention in the literature.  Therefore, before considering

the research done specifically on cast film, it is worthwhile to look at the applicabilit y of

related work on membrane deformation, coating flows and fibre spinning.

Studies on the deformation of Newtonian and viscoelastic membranes (Wineman

1976; White 1975; Acierno et al. 1976) have limited applicabilit y to film casting because,

unlike film casting, the thickness is assumed constant over the membrane at each time

step.  Research on coating flows (Kistler and Scriven 1983; Brown 1961) and on a curtain

of Newtonian fluid falli ng under its own weight (Adachi et al. 1988) include the effects of
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changes in thickness, but differ from the film casting process because they do not allow

for displacement control at the roll .  Furthermore, coating flows, unlike film casting,

involve low viscosity fluids and complications caused by unusually shaped fluid and solid

surfaces.  Fibre spinning studies (Mewis and Petrie 1986; Denn 1980) also consider

issues related to film casting, but whereas fibre spinning is essentially one-dimensional,

film casting is two-dimensional.  From the preceding discussion, film casting clearly has

requirements that are not addressed by the related research.

The following literature review addresses film casting’s special requirements.  To

start with, the mathematical models proposed in the literature are discussed.  Next, the

solution techniques used in solving the mathematical models are reviewed and finally, the

experimental data available from the literature are identified.

1.2.1 Mathematical Modelling of Film Casting

A mathematical model for film casting describes the physics of the process; that

is, it provides the governing equations for continuity, equili brium, and conservation of

energy.  Such a model must also address the selection of an appropriate constitutive

equation and boundary conditions.  Several different mathematical models of f ilm casting

have been presented in the literature.  These models are distinguished from one another

by the simpli fying assumptions made; for example, all of the proposed models assume

that surface tension, air drag and die swell effects can be neglected.  The most general

model proposed to date is provided by Pearson (1985: 473-479).  His model is fully two-

dimensional and can capture both neck-in and edge bead phenomena.  Furthermore, the

model allows for inertia, gravity, the sag of the sheet and nonisothermal conditions. 
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Unfortunately, owing to the complexity of the model and the lack of a specific

constitutive law, Pearson (1985: 473-479) presents the governing equations, but does not

solve the system.  Other models, which are less general, have been used to develop

solutions for specific film casting boundary-valued problems.  A summary of these

models is given in Tables 1.1 and 1.2.  Table 1.1 has the models associated with draw

resonance research, whereas Table 1.2 has the models used in simulation studies.  These

tables compare the research according to: the number of dimensions allowed; whether the

model is for isothermal conditions; the constitutive law used and whether the model

includes edge beads.  For the dimension column, the model is considered one-

dimensional (1D) if the width of the sheet is either assumed constant or infinite.  On the

other hand, the two-dimensional (2D) models allow the width to vary and the 3D model

makes no restrictive assumption about how the variables change with respect to direction.
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Table 1.1 Summary of the Mathematical Models in Draw Resonance Research

Reference Dim Constitutive
Equation

Therma
l

Edge
Bead

Yeow (1974) 1D Newtonian iso N

Aird and Yeow (1983) 1D Power-Law iso N

Minoshima and White
(1983)

1D Newtonian noniso N

Lee (1984) 2D Power-Law iso N

Anturkar and Co (1988) 1D Modified Convected
Maxwell

iso N

Barq et al. (1990) 1D Newtonian iso N

Silagy et al.  (1996a) 2D Newtonian iso N

Silagy et al. (1996b) 2D Newtonian iso N

Iyengar and Co (1996) 1D Modified Giesekus iso N

The theoretical models used for draw resonance research are generally simpler

than those used for simulation studies because the interest is on predicting the critical

draw ratio, not on finding precise steady state values.  This is illustrated by the fact that

all of the research on the stability of film casting neglects the edge bead defect and only

three of the nine studies cited allow for neck-in.  Moreover, those studies that do include

neck-in, do so in a simplified manner.  For example, the model proposed by Lee (1984)

does not actually predict neck-in, but instead uses it as an input parameter.  Silagy et al.

(1996a, 1996b) reduce the complexity of the neck-in phenomenon by using a simplified

flow field and neglecting the shear terms in the rate of deformation tensor.  Another

simplification that is common to the models proposed in the stability research, is the

assumption that the process is isothermal.  The only exception to this is the study by
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Minoshima and White (1983), but their focus is on comparing the heat transfer behaviour

of film casting with fibre spinning and blown film extrusion, rather than on finding a

specific solution for their system of equations.

The main area for complexity in the stability research comes from the constitutive

laws considered.  Table 1.1 shows that four of the nine studies cited use non-Newtonian

fluids.  Two of these studies are for power law fluids (viscosity depends on the shear rate)

and the other two introduce viscoelasticity.  The viscoelastic equations studied are all of

the differential type.  That is, some objective measure of the stress rate appears in the

constitutive equation.

From examining the models proposed in the draw resonance research, one finds

that they are too simple to predict neck-in, edge beads and nonisothermal effects.
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Table 1.2 Summary of the Mathematical Models Found in Simulation Studies 

Reference Dim Constitutive
Equation

Thermal Edge
Bead

Avenas et al.  (1986) 2D Newtonian iso N

Cotto, Duffo and Haudin (1989) 2D Newtonian noniso N

d'Halewyu, Agassant and Demay
(1990)

2D Newtonian iso Y

Duffo, Monasse and Haudin (1991) 2D Newtonian noniso N

Agassant et al.  (1991) 2D Newtonian iso N

Alaie and Papanastasiou (1991) 1D BKZ-type integral noniso N

Barq et al. (1992) 2D Newtonian noniso N

Iyengar and Co (1993) 1D Modified Giesekus iso N

Debbaut et al. (1995) 2D Power-Law,
Maxwell -B and
Giesekus

iso Y

Sakaki et al.  (1996) 3D Newtonian iso Y

Table 1.2 summarizes the simulations studies, which use mathematical models

that are characterized as one, two or three-dimensional.  The 1D models proposed have

the drawback that they cannot show neck-in or edge beads.  Alaie and Papanastasiou

(1991) also suggest that a 1D model may make poor predictions near the die due to flow

rearrangements and near the chill roll due to contact problems.  To avoid these

drawbacks, two-dimensional models have been proposed.  Although all of the 2D models

in Table 1.2 allow for neck-in, most do not allow for edge beads because they assume that

the thickness does not vary across the width of the sheet.  All of the 2D studies that

incorporate this assumption cite Sergent (1977) as the original source of their model. 
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Possibly because Sergent’s model cannot account for edge beads, it also cannot properly

capture the width reduction during stretching.  This is demonstrated by Barq et al. (1992)

who, based on the model of Sergent, show good agreement with their experimental data

except for the width reduction, which they predict as linear but observation shows as

curved.  D’Halewyu et al. (1990) show that by allowing the thickness to vary across the

width, a more realistic width reduction is obtained.  Unfortunately, their model does not

provide a realistic thickness profile across the width.  They obtain an edge bead, but the

thickness profile is U-shaped over the centre of the film, instead of being close to uniform

as often observed in practice.  A U-shaped thickness profile is reproduced in the three-

dimensional analysis of Sakaki et al. (1996), except that Sakaki et al. (1996) show a

larger neck-in than d’Halewyu et al. (1990).  A possible explanation for why films

typically have a uniform thickness in the middle has been put forward by Debbaut et al.

(1995).  Their analysis shows that the U-shaped profile in the centre of the film predicted

for a Newtonian fluid is replaced by a constant thickness profile when viscoelasticity is

introduced.  Christodoulou (1996) also states that increasing the elasticity of the melt

results in a more uniform thickness.  Furthermore, the explanation that a more uniform

thickness is due to elastic effects is supported by Chambon et al. (1996), as they show

that when a low elasticity melt is cast, the uniform thickness is lost and a U-shaped

profile is obtained.  An open question remains concerning how nonisothermal effects

influence edge bead formation and neck-in.

Although no nonisothermal model including edge beads appears to have been

developed, the thermal effects have been introduced into other models.  Thermal effects
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are presented in Michaeli and Menges (1982) for extrusion processes, but the effects of

stretching in the air are excluded.  Another thermal study recognizes the influence of the

stretching, but separates its influence from the thermal effects by assuming all of the

stretching occurs in the air gap and all of the cooling occurs on the chill roll (Billon et al.

1991).  Only a few studies allow for combined thermomechanical effects in the air gap,

and all these assume that the mechanical effects on the roll are unimportant.  One reason

thermal effects have been introduced is to consider crystal growth in the film (Cotto and

Haudin 1988; Duffo et al. 1991; Cotto et al. 1989).  The crystal growth studies show that

the crystallization of the polymer does not begin until contact has been made with the

chill roll.

The influence of heat transfer on the velocity and thickness of the film differs

considerably, depending on the polymer and the processing conditions simulated.  Some

studies (Barq et al. 1992; Duffo et al. 1991; Cotto et al. 1989), show only a minor

difference between isothermal and nonisothermal results, whereas, for the processing

conditions of Alaie and Papanastasiou (1991), the thickness is dramatically changed when

heat transfer is introduced.  Alaie and Papanastasiou (1991) has the only nonisothermal

viscoelastic model proposed to date.  Moreover, this study is the only one that uses an

integral-type constitutive equation for viscoelasticity.

Several factors are common to all of the papers in Table 1.2.  For one, they all use

constant value boundary conditions at the die; that is, the velocity, thickness and

temperature are assumed constant across the width, which is not always the case in

practice.  Furthermore, all of the studies, except Barq et al. (1992), assume that inertia,
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gravity and sag effects can be neglected.  Finally, only a single layer of film is considered

in each of these studies.  To date, multilayer films have received only limited theoretical

study (Park 1991; Pis-Lopez and Co 1996a; Pis-Lopez and Co 1996b).

1.2.2 Solution Techniques

Table 1.3 summarizes the solution techniques corresponding to the simulation

studies of Table 1.2.  This summary shows that closed-form solutions are rare and only

exist for the simplifying assumption that thickness does not vary across the width.  Of the

numerical techniques used, the finite element method (FEM) is the most popular, as it is

used for 4 out of the 8 studies that require numerical solutions.  The remaining 4 studies

are equally divided between the finite difference method, and Runge-Kutta methods.  For

the finite element simulations, the algorithm is either step-wise uncoupled or coupled. 

When the analysis is uncoupled, the velocity, width and thickness are each solved in turn,

based on the current values of the other variables.  This approach may be slow or it may

have convergence problems; therefore, use is often made of coupled algorithms, which

solve all of the variables simultaneously in each step.  No coupled solution technique has

been proposed for two-dimensional nonisothermal simulations.
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Table 1.3 Techniques used for Solving the Mathematical Models

Reference Solution Technique

Avenas et al. (1986) closed-form solution

Cotto, Duffo and Haudin (1989) an explicit finite difference method

d'Halewyu, Agassant and Demay
(1990)

step-wise uncoupled solution technique:
i) the  velocity is found using FEM;
ii ) the width is found using the Newton-

Raphson method; and then
iii ) the thickness is found using the finite

volume method.

Duffo, Monasse and Haudin
(1991)

an explicit finite difference method

Agassant et al.  (1991) closed-form solution

Alaie and Papanastasiou (1991) fully coupled Newton-Raphson FEM

Barq et al. (1992) Runge-Kutta’s and Adams-Bashforth’s methods
(Conte and De Boor 1980: 373-376)

Iyengar and Co (1993) 4th order Runge-Kutta with adaptive step size
control

Debbaut et al. (1995) fully coupled Newton-Raphson mixed FEM

Sakaki et al.  (1996) streamline finite element method

1.2.3 Experimental Data

Little experimental data for film casting appears to have been reported in the

literature.  For draw resonance, some data has been published (Barq et al. 1990;

Bergonzoni and DiCresce 1966), but this data has a periodic variation and cannot be used

for calibrating models that simulate behaviour below the criti cal draw ratio.  The most

comprehensive set of data is found in Kase (1974) for the temperature and thickness
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profiles of steady state PP film casting.  Some data is also reproduced in Cotto et al.

(1989) and in Duffo et al. (1991) that shows the width and thickness at the roll for

different polymers and inlet conditions.  Barq et al. (1992) present data for PET casting,

but for proprietary reasons their data is in dimensionless form.  Chambon et al. (1996)

include data for velocity, thickness and width as part of the validation of several film

casting models.  Finally, experimental data is provided in deGroot et al. (1993).  This data

examines how changing the fabrication variables affects the ultimate stretch, load

retention, cling characteristics, and abuse resistance of the film.

1.3 Purpose and Scope 

The purpose of the study reported in this thesis is to investigate film casting using

a finite element model.  Important requirements were that the model could take into

account the following: two-dimensional, nonisothermal behaviour; a viscous constitutive

law; gravitational and inertial effects; and the possibility of the formation of edge beads. 

The effects of die swell, sag and elasticity were neglected.  To be able to solve the highly

nonlinear system of equations, which contain a strong coupling between velocity and

thickness, a Newton-Raphson strategy was adopted.  Parametric studies were performed

using the finite element model to investigate the influence of heat transfer and self-weight

on the velocity, thickness, temperature and width.

This study is original in several respects.  First, this is the only model that predicts

the thickness variation across the width and simultaneously accommodates nonisothermal

effects, gravity and inertia.  Second, unlike previous studies, this thesis considers the



influence of nontrivial boundary conditions at the die by allowing the boundary

conditions to vary over the width.  Third, this study leaves as an open question whether

modelling the mechanics of the film is necessary once contact has been made with the

chill roll.  Finally, this thesis presents an algorithm that uses a tangential stiffness matrix

for solving the coupled system of equations.  Although not an immediate contribution of

this thesis, it is hoped that the model developed here will eventually provide a framework

for the addition of a viscoelastic constitutive equation.

The analysis of film casting begins in Chapter 2, with a one-dimensional model of

the film casting process.  The theoretical model is presented, along with a discussion on

the validity of the assumptions used.  After that, the solution technique is detailed and

tested by comparison to the closed-form solutions that are available.  This chapter also

includes a parametric study considering the influence of nonisothermal effects and a

comparison of the simulated results with the experimental data of Kase (1974).  Chapter 3

has the same organization as Chapter 2, except that here the focus is on the development,

solution and investigation of a two-dimensional model.  Chapter 4 consists of conclusions

and recommendations for future work.
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Chapter 2 One-Dimensional Model

A one-dimensional (1D) model has several advantages over a two-dimensional

(2D) model: a 1D model is simpler to derive and implement than a 2D model; the

appropriateness of modelling assumptions can be presented more clearly in one

dimension; a 1D model provides a convenient framework for considering the effect of

boundary conditions and for doing parametric studies; and a 1D model is often a

reasonable representation of wide sheets, and of the central portion of smaller sheets. 

Once a 1D model has been fully investigated, the analysis can proceed to a 2D model

with greater confidence.

This chapter starts with a presentation of the governing equations and boundary

conditions for a cast film simulation, including both mechanical and thermal equations

and a discussion of the assumptions made in their derivation.  Thereafter, the numerical

algorithm used to solve the thermomechanical system is described.  One aspect of the

numerical algorithm described is whether upwinding is necessary for the heat advection

term.  The following sections present specific numerical simulations, including:

i) comparison to the theoretical isothermal solutions, with and without the
effects of self-weight;

ii) investigation of the effects of heat transfer to the chill roll and to the air;
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iii) investigation of the influence of  the temperature sensitivity of the
viscosity; and

iv) comparison of the numerical solution to published experimental data.

The final section in this chapter provides a summary of the results.

2.1 Governing Equations and Boundary Conditions

In this section, the 1D mathematical model for film casting is developed, using the

momentum, continuity, constitutive, and conservation of energy equations, together with

suitable boundary conditions.  Thereafter, the appropriateness of the modelling

assumptions is discussed.  The presentation of the 1D model is based on the setup shown

in Figure 2.1, with the origin of the coordinate system placed at the midpoint between the

die lips.  By definition, the x1, x2 and x3 axes are in the machine, transverse and out-of-

plane directions, respectively.  This system can be considered one-dimensional in the x1-

direction if the following conditions hold: the film is thin; extrudate swell is neglected;

and the film is either infinite, or constrained, in the transverse direction.  Although Figure

2.1 shows a chill roll, a water bath could have been illustrated in its place.  Furthermore,

the machine direction (x1) need not be vertical as shown.
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Figure 2.1 Setup for one-dimensional film casting

2.1.1 Mechanical Equations

To find the 1D momentum equation, one can consider the forces applied to a

section of film with unit width and infinitesimal length.  Figure 2.2 shows the tension and

body force applied to the film; air drag and surface tension are neglected as they are

assumed small.  The tension is the product of thickness (h) and longitudinal stress (111),

while the body force is the product of density (!), acceleration (b), thickness (h) and

length (dx1).  Equilibrium requires that the unbalanced force be equal to the change in

momentum.  In a spatial frame of reference this requirement is expressed as
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Figure 2.2 Derivation of the 1D momentum equation

where the inertial term on the right corresponds to the material derivative of velocity in

the x1-direction (u1), under steady state conditions.  When the film is vertical, the

acceleration (b) is equal to the acceleration due to gravity (g).  The gravity term and the

inertial term in Equation 2.1 can be neglected when they are much less than the tensile

force.  This simplification is discussed further in Section 2.1.3.

A similar approach to that used for deriving the momentum equation can be used

to derive the continuity equation.  Figure 2.3 shows the mass flux into and out of a
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Figure 2.3 Derivation of the 1D continuity equation

1ij 
 	p/ij � 2�Jij (2.4)

control volume at steady state.  For an incompressible fluid these rates are equal;

therefore,

Assuming the density is constant, this equation can be written as

The constitutive equation adopted in this research is that for a Newtonian fluid,
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where 1ij is the stress tensor, p is the hydrostatic pressure, /ij is the Kronecker delta, � is

the shear viscosity and Jij is the rate of deformation tensor.  For a film, the out-of-plane

stress (133) is zero, thereby allowing one to relate the hydrostatic pressure to the rate of

deformation in the x3-direction via

where u3 is the out-of-plane velocity.  The pressure (p) can in turn be related to 0u1/0x1 by

using the continuity requirement.  Since the rate of change of the velocity in the

transverse direction (0u2/0x2) is zero for plane strain conditions, continuity requires that

Substituting Equations 2.5 and 2.6 into Equation 2.4, allows one to relate the stress in the

machine direction to the rate of deformation in that direction; that is,

where �p is by definition the planar elongational viscosity.

Equations 2.1, 2.3, and 2.7 govern the mechanical response of the domain.  A

solution however, requires specification of the boundary conditions, which are defined in

Figure 2.4.  The inflow at the die is specified by the velocity and thickness at the die, udie

and hdie, respectively.  For a displacement-controlled setup, the downstream velocity is

specified as uroll.  This is the velocity at the location where the film is assumed to stick to

the roll so that no further deformation is possible.  As mentioned in Chapter 1, the ratio of
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L 
 Lgap � Lroll (2.8)
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x1

Figure 2.4 Mechanical and thermal boundary
conditions and heat transfer
characteristics

uroll/udie is defined as the draw ratio (Dr).  On the other hand, for a load-controlled

problem, the force (F = h111) can be specified at the point where the film sticks to the roll. 

This sticking is assumed to occur at a distance of L from the die, where

In this equation Lgap is the length in the air gap and Lroll is the length along the roll before

sticking.  This study assumes that there is no friction between the film and the roll prior to

the point where the film ceases to deform.  The other parameters provided in Figure 2.4

apply to the thermal boundary conditions and heat transfer and are defined in the next

section.
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2.1.2 Heat Transfer Equations

Figure 2.5 shows the heat transfer for a section of f ilm due to conduction, surface

cooling and the change in the heat energy stored in the section.  At steady state, the

change in storage of the heat energy leads to an advective term.  Advection is the product

of density (!), specific heat capacity (C), velocity (u1) and thickness (h), while conduction

(q) follows Fourier’s law; that is, , where k is the thermal conductivity andq 
 	k
dT
dx1

T is the film temperature.  The surface cooling is modelled using Newton’s law of

cooling, with . being the one-sided heat transfer coeff icient and Tair the temperature of

the surrounding air.  If  the principle of conservation of energy is applied to this section of

film, the following equation results:

Equation 2.9 does not include a source term for viscous dissipation, as it is assumed

negligible for the film casting process.
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Figure 2.5 Derivation of the 1D conservation of thermal energy
equation

An ill ustration of the thermal boundary conditions and heat transfer coeff icients is

provided in Figure 2.4.  At the die, the temperature is prescribed as Tdie and over the

film’s length the heat transfer coeff icient (.gap and .roll) and ambient temperatures (Tgap

and Troll) are specified.  The film is divided into two sections, of lengths Lgap and Lroll, as

the heat transfer properties of these two sections differ.  Over Lgap the heat transfer is to

the surrounding air, whereas over Lroll the heat transfer is to the chill roll , or water bath. 

In general, the heat transfer coeff icient must take into account free convection, forced

convection, and radiation.  The heat transfer then, will vary along the length of the film

and from one side of it to the other.  A detailed analysis of the heat transfer for Lgap is
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found in Barq et al. (1992) and for Lroll in Billon et al. (1991), Cotto et al. (1989) and

Duffo et al. (1991).  In the current investigation a simple approach is considered

adequate; a single heat transfer coefficient and ambient temperature are specified for each

section.

Estimation of .gap

To estimate the heat transfer coefficient over Lgap the process is considered

analogous to forced convection over a flat plate.  For this type of heat transfer .gap is

found using the following equation (Incropera and DeWitt 1985: 277):

where .gap is the average one-sided heat transfer coefficient, kair is the thermal

conductivity of the surrounding air and NuL is the average Nusselt number.  The Nusselt

number for laminar forced convection of a fluid over a flat plate is approximated by

(Incropera and DeWitt 1985: 318)

For Equation 2.11 the Reynolds number (ReL) and the Prandtl number (Pr) have the

following definitions:

in which uair is the speed of the forced air relative to that of the plate, Lgap is the length of

the film in the air gap, !air is the density, �air is the absolute viscosity, air is the kinematic�
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Figure 2.6 Definition of the variables for the
calculation of the heat transfer coefficient in
the air gap (.gap)

viscosity and air is the thermal diffusivity.  The air properties are estimated for a�

pressure of one atmosphere (101.3 kPa) and a temperature of Tf  = (Tair + Tp)/2, where Tair

is the air temperature far from the plate and Tp is the temperature of the plate.  For the

cast film process, Tp is assumed equal to the temperature at the die (Tdie).  Figure 2.6

summarizes the variables of interest for the calculation of .gap.

Estimation of .roll

Over the chill roll the heat transfer coefficient does not have a simple analogy like

that for .gap because of two complications: each side of the film is cooled at a different

rate; and the heat transfer characteristics of an air-knife or a vacuum box are difficult to

estimate.  With a water bath however, a simple analogy can be used; .roll can be estimated

using the approach described above for a flat plate, but now the fluid properties are for
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water, instead of air.  The influence of the heat transfer over Lroll is considered further in

Section 2.4.1.

Temperature Dependence of Material Properties

Changes in the temperature of the melt result in changes to its material properties. 

In this analysis, the assumption is that, over the range of temperatures in question, only

the viscosity change is significant.  An Arrhenius relation is generally a good

representation of the temperature dependence of viscosity:

where �o is the reference viscosity, E is the activation energy, R is the gas constant (8.314

J mol-1 K-1),  T is the temperature and To is the reference temperature.  This relation has

the drawback that the viscosity of the material near the solidification temperature may

increase more rapidly than is predicted by Equation 2.13.  To address this shortcoming,

an alternative viscosity function has been introduced within the context of blown film

production (Sidiropoulos 1996):

where a, c and d are constant parameters and Ts is the solidification temperature.  Both

viscosity-temperature relations are used in subsequent simulations.
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2.1.3 Discussion of Assumptions

The assumptions made in the above derivations of the governing equations place

several physical requirements on the system, including the following: the film is thin; the

thickness gradient is small; viscoelasticity can be neglected; a simple thermal model is

adequate; and the viscosity is within an appropriate range of values.  The appropriate

range of viscosity values is determined by the assumptions that viscous dissipation,

inertia, self-weight and surface tension can be neglected.  This section discusses the

physical requirements placed on the system and whether or not they are reasonable for a

typical cast film line.  To make quantitative statements about the validity of the various

assumptions, the behaviour of the 1D, gravity free, isothermal solution is used as a basis

for comparison.  Appendix A.1 presents the closed-form solution for this case.

i) The Thin Film Requirement

In the derivation of the governing equations the film is considered thin, so that the

variables of longitudinal stress (111), velocity in the machine direction (u1), and

temperature (T) can be assumed independent of x3.  This assumption is used in the

derivations so that the film can be considered in plane stress, and so that the derivations

of the equilibrium, continuity and conservation of energy equations are straightforward. 

The assumption that velocity and stress do not vary over the thickness appears valid, but

Pearson (1985: 475) points out that this is not true for the temperature.  Pearson shows

this by demonstrating that the Graetz number (Gz) is generally too high to consider the

temperature constant over the thickness.  The Graetz number, which represents the ratio
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of thermal conductance due to advection over the length to the thermal conductance due

to conduction over the thickness, is defined as 

where Q (= udiehdie ) is the volume flux per unit width, � is the thermal diffusivity of the

polymer and  is a characteristic sheet thickness.  Figure 2.7 shows a schematic of theseh

variables for film casting.  Generally, thickness values are not small enough to

compensate for the facts that the polymer melt is a poor thermal conductor and that the

processing speeds are relatively high.  However, the 1D conservation of energy equation

(Eq. 2.9) is still valid if T is considered as the mean temperature ( ):T

The assumption that the mean temperature is adequate for relating the temperature and

viscosity is suggested by Pearson (1985: 475).
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Figure 2.7 Definition of the variables for the
calculation of the Graetz number

ii) The Small Thickness Gradient Requirement

In the derivation of governing equations, the implicit assumption that the

thickness gradient is small i s necessary in two places.  First, this requirement is necessary

for the plane stress assumption that 133 equals zero.  In order for this assumption to be

true, the x3-axis and the normal to the surface have to be the same, which implies that the

thickness gradient must be small .  Second, the heat transfer from the surface of the film

assumes that dh/dx1 is small .  In the derivation of the energy conservation equation

(Figure 2.5) the film loses heat over the length ûx1.  This approximation is only valid if

the thickness changes very littl e over the length; that is, if the arc length of the surface of

the film can be considered equal to the film’s length along the x1-axis.  For the theoretical
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isothermal solution (Appendix A.1), the requirement that dh/dx1 be small is met.  This is

seen from the solution for the thickness gradient, which is largest at the outlet where

.  For typical values of hdie = 10-3 m, Dr = 10 and L = 0.5dh/dx
1

 	hdieln(Dr)/L

m, the value of dh/dx1 � 5×10-3.  Although dh/dx1 is generally small , this is not always the

case.  Therefore, care should be taken when interpreting the numerical results.  The 2D

model for example, has sharp corners at the edges and the nonisothermal simulations may

show high thickness gradients at the die outlet.

iii) Viscoelasticity

The constitutive equation used in the derivations of Section 2.1.1 assumes a

viscous fluid, but often polymers are better represented by a viscoelastic constitutive

equation.  This thesis uses the simpler viscous model for two reasons.  First of all , the

main goal of this research is to investigate the influence of nonisothermal effects, and

viscoelasticity adds complexity that does not directly contribute to this goal.  Secondly,

some polymers used in film casting are well represented by a viscous model, such as

polyethylene terephthalate (Pearson 1985: 10, 42; Barq et al. 1992).

iv) Simple Heat Transfer Model

Heat transfer in this study is simpler than that actually observed in film casting. 

The proposed model uses a constant heat transfer coeff icient and neglects free

convection, radiation and the heat released during solidification.  Support for the decision

to use a simpler model for heat transfer is found in the fact that even a more rigorous

model shows an almost constant heat transfer coeff icient in the air gap, except near the

die and the roll (Barq et al. 1992).  Also, the proposed model can provide a framework for



35

1
11

du
1

dx
1

« !Cu
1

dT
dx

1
(2.17)

investigating the influence of nonisothermal effects without necessarily having to provide

quantitative predictions.  Furthermore, assuming that heat released during solidification

can be ignored is valid because solidification occurs on the roll, after the geometry is no

longer changing (Cotto et al. 1989; Duffo et al. 1991; Billon et al. 1991).  Finally, in

recognition that the heat transfer coefficients may not be estimated accurately, a

parametric study is presented in Sections 2.4.1 and 2.4.2, to learn the sensitivity of the

model to changes in these coefficients.

v) Viscous Dissipation

The assumptions made in deriving the governing equations restrict the admissible

range of viscosity values.  The upper limit is set by the assumption that viscous

dissipation can be neglected, while the lower limit is set by the assumptions that inertia,

self-weight and surface tension can be neglected.  Once the limits are determined, they

can be compared with the limits typically encountered for polymer melts, 102 Pa#s � � �

105 Pa#s.

To find the viscosity below which viscous dissipation would not make a

significant contribution, one can consider the theoretical isothermal solution under typical

processing conditions.  Viscous dissipation can be neglected if its contribution to the heat

transfer in the conservation of energy equation (Eq. 2.9) is much less than that due to

advection; that is, if
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The constitutive equation (Eq. 2.7) and the theoretical solutions for u1 and du1/dx1

(Appendix A.1) can be substituted into this equation.  By recognizing that  is(Dr)
x1/L

largest for x1 = L and rearranging, the following relationship is found:

For typical values of ! = 900 kg/m3, C = 2000 J/(kg K), dT/dx1 = 100 K/m, L = 0.2 m, udie

= 0.01 m/s, and Dr = 10, the requirement is that � << 3.4×106 Pa#s.  This means that the

contribution of viscous dissipation can be considered negligible up to and including the

upper limit of typical viscosity values.  Even for � = 105 Pa#s the heat transfer by viscous

dissipation is only about 3% of that due to advection.

vi) Inertia Term

The lower limit for the value of viscosity is influenced by the assumptions that the

inertia term in the momentum equation can be ignored.  To find the lower limit associated

with neglecting inertia one considers the Reynolds number (Re), which is the ratio of

inertial to viscous forces.  Reynolds number is defined in Equation 2.12 and can be

evaluated for the film.  So that the inertia term can be neglected, Re must be less than

one; therefore,

where u1 is a characteristic velocity, which has an upper estimate of uroll.  For the typical

values defined previously and for u1 = uroll = 0.1 m/s, the viscosity (�) must be much

greater than 18 Pa#s.  This shows that at the lower limit of viscosity, � = 102 Pa#s, caution
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should be used if ignoring the inertial contribution.  Therefore, the inertial term is

included as an option in the numerical model proposed in this study.

vii) Surface Tension

Another assumption that effects the admissible lower limit of viscosity is that

surface tension can be neglected.  The capillary number (Cn), which is the ratio of surface

tension to viscous forces, is presented in Dobroth and Erwin (1986) in order to figure out

the importance of surface tension:

where S is the surface energy per unit area, and t is the processing time, which is

considered as the time spent in the air gap.  These variables are summarized for film

casting in Figure 2.8.  Equation 2.20 implies that

Sample numbers that provide a maximum estimate for the right-hand side of this equation

are provided in Dobroth and Erwin (1986):  = 0.001 m, t = 10 s and S = 0.035 N/m. h

The result is that � >> 350 Pa#s.  This suggests that the lower limit of typical viscosity

values (102 Pa#s) must include surface tension effects when the processing time is greater

than 10 s.  However, the processing time is usually much shorter than this, so generally

surface tension can be neglected.
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viii) Self-Weight

Finally, the assumption that the self-weight can be ignored also places a lower

limit on the viscosity value.  The self-weight can be ignored if it is much less than the

tension applied to the film.  For a vertical film the weight is greatest at the die.  To find an

approximate weight, the theoretical weightless solution for thickness is substituted into an

expression for the differential weight (dW = !ghdx1) and integrated over the length to

yield:

To relate the tension (F) to the viscosity, the constitutive equation and the theoretical

solution for h are substituted into the tension equation (F = h111) to find:
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Figure 2.9 Ranges of viscosity values for which viscous dissipation,
inertia, surface tension and self-weight may have to be
included in the mathematical model of f ilm casting

If the self-weight can be neglected then W << F.  Using this condition with Equations

2.22 and 2.23, the lower limit required for viscosity can be expressed as

Typical values of ! = 900 kg/m3, g = 9.81 m/s2, L = 0.2 m, Dr = 10 and udie = 0.01 m/s,

require that � >> 1.5×103 Pa#s.  This means that, for viscosity values less than

approximately 104 Pa#s, the self-weight of the film can make a contribution. 

Consequently, self-weight is included as an option in the current model of polymer film

casting.

A summary of how the above assumptions relate to viscosity is provided in Figure

2.9, along with the typical viscosity range.
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2.2 Solution of the Coupled System

The goal of this analysis is to find the velocity, thickness and temperature

distributions.  To find these variables a coupled algorithm was developed that solves the

governing equation simultaneously, as opposed to an uncoupled algorithm, which solves

each equation in a stepwise manner.  A coupled approach has the advantage of more rapid

convergence.  Moreover, the solution provided by a coupled algorithm does not depend

on the order the equations are solved in, which is a potential pitfall for uncoupled

algorithms.

2.2.1 Finite Element Equations

The solution of the thermomechanical system by the finite element method first

involves expressing the governing differential equations in their equivalent integral form. 

For the equilibrium equation (Eq. 2.1), this is done by multiplying by a virtual velocity

(/u1) and integrating over the length to obtain

After integrating by parts, this equation can be modified to express the weak form of

equilibrium,

where /J11 is the virtual rate of deformation in the machine direction that is consistent

with the virtual velocity /u1.  These integrations are carried out for a unit width and the

product h111 = F is the force applied at the roll.  When solving boundary value problems,
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either the force (F) or the velocity (u1) is specified at the boundary, but not both

simultaneously.

The integral form of the continuity equation (Eq. 2.3) involves multiplication by a

weighting function (/h) and integrating over the length to yield:

Finally, the integral of the conservation of energy equation multiplied by a virtual

temperature (/T) is

which after integration by parts results in the following:

Although T is known at the upstream boundary (x1 = 0), it is not known at the

downstream boundary (x1 = L), as this boundary is artificial and the physics of heat

transfer are unknown here a priori.  The approach used in this analysis is to specify a

natural boundary condition of q = 0 at x1 = L, for two reasons.  First, specifying that the

heat flux due to conduction is zero is a good approximation of the conductive flux for

polymers, which have very low thermal conductivity.  Second, specifying a zero boundary

flux at synthetic boundaries has often shown success (Papanastasiou et al. 1992).  With

the boundary terms removed the equation is
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With the governing equations expressed in an integral form, a finite element

discretization can be introduced.  The discretization for a n-noded, one-dimensional

element is

in which N is the shape function matrix, a is the degree of freedom vector, and ui, hi, Ti

and Ni are the velocity, thickness, temperature and shape function values corresponding to

node i.  Some researchers have suggested that the order of interpolation of thickness

should be one order less than that for velocity, in an analogy with the pressure field in a

mixed formulation (Debbaut et al. 1995).  This is not a direct analogy however, as the

thickness in the continuity equation (Eq. 2.3), unlike the pressure, depends on the velocity

as well as the gradient of the velocity.

The above discretization (Eq. 2.31) can be substituted into the field equations

(Eqs. 2.26, 2.27 and 2.30), along with the constitutive law (Eq. 2.7), to yield the

following finite element equations:
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in which Keqlb, Kcont and Kthrm are the stiffness matrices for equili brium, continuity and the

conservation of thermal energy; Kgrad and Kinrt are the contributions to Keqlb from the

gradient of stress and from inertia; Kadvt, Kcond and Knewt refer to the contributions to Kthrm

from advection, conduction and Newton’s law of cooling; and Reqlb and Rthrm are the load

vectors for equili brium and thermal energy.  In these equations the stiffness matrices and

Reqlb are functions of the degree of freedom vector a.  The stiffness matrices and load

vectors are presented in full i n Appendix B.1.

2.2.2 Derivation of the Tangential Stiffness Matrix

To solve the coupled system using the Newton-Raphson method, the notion of the

residual vector (%) is introduced, where

For equili brium %  =  0.  In this equation the stiffness matrices, load vectors and the

solution vector (a) are applied to the entire system, as opposed to a single element.  The

residual can be approximated using a first order Taylor’s expansion about any nearby

nonequili brium solution an,
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The tangential stiffness matrix (KT) is the derivative of the components of the residual

load vector with respect to the degrees of freedom,

Appendix B.1 explains how the tangential stiffness matrix was calculated.

Once the global tangential stiffness matrix is found the change in the variables is

determined by solving

A new approximation to the solution vector is calculated by adding ûan to an.  This

process continues until the relative change in the variables is less than some prescribed

tolerance.  The stopping criterion used for this study was,

in which u, h and T are the current solutions found in a for velocity, thickness and

temperature, while ûu, ûh, and ûT are the changes to these variables contained in ûa. 

Unless stated otherwise, the tolerance used in the 1D study was 0.001.

For the Newton-Raphson method, convergence depends on a good initial estimate

of the solution.  Based on experience from the problems studied in this thesis a good

initial guess for the velocity and thickness are their theoretical isothermal solutions,

which are provided in Appendix A.1.  A linear profile proved to be a good estimate for

the temperature.  Even with good initial estimates, the algorithm was found not to

converge if the heat transfer coefficient was too high.  In this case, the final solution was
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found through progressively incrementing the heat transfer coeff icient until it reached its

full value.

2.2.3 Upwinding Finite Elements

Although the other stiffness matrices defined in section 2.2.1 can be evaluated

using standard Gauss quadrature, caution is required when evaluating the advection

stiffness matrix (Kadvt) in this manner.  For heat transfer problems in which advection

dominates, the standard Galerkin method can lead to spurious oscill ations in the solution

(Christies et al. 1976).  One indication of whether this may be a problem is how large

advection is relative to conduction, which is represented by the Peclet number (Pe),

Pe is smallest at the die, where typical values of the parameters are: udie = 0.01 m/s, Lgap =

0.5 m, k = 0.2 W/(m K), ! = 900 kg/m3, and C = 2000 J/(kg K).  For these values Pe is

4.5×104, which shows the importance of advection relative to conduction and that the

standard Galerkin method could potentially cause problems.  When advection dominates

upwind finite element schemes can be used to alleviate the diff iculties.

An Upwind Finite Element Scheme

Several approaches are available for 1D upwind finite elements, but one of the

simplest is presented by Hughes (1979).  In his method upwinding is accomplished for a

1D element by evaluating the advection stiffness matrix as
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where � is the optimum integration point, Oe is the origin of the isoparametric coordinates

for the element, J is the determinant of the Jacobian of the isoparametric transformation

and  is the weight factor, which is 2 for 1D problems.  The optimum integration pointW

(�) is defined as

Neglecting Upwinding for the Thermal Analysis of Film Casting

Upwinding was found unnecessary for the numerical simulation of the

temperature distribution in a film, even though the Peclet number is high.  The reason for

this is that the proposed model circumvents the usual cause of trouble, which is

unnaturally forcing an essentially 1D equation to satisfy two extreme boundary

conditions.  In Equation 2.9 the advection term is 1D and dominates the behaviour, but

this equation is required to satisfy not one but two boundary conditions because of the

conduction term.  However, the thermal boundary conditions proposed in Section 2.2.1

have only one extreme boundary condition.  The condition for zero thermal flux at the die

does not place any extreme requirements on the solution.  Therefore, the boundary

conditions are in keeping with the essentially 1D nature of the governing equation and the

source of trouble is bypassed.

As suggested by the previous paragraph, upwinding is generally required when

two thermal boundary conditions are fixed.  This is shown by considering the heat

transfer in a sheet moving with a constant velocity, with the temperature specified at x = 0

and x = L.  Carslaw and Jaeger (1959: 148) derived the closed-form solution for this
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Figure 2.10 Temperature distributions for fixed boundary conditions at the die and at
the roll for theory (� ), upwinding (�) and no upwinding (--q--)

problem, which is reproduced in Appendix A.2.  The parameters used were k = 0.2 W/(m

K), ! = 900 kg/m3, C = 2000 J/(kg K), u1 = 0.01 m/s, h = 0.001 m, L = 0.5 m, . = 2.0

W/(m2 K), Tair = 0.0 (C, Tdie = 180 (C, and Troll = 100 (C.  A comparison of the

theoretical solution and the numerical solutions with and without upwinding (Figure

2.10) shows that upwinding is essential here.  The upwinding solution has less than a 0.13

% relative error, while the standard Galerkin solution has a relative error exceeding 479

%, in addition to spurious oscillations.

Film casting however, does not use a boundary condition at the roll like that of the

previous example.  In film casting, there is a zero thermal flux condition at the die, which

allows the standard Galerkin method to make satisfactory temperature predictions.  The

theoretical solution used to illustrate this is that for a sheet with an infinite length in the

machine direction.  Carslaw and Jaeger (1959: 148) derive a closed-form solution for this
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Figure 2.11 Temperature profiles for an infinite sheet for the theoretical (� ), upwind
(�) and standard Galerkin (q) solutions.

case, which is reproduced in Appendix A.2.  Figure 2.11 shows the theoretical and

numerical results over the first 0.5 m of the infinite length, using the same parameters as

above, except that Troll is no longer specified.  These results show that the standard

Galerkin method performs slightly better than the upwind finite elements (0.608 %

maximum relative error versus 0.612%).  In conclusion then, upwinding is not considered

necessary for the heat transfer in the film casting problem.

Upwinding for the Continuity Equation

Debbaut et al. (1995) use upwinding for the continuity equation (Eq. 2.3), but this

was not considered necessary in this study.  Upwinding is not included because the

coefficients for the different order derivatives of velocity are approximately the same in

the continuity equation.  The coefficients for u1 and du1/dx1, which are dh/dx1 and h,

respectively, have similar magnitudes.



49

2.3 Isothermal Simulations

Before investigating the effects of allowing the temperature to vary, the finite

element program was tested against two closed-form isothermal solutions.  One solution

is for film casting, neglecting gravity and inertia, and the other is for a film falli ng under

its own weight and includes gravity and inertia.  These two different cases, along with

other simulations, provide a basis for considering the influence of gravity and inertia on

isothermal film casting.

2.3.1 Comparison to the Theoretical Isothermal Solution

The closed-form solution for 1D isothermal film casting, which assumes that the

polymer’s self-weight and inertia can be ignored, is derived in Baird and Colli as (1995)

and is reproduced in Appendix A.1.  A comparison of the closed-form and numerical

solutions for the dimensionless velocity and thickness (Figure 2.12), shows that the

numerical solution is in excellent agreement with the closed-form solution.  The

maximum relative error for the velocity is 0.005 % and for the thickness is 0.1%.  For the

simulation 30 elements were used and the input data were as follows: udie = 0.01 m/s, hdie

= 0.001 m, Dr = 10, � = 1.6×105 Pa#s, and L = 0.3 m.  In the case of 15 elements the

maximum relative errors increased to 0.01% and 1.7% for the velocity and thickness

distributions, respectively.
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Figure 2.12 Isothermal drawn film solutions for the theoretical velocity (� ) and
thickness (à) and the numerical velocity (�) and thickness (q)

2.3.2 The Influence of the Film’s Self Weight

A closed-form solution is also available for a sheet of viscous fluid falli ng

vertically under its own weight.  For this case, the self-weight is included because it

drives the solution.  Inertia is also included as Reynolds number is no longer small

because in the following simulation a low viscosity and a large length were used.  The

closed-form solution, derived in Clarke (1966), is given in Appendix A.5.  Clarke’s

solution is for udie = 0, which is an impossible boundary condition for the numerical

algorithm, since if udie = 0 then u1 is zero for all x1, because continuity requires that hu1 =

hdieudie.  As a result, the numerical algorithm was started from a point where the velocity is

known from the closed-form solution.  For the initial guess, the velocity profile for a free

falli ng body was used, .  The input parameters were � = 102 Pa#s, !u1 
 2gx1 � u 2
die
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Figure 2.13 Curtain velocity versus distance for theory (� ) and numerical simulation
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= 900 kg/m3, Lgap = 13.5 m and hdie = 0.001m.  The numerical solution used 30 elements

and udie = 2.542 m/s at x1 = 0.836 m.  As shown in Figure 2.13, the numerical results are

in excellent agreement with the theory.  If the number of elements is decreased to 15 then

essentially the same solution is found.  The plot uses the dimensionless variables (U and

X) defined in Brown (1961).

In film casting the effect of the self-weight of the polymer can be seen by

increasing its influence with an associated decrease in the viscosity.  Figure 2.14 shows

how the velocity profile changes for a vertical film casting line as the viscosity decreases

by factors of 10.  The results agree with the assumption that the self-weight and inertia

are not important for large viscosity values.  For � �104 Pa#s the solution is essentially

identical to the theoretical solution neglecting self-weight and inertia, which does not

depend on viscosity.  For � � 103 Pa#s though, the self-weight has a notable influence.  As
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Figure 2.14 Velocity profiles for the cast film process with � values in Pa#s of 102 (�),
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the viscosity decreases the self-weight of the polymer leads to a more rapidly increasing

velocity (and associated decreasing thickness).

2.4 Performance of the Nonisothermal Model

The previous section tested the numerical solution for the isothermal model.  The

next step, is to combine the mechanical and thermal models to see how they interact. 

This section investigates this interaction by varying the thermal parameters that are

difficult to estimate; that is, heat transfer to the chill roll, heat transfer to the air, and the

temperature dependence of the viscosity.

So that the simulations in this section could be compared with one another, they

were all completed with the same grid, polymer, and processing conditions.  The grid

consisted of 30 elements and the polymer was LDPE (low density polyethylene), for
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which ! = 920 kg/m3, k = 0.24 W/(m K), and C = 2300 J/(kg K) (Rauwendaal 1986: 218). 

For LDPE, the temperature dependence of the viscosity can be represented using

Equation 2.14, with the following parameters: �o = 1.6×105 Pa#s, To = 180 (C, Ts = 95 (C,

a = 0.214, c = 5.75 and d = 1.0 (Sidiropoulos 1995).  Owing to the large viscosity, the

effects of self-weight and inertia were neglected.  For the simulations in this section, the

processing conditions were defined as shown in Figure 2.15.  This figure includes the

heat transfer coeff icients, which are derived in the following paragraphs.

A reasonable value for .gap can be found using the approach outlined in Section

2.1.2.  If Tair is assumed as 30 (C then Tf  = 105 (C and the air properties at a pressure of
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one atmosphere are kair = 25×10-3 W/(m K), �air = 18×10-6 Pa#s, !air = 13×10-1 kg/m3 and Pr

= 0.76 (Avenas et al. cited in Barq et al. 1992).  For these data and a relative air speed of

uair = 1.2 m/s, Equations 2.10, 2.11 and 2.12 predict a heat transfer coeff icient of

approximately 10 W/(m2 K).  This value agrees with Michaeli and Menges (1982) and is

of the same order of magnitude as those used by Barq et al. (1992), Cotto et al. (1989)

and Duffo et al. (1991).

As explained in Section 2.1.2, .roll is diff icult to obtain from the theoretical

equations of heat transfer.  However, it is possible to provide a reasonable estimate, from

the knowledge that the film freezes during contact with the chill roll .  To take advantage

of this knowledge use is made of an equation that is derived in the next section, Equation

2.41.

Equation 2.41, relates the temperature of the film to the heat transfer coeff icient. 

For the polymer and processing conditions described above, this equation estimates

T(Lgap) � 154 (C.  Assuming that, over the length Lroll, the film’s temperature drops from

154 (C to the solidification temperature, Equation 2.41 requires that .roll � 60 W/(m2 K). 

This value likely underestimates the heat transfer coeff icient because films often freeze

over a distance shorter than Lroll.

If  the alternative method of using a water bath were employed then the cooling

would occur at a higher rate.  With a water bath, the approach used for .gap can be used,

with water as the fluid instead of air.  If Tair is assumed as 20 (C and Tp is assumed as 154

(C, then Tf  � 90 (C.  The water properties at Tf and a pressure of one atmosphere are as

follows: kwater = 0.67 W/(m K), �water = 3.16×10-4 Pa#s, !water = 965.3 kg/m3 and Pr = 1.98
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(Bejan 1984: 462).  If these values are substituted into Equations 2.10, 2.11 and 2.12,

along with uair = uroll, then the value of .roll is about 990 W/(m2 K).

In the simulations that follow, the value of 60 W/(m2 K) is used as the basis for

comparison.  This value likely represents a conservative estimate for .roll.

2.4.1 Effect of Heat Transfer to the Chill Roll

Over the air gap, the thermal response does not depend on the heat transfer at the

roll.  Although the chill roll rapidly cools the film, the poor thermal conductivity of the

polymer means that this affects the upstream temperature very little.  Temperature

profiles for .roll values of 30, 60, 90 and 120 W/(m2 K), which are shown in Figure 2.16,

have a maximum relative difference of only 0.1% in the air gap.  The temperature profiles

of Figure 2.16 consist of two distinct, approximately linear, segments.  This figure also

shows the temperature values predicted by solving the energy conservation equation

neglecting conduction,

This equation is derived in Appendix A.3.  A solution for temperature can be found

independent of the velocity and thickness profiles, because the solution depends only on

the product of velocity and thickness, which is constant.  Values from Equation 2.41 are

in excellent agreement with the numerical predictions, with a maximum relative

difference of only 0.1% between them.  Clearly, the effects of thermal conductivity of the

polymer can be ignored.



56

0 
0.1 
0.2 
0.3 
0.4 
0.5 
0.6 
0.7 
0.8 
0.9 

1 

0 0.2 0.4 0.6 0.8 1 

Distance x1/L

Contacts Chill Roll

Figure 2.16 Numerical temperature profiles (� ) and theoretical profiles for pure
advection for .gap = 10 W/(m2 K) and .roll = 30 (�), 60 (q) and 90 (±)
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As a consequence of the insensitivity of the temperature in the air gap to the heat

transfer at the chill roll , the mechanical variables of f ilm casting are also essentially

independent of .roll.  With .roll values of 30, 60, 90 and 120 W/(m2 K), the maximum

relative difference among all of the simulated thickness distributions is less than 0.3%.

Experimental observations support the conclusion that the film’s thickness distribution is

insensitive to changes in .roll, as they show that the geometry of the film does not change

once contact is made with the chill roll (Bill on et al. 1991; Cotto et al. 1989).  These

numerical and experimental results indicate that it is not necessary to model the chill roll

to predict the mechanical or thermal response of the film in the air gap.
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Figure 2.17 Temperature distributions for numerical simulations (� ) and using
Equation 2.42 with .gap = 2.0 (a), 10.0 (/), and 20.0 (q) W/(m2 K)

2.4.2 Effect of Heat Transfer to the Air

To learn the influence of heat transfer to the air, the parameter .gap is given values

of 2.0, 10.0 and 20.0 W/(m2 K).  Simulated temperature profiles for these values are

provided in Figure 2.17, along with profiles found using the following linear

approximation:

The slope for this equation comes from the derivative of Equation 2.41, which is constant

as long as the exponential function is close to unity.  Equation 2.42 has a maximum

relative error of 7.1% compared with the numerical solution when .gap = 20.0 W/(m2 K)

and x1 equals Lgap.  An increase in the error occurs because the assumption that the slope

is constant, made by Equation 2.42, is not strictly valid over the entire range of x1.
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For larger values of .gap the linear approximation for temperature introduces error,

but for smaller values it provides good results, as one might expect.  Therefore, the linear

temperature profile was used to find an approximate closed-form solution for the

nonisothermal velocity (Appendix A.4):

where ”a” is the temperature sensitivity of the Arrhenius equation (Eq. 2.14).  Equation

2.43 agrees very well with the numerical results (Figure 2.18), with a maximum relative

error of 4.3%.  The maximum error occurs for the curve with the highest heat transfer

coeff icient, because for the higher values of .gap the assumption of a linear temperature

profile begins to breaks down.  Figure 2.18 shows that as the heat transfer coeff icient

increases the velocity increases more rapidly.  This is a result of a higher .gap leading to a

more rapid decrease in T.  This in turn causes a higher viscosity, which results in u1

approaching uroll faster for the same x1.
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Figure 2.18 Velocity profiles for numerical simulations (� ) and for Equation 2.43 with
.gap = 2.0 (a), 10.0 (/) and 20.0 (q) W/(m2 K)

2.4.3 Effect of the Temperature Sensitivity of the Viscosity

Up to this point in the analysis, the temperature dependence of the viscosity has

been modelled using Equation 2.14.  This equation has better agreement with viscosity-

temperature data near the solidification point than the conventional Arrhenius relation,

which is obtained when c equals zero.  However, away from the solidification

temperature the two relations are essentially the same.  In film casting solidification does

not occur in the air gap; hence, the more complex viscosity-temperature relation may not

be necessary.  After rerunning the simulations of section 2.4.2 with c = 0, instead of 5.75,

it was found that the original results were reproduced.  This suggests that c can be

assumed equal to zero and the sensitivity study can focus on the  “a” parameter alone.
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Figure 2.19 Velocity profiles for numerical simulations (� ) and using Equation 2.43
with a = 0.1 (�), 0.214 (/) and 0.3 (q)

To determine the influence of the “a” parameter on the film, it was given values

on either side of its estimated value of 0.214.  Velocity distributions for “a” equal to 0.1,

0.214 and 0.3 are plotted in Figure 2.19 using the numerically simulated results and

Equation 2.43.  Again the closed-form solution performs well , with a maximum relative

difference of 4.7% between the solutions.  A comparison of Figure 2.19 with Figure 2.18

shows that varying “a” has a similar effect to varying .gap.  Why this occurs is clear from

Equation 2.43, which shows that m depends on the parameter “a” and 2. in an identical

manner.

2.5 Comparison to Published Experimental Data

Although littl e experimental data is available for comparison with the model

developed in this chapter, Kase (1974) does contain a useful set of temperature and
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thickness data for polypropylene (PP) film casting.  In order to simulate Kase’s

experiments, the material properties and processing conditions were required. 

Unfortunately, Kase does not provide the material properties for the experiment, so they

had to be estimated.  From another experiment involving PP in the same paper, data are

cited as ! = 830 kg/m3 and C = 2931 J/(kg K).  An estimate for thermal conductivity (k) is

0.15 W/(m K) (Rauwendaal 1986: 218).  For the viscosity-temperature dependence,

Tanner (1985: 353) provides typical parameters that correspond to Equation 2.13, E/R =

5.1×103 K, To = 190 (C and �o = 3.2×103 Pa#s.  Although it is recognized that with this

low value of �o, inertia and gravity may be important, their effects are not included in the

simulations that follow.  This is done because the PP used by Kase (1974) could have had

significantly larger viscosity value.  The analysis of Kase supports this possibilit y because

gravity and inertia are ignored.  Moreover, the description of the experimental setup does

not state whether the film li ne is vertical or at some other angle.  As a result, the effect of

gravity on the film is unclear.

Heat transfer properties for the simulations were found by calibration of the model

with the temperature data provided by Kase (1974).  Kase’s experiment for measuring

temperature used the following processing conditions: Tdie  = 215 (C, Lgap = 0.95 m, Lroll =

0.242 m, udie = 0.015 m/s, hdie = 990×10-6 m and uroll = 0.5 m/s.  Values for Tair and Troll are

not provided, so in the simulations that follow they were assumed as 30 (C and 20 (C,

respectively.  With these processing conditions and Equation 2.41, the heat transfer

coeff icients were estimated as .gap � 13.0 W/(m2 K) and .roll � 52 W/(m2 K).  Figure 2.20

shows that the experimental data points agree with the simulated results.  As expected
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Figure 2.20 Experimental temperature data (x and q) and numerical simulation results
for .gap = 13.0 W/(m2 K) and .roll = 52 W/(m2 K) (� )

from the preceding numerical analyses, the temperature profile is approximately a bili near

function with the sudden change in slope corresponding to contact with the chill roll . 

These results confirm that the experimental setup is nonisothermal.

Once the estimates for the heat transfer coeff icients had been established,

simulations were completed to compare numerical and experimental thickness data. 

These data are for two experiments with the same draw ratio of 33, but with different film

speeds at the roll .  For the first experiment Lgap = 0.95 m, udie = 0.0155 m/s, hdie = 660×10-

6 m and uroll = 0.341 m/s and for the second experiment Lgap = 0.95 m, udie = 0.0364 m/s,

hdie = 550×10-6 m and uroll = 0.67 m/s.  In this li st of processing conditions the values for

udie and hdie are not actually the values at the die, but the values for the first data point past

the zone of extrudate swell , as the numerical model neglects this phenomenon.
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Figure 2.21, which uses a logarithmic axis for the thickness, shows that the

experimental and numerical trends are similar, but the magnitudes differ.  Several factors

could contribute to the difference.  First of all, the quality of the original data is unknown

because no error estimates were published and data collection for film casting can be

difficult.  Secondly, the constitutive model developed in this chapter, which neglects

elasticity, could be an important factor.  Seyed and Papanastasiou (1991) favour this

explanation and show that including viscoelasticity leads to better agreement with the

data of Kase (1974).  Finally, PP can have a large range of material properties and the

properties assumed in this simulation could very well be different than the actual ones. 

For instance, if the viscosity of the actual polymer were less dependent on the

temperature, then the simulated results for thickness would be in better agreement with

the experimental data.  This can be seen by considering how a reduction in temperature

dependence would improve agreement with the experimental data; the simulated results

would approach the isothermal solution, which would improve agreement because the

isothermal solution is a straight line on a semi-logarithmic plot.  This influence of the

temperature dependence of viscosity explains why the higher roll speed is in better

agreement with the experimental data than the lower speed.  For the higher speed the

temperature does not decrease as much, so the influence of the viscosity-temperature

dependence is not as pronounced and the simulated results are closer to the approximately

linear experimental data.
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2.6 Summary of Results

The governing mechanical and thermal equations for the cast film process, along

with their associated boundary conditions, have been presented in this chapter.  Also

presented were the following physical requirements for the system: the film is thin; the

thickness gradient is small; viscoelasticity can be ignored; a simple heat transfer model is

adequate; viscous dissipation and surface tension can be ignored and self-weight and

inertia are only important for low viscosity polymers.  This chapter also detailed the

solution technique for the coupled thermomechanical system, for which upwinding was

found to be unnecessary.  In addition, this chapter demonstrated that isothermal

simulations reproduce the closed-form solutions for a viscous fluid including and

excluding the influence of self-weight.  For the nonisothermal simulations, it was
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observed that the mechanical and thermal results are insensitive to the heat transfer over

the roll.  Therefore, modelling this part of the process is not necessary.  The numerical

results for the nonisothermal simulations also suggested a theoretical approximation for

the temperature and velocity profiles.  These approximate solutions agreed well with the

numerical results.  By considering the approximate solutions, it was seen that the

temperature sensitivity of the viscosity and the heat transfer coefficient affect the velocity

profile in the same way.  Finally, this chapter compared the numerical results with some

experimental data available in the literature.  Although the thermal model agreed with the

experimental data, the mechanical predictions were off.  The discrepancy was accounted

for by experimental error, uncertainty in the material parameters and the influence of

viscoelasticity.
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Chapter 3 Two-Dimensional Model

Although the 1D model of the previous chapter provides useful insight into film

casting, a 2D model is necessary to capture the neck-in and edge bead phenomena.  A 2D

finite element model, which allows the thickness to vary in the transverse direction, is

developed in this chapter for nonisothermal film casting of a viscous fluid.  The model

accommodates low viscosity polymers by including inertia and gravity.  However, the sag

of the film, the elasticity of the polymer and die swell are neglected.  A Newton-Raphson

algorithm is used to solve simultaneously for the velocity, thickness and temperature

distributions, as well as for the width of the sheet.

Section 3.1 presents the governing thermomechanical equations and boundary

conditions, while Section 3.2 presents the numerical algorithm used to solve the system

of equations.  Section 3.3 compares isothermal simulations with a closed-form solution

and with published results.  The nonisothermal finite element model is the subject of

Section 3.4.  In this section the influence of gravity on film casting is also investigated. 

Nontrivial boundary conditions, such as a nonconstant thickness at the die or localized

cooling jets, are the topic of Section 3.5.  Finally, Section 3.6 summarizes the results for

the 2D simulations.
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Figure 3.1 Setup for two-dimensional film casting

3.1 Governing Equations and Boundary Conditions

This section presents the two-dimensional model of the cast film process using the

same physical requirements as discussed in Section 2.1.3; that is, the film is thin, the

thickness gradient is small, elasticity is neglected, and a simple thermal model is

considered adequate.  The 2D setup is defined in Figure 3.1, in which the origin of the

axes is centred between the die lips, L is the length of the air gap and 2wdie is the total

width of the film at the inlet.  In the simulations that follow, only half the width of the

film (wdie) is modelled as the sheet is assumed to be symmetric.
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3.1.1 Mechanical Equations

To derive the momentum equation, the same approach as that used in Section

2.1.1 can be applied in two dimensions, to yield

in which h is the thickness, 1 � �  is the planar stress tensor, ! is the density, b is the

acceleration vector and u �  is the velocity vector.  For the subscripts . and �, the Einstein

summation convention is applied over the range of 1 to 2.  If the film is vertical, then the

acceleration vector has the components b1 = g and b2 = 0.

The continuity equation can also be derived using an approach similar to that of

Section 2.1.1, to find

To relate the stress to the rate of deformation, the Newtonian constitutive equation 

(Eq. 2.4) is used, along with the relation between the pressure (p) and the out-of-plane

rate of deformation (0u3/0x3) (Eq. 2.5).  Unlike in 1D, for the 2D case the rate of

deformation in the transverse direction (0u2/0x2) is not zero; therefore, continuity requires

If Equations 2.5 and 3.3 are substituted into Equation 2.4, then the constitutive equation

can be expressed as
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Figure 3.2 Boundaries for the two-dimensional domain

Figure 3.2 defines, for the domain , the boundaries at the die, roll, line of

symmetry and free surface as +die, +roll, +sym, and +free, respectively.  At these surfaces the

mechanical boundary conditions are as follows:

where n �  is the unit vector normal to the free surface and the last boundary condition

applies at the intersection of the free surface and the die.
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At the free surface, the boundary conditions are for zero traction and zero mass

flux.  The mass flux boundary condition can be used to find the free surface (w), where w

is function of the distance along the machine direction:

The normal to the free surface is the negative reciprocal of the slope of this equation.  As

the normal can be related to the free surface, the zero flux boundary condition can be used

to find the free surface.  This is done by setting the dot product of the velocity vector and

the normal vector to zero; that is,

3.1.2 Heat Transfer Equations

The 1D approach of Section 2.1.2 can be extended to two dimensions to find the

conservation of thermal energy equation,

Section 2.1.2 explained how to estimate . over the air gap.  Furthermore, the parametric

study of Section 2.4.1 showed that modelli ng the heat transfer over the chill roll i s

unnecessary, as the film’s geometry does not change once the film contacts the roll .  The

equations for viscosity as a function of temperature are provided in Section 2.1.2.  Based

on the observations from the parametric study of the viscosity-temperature dependence of

Section 2.4.3, the 2D model uses the simpler Arrhenius relation that does not include a

sharp increase in viscosity near the solidification point; that is, c = 0 in Equation 2.14.
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 P� /u � T � hd+ � P	 /u � !hb � d (3.10)

Thermal boundary conditions are defined, with reference to Figure 3.2, as follows:

where q
  is the thermal flux vector and n
  is the unit vector normal to the surfaces. 

Although the thermal flux normal to the free surface is not actually zero, it is assumed

zero as the heat transfer over the edge is much smaller than that over the rest of the film’s

surface.  At the roll the thermal flux is also assumed zero for the reasons discussed in

Section 2.2.1.

3.2 Solution of the Coupled System

To solve the 2D thermomechanical system, the algorithm developed for the 1D

case can be used, except that in 2D there is an additional velocity degree of freedom and

an unknown free surface.  This section presents the 2D finite element equations and

coupled solution algorithm for finding the free surface and the velocity, thickness and

temperature fields.

3.2.1 Finite Element Equations

The weak form of the equili brium equation is found by multiplying Equation 3.1

by a virtual velocity vector (/u
 ), integrating over the domain () and applying Gauss’s

theorem:



73

P� /h
0h
0x �

u � � h
0u �

0x �
d 
 0 (3.11)

P� /T!Chu �
0T
0x �

d � P�
0/T
0x �

kh
0T
0x �

d � P� /T#2.Td 
 P� /T#2.Taird (3.12)

P�
free

/w
dw
dx

1

u
1
d+free 
 P�

free

/wu
2
d+free (3.13)

in which /J ���  is the virtual rate of deformation that is consistent with the virtual velocity

vector and  is the traction applied to the boundary.  However, in the simulations thatT �

follow, the load-controlled boundary-valued problem is not solved, as the displacement-

controlled problem is more representative of f ilm casting.

For the continuity equation (Eq. 3.2), the integral equivalent is found by

multiplying by a weighting function (/h) and integrating over the domain:

Similarly, the weighted residual form of the conservation of thermal energy

equation involves multiplication of Equation 3.8 by a virtual temperature (/T), integration

over the domain and application of Gauss’s theorem:

In this equation the load due to the thermal flux at the free surface is not included as the

thermal boundary conditions (Eq. 3.9) specify zero flux.  When Equation 3.12 was solved

upwinding was not introduced, as the results of Section 2.2.3 demonstrate that it is

unnecessary.

Finally, the kinematic boundary condition for the free surface (+free) can also be

expressed in an integral equivalent form.  Equation 3.7 is multiplied by a weighting

function (/w) and integrated over the free surface to obtain
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When  is integrated over the free surface, the chain rule was used to express thedw
dx1

derivative as , where s is the arc length along the free surface.dw
ds

ds
dx1

A solution for steady state film casting is found by satisfying Equations 3.4, 3.10,

3.11, and 3.12, with the boundary conditions of Equations 3.5, 3.9, and 3.13.  To find this

solution a finite element discretization was introduced, as shown in Figure 3.3.  Over the

film’s surface three-noded triangular elements were used as they are simple, spatially

isotropic elements.  At the film’s edge two-noded elements were used.  For the triangular

elements each node has four degrees of freedom: u1, u2, h and T.  An additional degree of

freedom was introduced for the linear elements, the film’s width.  The finite element

equations were obtained by substitution of this discretization, with the appropriate shape

functions and shape function derivatives, into the system of equations and boundary

conditions.  Appendix B.2 provides the details on the calculations of the stiffness

matrices and load vectors for the solution of the boundary value problem.
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Figure 3.3 Surface element (three-noded) and edge element (two-noded) for
finite element discretization of 2D film casting

3.2.2 Solution Algorithm

The overall solution algorithm can be summarized with a flowchart (Figure 3.4). 

This flowchart shows that, unlike in the 1D case, for convergence in 2D the final draw

ratio (Dr) must be approached in an incremental fashion.  This is necessary because for

the 2D case the geometry is unknown at the outset.  Since the draw ratio is incremented,

the 2D algorithm did not require incrementing the heat transfer coefficient, as was done in

the 1D case.
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Figure 3.4 Flowchart of the algorithm used for the numerical
simulation of 2D film casting

The initial guesses used for the field variables were the 1D closed-form solutions. 

For u1, the isothermal solution (Appendix A.1) and the nonisothermal solution (Eq. 2.43)

were used as appropriate.  A value of zero was assumed as the initial guess for u2, and h

was found from the continuity requirement.  Equation 2.42 was used for the initial

estimate of the temperature.  A rectangular domain was used for the initial geometry; that

is, all of the width values were initially set equal to wdie.
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Within each iteration the variables were updated using the finite element method. 

Section 2.2.2 describes how the Newton-Raphson method was used and Appendix B.2

details how the tangential stiffness matrices for the 2D system were derived.  With each

new estimate for the free surface, the mesh geometry was updated.  This involved

changing the x2-coordinates of the nodes so that the new x2 values maintained the same

ratio to the new width as they had with the previous width.

The convergence criterion used in 2D was the same as that for the 1D case, except

that the width variable was also considered:

in which u, h, T and w are the current solutions for the velocity, thickness, temperature

and width degrees of freedom, û represents the change in these variables and � �

represents the Euclidean norm of the vector.  Unless stated otherwise, the 2D studies used

a tolerance of 0.01.

3.3 Performance of the Isothermal Model

Before proceeding to nonisothermal problems, two comparisons are made

involving isothermal simulations.  One comparison is with a closed-form solution that

assumes no edge bead, and the other is with published simulation results.

3.3.1 Comparison with a Closed-Form Solution that Assumes no Edge Bead

As mentioned in the literature review of Section 1.2.1, the 2D closed-form

solution proposed by Sergent (1977) has been employed in many subsequent studies. 
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wdie = 0.1 m
udie = 0.01 m/s
hdie = 550 µm

x1

x2

uroll = 0.09 m/s

Figure 3.5 Processing conditions and mesh for comparison to
the closed-form solution that assumes no edge
bead

Sergent’s model, which is summarized in Appendix A.6, cannot capture an edge bead

because the model assumes that the thickness does not vary in the transverse direction. 

Since the current study does not make this assumption, the influence of an edge bead on

the force, thickness and neck-in ratio can be observed by comparing the numerical

solution of this study with Sergent’s closed-form solution.

The closed-form solution of Sergent (1977) is presented in Avenas et al. (1986:

368) and Agassant et al. (1991: 249) through an example film casting problem.  This

example problem was used as the basis for the current comparison.  For this problem the

polymer has a viscosity of  3×104 Pa#s and processing conditions that are defined in

Figure 3.5.  The figure also shows the 2400 element mesh used for the simulation.  A

finer mesh was not required, as more than doubling the number of elements to 5408

resulted in littl e change in the variables.  Similarly, a tolerance of 10-2 is adequate, as

decreasing the tolerance to 10-6 also resulted in only minor changes to the variables.
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Figure 3.6 Free surface for the closed-form solution (---) and for the numerical
simulation (��� )

Figure 3.6 shows that the free surface found by the closed-form solution is linear,

while the free surface found by the numerical algorithm is curved.  The difference in the

two solutions can be accounted for by Sergent’s exclusion of the free surface boundary

condition (Eq. 3.7).  This boundary condition is responsible for the curved shape because

it requires the free surface to have a zero slope at the die and roll .  A zero slope is

obtained at these locations as u2 = 0 and u1 g 0 and thus Equation 3.7 leads to dw/dx1 = 0. 

Introduction of the free surface boundary condition leads to a more realistic simulation of

the free surface, as the predicted curved shape is in better qualitative agreement with

experimental evidence than the linear surface, which would have been obtained otherwise

(d’Halewyu et al. 1990; Barq et al. 1992).

A comparison of the thickness across different cross-sections of the film (Figure

3.7) shows that the numerical simulation does not agree with the closed-form solution’s
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Figure 3.7 Thickness profiles across two cross-sections for the closed-
form solution (---) and for the numerical simulation (��� )

assumption of constant thickness.  In fact, the numerical solution shows a U-shape with a

significant edge bead.  This shape is qualitatively similar to the experimental data of

Chambon et al. (1996) for a viscous polymer.  However, the U-shaped profile does not

compare well with typical industrial polymer casting, which shows a close to uniform

thickness over the middle of the film and a rapid rise near the edge.  Another feature of

Figure 3.7 is several sharp oscill ations in the slope of the thickness profile near the edge

of the film.  A possible explanation for these changes is that the assumption made in the

model’s derivation that the thickness gradient is small does not  apply at the edge of the

film.

The above comparisons between the closed-form and numerical solutions were

made at one draw ratio; comparisons can also be made to see how the solutions change as

the draw ratio is varied.  Figure 3.8 shows the dependence of thickness, neck-in and force
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on the draw ratio.  In this figure, the thickness for the numerical simulation is taken as

that at the line of symmetry and the force (F) is found from numerically integrating the

following equation:

in which wroll is the film’s half width at the roll .  Figure 3.8 shows that the force agrees

well between the two solutions.  This agreement is a result of equili brium requiring that

the tensile force at the die and roll be equal.  Both the closed-form and the numerical

solutions should have a similar force at the roll , since both have similar responses at the

die.  For the thickness, the numerical solution follows the same trend as the closed-form

solution, while remaining consistently below it.  This behaviour is li kely due to the edge

beads, as thicker edges mean that, for a constant mass flux, less material is available to

pass over the middle of the film.  Finally, the width can be compared between the two

solution techniques.  Although a similar trend is observed, the numerical solution now

lies above the closed-form one.  This finding may again be related to the presence of an

edge bead, as a thicker edge will li kely resist neck-in more effectively.  Moreover, if the

finite element prediction for thickness is below the closed-form solution, then the reverse

has to be true for the width values, or else the mass flux is not conserved.
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Figure 3.8 Force (/), width (q) and thickness (a) variation for the closed-
form solution and the corresponding numerical solutions (---, ��� ,
and #�#�, respectively)

3.3.2 Comparison with Published Results that Allow an Edge Bead

In the published film casting research two studies, namely d’Halewyu et al. (1990)

and Sakaki et al. (1996), simulate the same problem, but obtain different thickness and

neck-in results.  The problem in question is defined as follows: wdie = 0.5 m, L = 0.2 m,

udie = 0.01 m/s, hdie = 0.001 m and Dr = 10.  Figure 3.9 shows the thickness profile at the

chill roll for both published studies, and for a simulation using the algorithm proposed in

this study.  This figure shows that the 3D formulation of Sakaki et al. (1996) has a greater

neck-in than the 2D formulation of d’Halewyu et al (1990).  The greater neck-in cannot,

however, be accounted for by one study being 3D and the other 2D, as the current study is

2D and it supports the 3D results of Sakaki et al. (1996).  One reason for the difference

may be the method used by d’Halewyu et al. (1990) to relate the free surface and the

normal vector, as the paper does not detail what approach is used.  Another possible
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Figure 3.9 Thickness profile at the chill roll for d’Halewyu et al. (1990) (---),
Sakaki et al. (1996) (à) and for the current study (� )

explanation might be because the velocity and thickness are uncoupled in the numerical

algorithm of d’Halewyu et al. (1990), and this causes convergence to a solution different

from that of the other algorithms.  As a final point, Figure 3.9 shows, at least for the

simulation in question, that there is littl e reason for resorting to a 3D formulation over a

2D one.

3.4 Performance of the Nonisothermal Model

In this section the influence of gravity on 2D nonisothermal film casting is

investigated.  In addition, a parametric study is conducted to examine the effects of heat

transfer on the field variables and on the width of the film.
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3.4.1 The Influence of Gravity on Film Casting

The study of Barq et al. (1992) provides a good context for investigating the

influence of gravity on film casting, as this study deals with a low viscosity polymer. 

Although Barq et al. (1992) provides a good starting point for the investigation, a full

comparison with their results cannot be made as some of their data were not published for

proprietary reasons.

The polymer used by Barq et al. (1992) is polyethylene terephthalate (PET), for

which they provide the following data: �0 = 119 Pa·s, E/R = 6498 K, T0 = 553 K, k = 0.25

W/(m K), ! = 1340 kg/m3 and C = 1991 J/(kg K).  These data use Equation 2.13 for the

viscosity-temperature dependence.  The values of the other material parameters are

approximated at a temperature of 278 (C.  This temperature was chosen as a

representative value as, according to the experimental data of Barq et al. (1992), this is

the average temperature of the film midway between the die and roll .

In the simulations that follow, gravity and inertia have an influence because the

viscosity of the polymer is low.  To see the influence of self-weight one simulation was

vertical and the other horizontal.  For the horizontal simulation the sag of the film was

neglected.  The simulations assume the following processing conditions: wdie = 0.5 m, L =

0.2 m, udie = 0.1 m/s, hdie = 0.001 m and Dr = 10.  Regarding the thermal conditions, the

temperature data presented by Barq et al. (1992) shows an approximately linear trend

decreasing from Tdie = 282 (C to 270 (C; therefore, using Tair = 30 (C and Equation 2.41,

the heat transfer coeff icient was estimated as 34.0 W/(m2 K).  In the numerical

simulations a 5408-element mesh was used.
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Figure 3.10 Thickness profile at the chill roll for nonisothermal simulations
of vertical film casting (� ) and horizontal film casting (--). 
Isothermal simulations (à) are also included.

Before discussing the influence of gravity, the temperature dependence of the

process is considered.  The temperature field of the current simulation agrees with the

linear trend found in the data of Barq et al. (1992).  This is noteworthy, since Barq et al.

(1992) use a much more complex thermal model than that adopted in the current study. 

Figure 3.10 shows that changes in temperature have little influence on the thickness

profiles at the chill roll, as the isothermal and nonisothermal simulations are close to

identical.  This agrees with the conclusion of Barq et al. (1992) that a nonisothermal

model is unnecessary for the PET in question under typical processing conditions.

Figure 3.10 shows that the influence of gravity for vertical simulations is to cause

less neck-in and a larger edge bead than when the film is horizontal.  This is because,

with gravity, the thicker film at the edge falls more rapidly and thus reaches the roll

sooner than when self-weight is not an issue.  Figure 3.10 also shows that gravity aids in
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promoting a more uniform thickness, which in turn leads to a larger edge bead, so that the

continuity requirement can be met.  The conclusion from this simulation then is that the

self-weight of a polymer can be used to promote uniform thickness for low viscosity, low

elasticity, low temperature dependence film casting.  This influence would likely be

increased if the speed at the die is decreased, as Equation 2.24 suggests that a decrease in

udie may lead to an increase in the relative contribution of self-weight over viscous forces.

To see how self-weight influences the thickness field, the thickness contours for

vertical and horizontal film casting are compared in Figure 3.11.  This figure shows the

expected behaviour that the vertical casting draws the thickness down more rapidly,

which is shown by the closer contour lines at the die.  Figure 3.11 also demonstrates that

the more pronounced edge bead for vertical casting, shown in Figure 3.10, is not limited

to the chill roll .  The thickness is more uniform for other film cross-sections as well .  This

manifests itself in the more pronounced bend in the vertical film’s contours as the edge is

approached.
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Figure 3.11 Thickness contours for vertical and
horizontal film casting

3.4.2 Nonisothermal Effect on Edge Bead

To see the effect of heat transfer on film casting, simulations were conducted with

heat transfer coeff icients of 0, 5, 10, and 15 W/(m2 K).  These simulations were done with

the LDPE material used in the 1D simulations of the previous chapter.  For this polymer,

with Equation 2.14 for the viscosity, the material parameters are as follows: �0 = 1.6×105

Pa#s, T0 = 180 (C, a = 0.214, c = 0, ! = 920 kg/m3, k = 0.24 W/(m K), and C = 2300 J/(kg

K).  In these simulations, the processing conditions were assumed to be, wdie = 0.5 m, L =

0.2 m, udie = 0.01 m/s, hdie = 0.001 m, Tdie = 180 (C, and Tair = 30 (C.
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Figure 3.12 Neck-in ratio as a function of the draw ratio for . = 0 (·�#), 5
(à), 10 (---), and 15 (��� ) W/(m2 K)

The simulations show that, overall , higher heat transfer results in less neck-in. 

This is ill ustrated in Figure 3.12, which plots the dependence of wroll/wdie on Dr for

different heat transfer coeff icients.  Neck-in decreases as the heat transfer increases, due

to the associated increase in viscosity and the corresponding increase in the film’s

resistance to changing geometry.  An exception to this trend occurs at . = 5 W/(m2 K), for

which the neck-in increases slightly compared with the isothermal simulation.  The

reason for this behaviour is unclear.

The change in the velocity field as the heat transfer increases is seen from

considering the streamlines at a draw ratio of 16 (Figure 3.13).  With increasing ., there

is a corresponding increase in the region in which u1 is relatively independent of x2, as

shown by the parallel streamlines in Figure 3.13.  Another observation from the

streamline plots is that the free surface necks in more rapidly as the nonisothermal

influence increases.  This results because, as . increases the temperature decreases more
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Figure 3.13 Streamlines for five values of the heat transfer

coefficient with a draw ratio of 16

rapidly and there is an associated increase in viscosity for the same x1 value.  The increase

in downstream viscosity results in the film changing geometry upstream, where the

viscosity is relatively low.

Figure 3.14 shows the thickness contours that correspond to the above

streamlines.  With larger heat transfer the thickness draws down more rapidly and the

edge bead becomes more prominent.  Once again this is due to the increase in resistance

to changes in geometry as the viscosity increases.  The thickness contour plots show that

increases in heat transfer promote a more uniform thickness in the middle of the film. 

This is suggested by the overall straightness of the contours over the middle of the film

and the sharp bend as the edge is approached.



90

. = 0 . =5 . = 10 . = 15
Figure 3.14 Thickness contours for five values of the heat transfer

coeff icient with a draw ratio of 16

Figure 3.14 suggests that the film has a more uniform thickness in the centre of

the film when the heat transfer is greater.  This is also shown by looking at the thickness

profile at the chill roll , which is shown in Figure 3.15.  For a draw ratio of 4 and 16, an

increase in heat transfer extends the region of close to uniform thickness that exists in the

middle of the sheet.  The slope of the film’s thickness profile also shows a change in sign

at the edge.  This edge effect has been observed in other studies (Debbaut et al. 1995).
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Figure 3.15 Thickness profiles at the chill roll for . = 0 (à), 10 (---),
and 15 (��� ) W/(m2 K).

The thickness field of Figure 3.14 strongly influences the temperature field, for

which contour lines are shown in Figure 3.16.  This is shown by the correspondence of

the temperature peak and the edge bead region.  With the greater thickness here, heat

transfer by advection increases relative to the surrounding film, and thus the temperature

decreases less at the edge bead.  Over the rest of the domain, the temperature follows an

approximately linear trend from the die to the roll, as evident from the parallel, evenly

spaced contour lines.
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Figure 3.16 Temperature contours for five values of the heat transfer

coefficient with a draw ratio of 16.

3.5 Performance of Model with Nontrivial Boundary Conditions and Heat Transfer

In the published research to date, the inlet conditions have been considered as

constant along the die and the heat transfer coefficient has been assumed constant in the

transverse direction.  This section considers simulations that do not make these

simplifying assumptions.  The intention here is to demonstrate the usefulness of the

numerical model for considering the possible effects associated with changing the

manufacturing process.

3.5.1 Boundary Conditions at the Die

Although film casting dies are usually designed to extrude a uniform thickness, a

nonconstant thickness is possible.  This section briefly investigates how a nonuniform

thickness at the die effects the thickness field.  To do this, a simulation was conducted
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hdie(x2) 
 hsym 	 0.002x 2
2 (3.16)

excluding heat transfer, accommodating a nonuniform thickness at the die and retaining

the remaining processing conditions of Section 3.4.2.  The boundary condition for the

thickness at the die was set using the following equation:

in which hsym is the thickness at the line of symmetry.  In the simulation hsym = 0.001 m,

the value previously used across the entire width of the die.  Equation 3.16 then,

represents an inverse parabolic thickness profile that decreases to half the value of hsym at

the edge of the sheet.  This profile was selected in an attempt to compensate for the

tendency of the film, once outside the die, to increase in thickness as the edge is

approached.

Figure 3.17 shows the thickness contours for the nonconstant thickness and for the

corresponding constant thickness at a draw ratio of 16.  The two show different behaviour

near the die as anticipated, but the contours are similar as the roll is approached. 

However, the nonconstant thickness solution shows a smaller edge bead with a more

rounded shape.
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Figure 3.17 Thickness contours for nonconstant and
constant thickness at the die with a draw
ratio of 16

Although the nonconstant thickness boundary-valued problem changes the

thickness field from the constant thickness problem, it is unclear at this time how this

behaviour can be used to reduce neck-in and increase the region of uniform thickness.  In

fact, neck-in is slightly increased and the region of uniform thickness changes little

between the two simulations.  This is shown by considering the thickness profile at the

die for the two cases (Figure 3.18).  Neck-in is likely greater for the nonconstant

thickness simulation because the edge bead is smaller and thus has less of a restraining

influence.  The more rounded edge bead for the nonconstant thickness simulation is also

shown by Figure 3.18.  It should be noted that differences in the two simulations could be

attributed to the fact that the mass flux is less for the nonuniform thickness problem.
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Figure 3.18 Thickness profiles at the chill roll for nonconstant (��� )
and constant (---) thickness at the die with a draw ratio of
16

Although the observations may not be considered conclusive, as only one

simulation was presented, it is possible that changing the die geometry could aid in

reducing neck-in and promoting a more uniform thickness.  To investigate this possibility

a more comprehensive study should follow that addresses the effects of different die lip

geometries, different mass fluxes, and nonisothermal conditions.  These other factors are

not considered here, as a more robust model that includes elasticity would make the

results more meaningful.

3.5.2 Localized Cooling Jets

Often in film casting localized cooling jets are directed at the edges of the film to

reduce tearing problems.  To see the influence of these jets on the thickness field a

simulation was performed using the processing conditions defined in Section 3.4.2, with
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Figure 3.19 Neck-in ratio as a function of the draw ratio with
localized cooling (��� ) and without (à).

. = 10 W/(m2 K) over the surface and . = 20 W/(m2 K) over approximately 7 cm of the

film’s edge.

Localized cooling jets directed at the edge of the film significantly reduced neck-

in, as shown by Figure 3.19.  Moreover, the film did not neck-in as rapidly with

increasing draw ratio when the jets were present.  The neck-in was reduced because the

cooling jets increase the viscosity at the edge of the sheet, thereby reinforcing it in the

transverse direction.

Another advantage of a localized cooling jet is that it leads to a more uniform

thickness in the centre of the film.  This influence is demonstrated by the thickness profile

at the chill roll shown in Figure 3.20.  Therefore, localized cooling jets for LDPE film

casting benefit the finished product by leading to a uniform thickness, resulting in less

neck-in, and by reducing tearing problems.
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Figure 3.20 Thickness profile at the chill roll with localized
cooling (��� ) and without (à).

3.6 Summary of Results

The 2D isothermal and nonisothermal simulations of this chapter have resulted in

nine major findings:

i) The free surface found using the numerical algorithm developed in this

research is curved, not linear as found by Sergent’s closed-form solution.

ii ) As the draw ratio is varied, the numerical solution agrees with the closed-

form solution for force and follows the same trend for the neck-in ratio

and the thickness reduction.

iii ) Isothermal film casting simulations have a roughly U-shaped thickness

profile across the film.  An edge bead is present, but the cross-section does

not show a region of uniform thickness in the middle of the sheet.



iv) The 2D isothermal simulations of this study agree well with the 3D

simulation of Sakaki et al. (1996); however this study does not agree with

the 2D simulation of d’Halewyu et al. (1990).

v) In the current study, a constant heat transfer was applied to both sides of

the film.  This leads to similar average temperature predictions as the more

complex model of Barq et al. (1992).

vi) For low viscosity polymers the self-weight of the sheet can be used to

promote a uniform thickness in the middle of the film.  In addition, self-

weight can reduce neck-in.

vii ) Higher heat transfer can reduce neck-in and increase the zone of constant

thickness at the centre of the film.

viii ) Although a nonuniform thickness profile at the die alters the flow field,

how this can be used to reduce neck-in and increase the uniformity of the

final film thickness is unclear.

ix) The introduction of local cooling jets dramatically reduces neck-in and

increases the region of uniform thickness.

For eff icient film casting, neck-in should be limited and the region of uniform

thickness should extend over most of the width of the sheet.  The simulations of this

chapter suggest that both goals can be promoted by the self-weight of the film,

nonisothermal conditions, localized cooling jets and nonuniform boundary conditions at

the die.
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Chapter 4 Conclusions and Recommendations

This thesis presented finite element models for 1D and 2D nonisothermal film

casting of a viscous fluid.  The models neglect sag and die swell, but are capable of

including the effects of gravity and inertia.  For the 2D case, the model allows the

thickness to vary in the transverse direction.  A numerical solution to the finite element

equations is obtained by using a fully coupled Newton-Raphson approach.  Solutions

were found for different polymers and processing conditions to determine how neck-in

and edge beads were affected by the following factors: nonisothermal conditions; the self-

weight of the film; and nonconstant boundary conditions at the die.  Also of interest was

determining whether the geometry of a film changes after it makes contact with the chill

roll.

The conclusions made from the 1D and 2D film casting simulations of Chapters 2

and 3, respectively, are summarized in Section 4.1.  Section 4.2 provides

recommendations for future work that include, collecting more experimental data;

improving the mathematical model; enhancing the numerical algorithm and shifting focus

from analysis to design.  A concluding statement is provided in Section 4.3.
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4.1 Conclusions

From the 1D simulations and the discussion of Chapter 2 the following

conclusions were made:

i) Inertia and gravity are only important for low viscosity polymers.

ii) Upwinding is not necessary for predicting the temperature distribution of the film.

iii) Once contact is made with the chill roll, the geometry of the film remains

essentially unchanged; therefore, a model of the film casting process does not

have to extend onto the roll.

iv) As the heat transfer coefficient increases, the temperature decreases more rapidly,

and thus the viscosity increases at a quicker rate.  This results in the velocity and

thickness more rapidly approaching their final values.

v) The temperature of the film in the air gap is well approximated by a linear

function.

vi) A closed-form solution for the nonisothermal velocity distribution, based on the

assumption of a linear temperature profile, compares well against simulated

results.

vii) The influence of the temperature sensitivity parameter in the temperature-

viscosity relation is similar to that of the heat transfer coefficient.  Furthermore,

the solution changes very little when the temperature-viscosity relation is

modified to account for an increase in viscosity as the solidification temperature is

approached.
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viii ) Simulated results for temperature compared well with the experimental data of

Kase (1974).

ix) Simulated results for thickness did not compare as well with the experimental data

of Kase (1974), possibly because of experimental error in the data, uncertainty in

the material parameters or the influence of viscoelasticity, which is neglected in

the current model.

The above conclusions, made from the 1D simulations, led to several decisions

when proceeding to the 2D case, such as, only modelli ng the film in the air gap;

excluding upwinding; not using the more complex viscosity-temperature relationship; and

using the closed-form 1D solutions as an initial guess for the 2D field variables.  The 2D

simulations in turn led to several conclusions:

i) When comparing the numerical results with the closed-form solution of Sergent

(1977) several observations were made: the free surface was found to be curved,

not linear; the thickness profile was U-shaped, not uniform; the forces were

approximately equal; a greater decrease occurred in the thickness; and a lesser

decrease occurred in the width at the roll .

ii ) A simulated thickness profile at the chill roll using the approach of this study

agreed with the results of Sakaki et al. (1996), but neither the current study nor

Sakaki et al. (1996) agreed with d’Halewyu et al. (1990).

iii ) The self-weight of the polymer for low viscosity fluids contributes to reducing

neck-in and increasing the region of uniform thickness in the centre of the sheet.
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iv) For some combinations of polymer and processing conditions, such as that

described by Barq et al. (1992) for PET, the isothermal and nonisothermal results

are essentially identical.

v) A simple thermal model with a constant heat transfer coefficient seems to predict

the temperature distribution as well as a more complex model.

vi) For those processes that are temperature dependent, an increase in heat transfer

was found to reduce neck-in and enlarge the region of uniform thickness.

vii) Although a nonuniform thickness at the die influences the final film geometry, it

is unclear at this time how this can be used to reduce neck-in and to decrease the

width of the edge bead.

viii) Localized cooling jets can be used to reduce neck-in and promote a uniform

thickness in the centre of the sheet.

Cast film line designers attempt to waste as little material as possible.  This is

reflected in the goals of limiting neck-in and in reducing the amount of edge bead that has

to be trimmed.  It has been found that polymers that are more elastic tend to towards these

goals (Debbaut et al. 1995; Christodoulou 1996).  However, elasticity is not helpful for

some polymers, such as PET, which behave viscously.  The simulations of this study

suggest that other phenomena can contribute to the above design goals.  For one, cooling

the film may reduce neck-in and increase the uniform thickness zone, especially if

localized cooling is employed.  Another factor that can be helpful, when the viscosity of

the polymer is not overly temperature dependent, is the self-weight of the polymer.  For
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low viscosity polymers the self-weight of the film can contribute to reducing the quantity

of wasted material by reducing neck-in and promoting a uniform thickness.

4.2 Recommendations for Future Work

Although useful insights into the film casting process can be gained from the

model developed in this thesis, future work is required to increase the robustness of the

model and improve its quantitative predictive power.  This section details some potential

approaches for continuing the cast film research.

4.2.1 More Experimental Data

Currently, little experimental data are available for testing and calibrating

numerical simulations.  This is shown by the limited number of studies listed in Section

1.2.3.  These studies cover only a small portion of the wide range of polymers and

processing conditions used in industrial film casting.  Moreover, they only include data

for a few variables.  Data are needed for a wide range of polymers and processing

conditions.  The polymers should have different rheological properties, especially

viscosities and relaxation times, and the processing conditions should have different heat

transfers, mass fluxes, draw ratios, air gap lengths, die widths etc.  From the experiments,

the data of primary interest would be the thickness and temperature fields, heat transfer

coefficients, the rheological characteristics of the material, and a complete description of

the boundary conditions.  Once more data are available, cast film research will be better

able to relate finished film properties to the material and to the processing conditions

employed.
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4.2.2 Improve Mathematical Model

To improve the mathematical model of the film casting process the assumptions

made in the derivations of the governing equations could be altered.  For example, die

swell , sag, surface tension and air drag could be added to the model.  In addition, the heat

transfer mechanism could be improved to accommodate radiation, crystalli zation, local

heat transfer, and different rates of heat transfer from each side of the film.  The most

significant assumption that could be removed is the simple constitutive law currently

used.  As a first step toward addressing more realistic polymer behaviour a power-law

model for viscosity could be implemented.  A more ambitious goal would be to use a

viscoelastic constitutive equation.  In selecting a specific constitutive law many types of

differential and integral laws are available, but Tanner (1985: 223) suggests that for

mainly extensional flows, li ke film casting, the K-BKZ integral constitutive equation

(Bernstein et al. 1963) performs best.

4.2.3 Enhance Numerical Algorithm

Three recommendations can be made for enhancing the numerical algorithm:

i) Increase the order of interpolation used by the finite elements from linear to

quartic.  If 15-noded elements are used instead of the 3-noded elements then the

large number of elements needed could be reduced.  However, this would involve

a tradeoff in that the local stiffness matrix size would be increased.

ii ) Although the numerical algorithm presented in this thesis converges to a solution,

the possibilit y exists that it is a nonunique solution.  This possibilit y is highlighted

by the different solutions found by the current study and by d’Halewyu et al.
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(1990).  To investigate whether the solution is nonunique, the algorithm could be

modified to use a pseudo-time stepping algorithm to approach the steady-state

solution gradually.

iii ) If the mathematical model is modified to include viscoelasticity then the

numerical algorithm should be changed to accommodate this.  Methods of

handling viscoelasticity have been proposed for differential constitutive equations

(Lou and Tanner 1986; Marchal and Crochet 1987; Sun et al. 1996) and for

integral constitutive equations (Dupont et al. 1985; Lou and Tanner 1986; Lou

and Mitsoulis 1990).  All these methods use an Eulerian or spatial framework, li ke

that adopted in the current study.  An alternative approach, which would allow

easier handling of the constitutive law, would be to adopt a Lagrangian or material

description of the motion.  Another option is Arbitrary Lagrangian-Eulerian

(ALE) finite elements, which have been used for other studies of continuous

media (Liu et al. 1988; Huétink and van der Helm 1992).

4.2.4 Change of Focus from Analysis to Design

The current study has focused on analyzing a given film casting problem.  For the

future, a shift in focus to design would be helpful.  A computer program would be a

powerful tool i f it could provide an optimal film li ne design, given a set of objectives and

the appropriate data.  This would certainly involve optimization algorithms, which would

quantify the trade-offs between edge-bead size and neck-in.  Furthermore, a knowledge

base of design heuristics would be required.  This could possibly be handled by using an
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expert system.  If a package such as this could be created then theoretical modelling

would take a large step toward being integrated into the design process for film lines.

4.3 Concluding Statement

This thesis provided several insights into some special cases of film casting, such

as the casting of low elasticity melts.  Moreover, this thesis has provided a framework for

building a more robust model, one that can handle a larger range of polymers and

processing conditions.  In building on the current research, a more robust model would

benefit from future film casting studies that increase the experimental data, improve the

mathematical model, enhance the numerical algorithm and shift the focus from analysis to

design.  These future research contributions will move theoretical modelling closer to

being an integrated part of the film line design process.  In addition, the theoretical tools

could aid in diagnosing problems as they occur on film lines.  As the theory becomes

more advanced, cast film line designers will be able to produce more efficient designs, in

less time and using less material, which means the economic and environmental benefits

outlined at the start of this thesis could eventually be realized.
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Appendix A Closed-Form Solutions

A.1 Derivation of the Solution for 1D Isothermal Film Casting Neglecting Gravity

The governing equations from Section 2.1.1 are as follows:

The associated boundary conditions are:

Integration of Equations A.1a and A.1b yields

Where F represents the force per unit width and Q is the volume flux per unit width. 

Now Equations A.1c and A.3b are substituted into Equation A.3a:
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Now both sides of the resulting equation are integrated as follows:

Applying the boundary condition for velocity at x1 = L, the theoretical velocity profile is

found:

Substituting this result into Equation A.3b, the theoretical thickness profile is found:

The gradients of velocity and thickness can be found from Equations A.6 and A.7,

respectively:
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A.2 Temperature Distribution in a Moving Sheet

The differential equation describing the thermal energy conservation for a sheet

moving with a constant velocity (u1), which is losing heat by Newton’s law of cooling

into a medium with a temperature of zero is:

Where  is the thermal diffusivity, T is the temperature, k is the thermal conductivity, !�

is the density, C is the specific heat capacity, . is the one sided heat transfer coeff icient

and h is the thickness.  The solution to this differential equation is found in Carslaw and

Jaeger (1959: 148) for two different boundary conditions:

i) For an infinite sheet in the x1-direction with T = Tdie at x1 = 0

ii ) For an infinite sheet in the x1-direction with T = Tdie at x1 = 0 and T = Troll at x1 = L
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A.3 Temperature Profile in a Moving Sheet without Conduction

The differential equation and boundary condition for energy conservation in a

moving sheet with a thermal conductivity of zero are:

If the following substitution is used:

then

The solution of this differential equation using separation of variables is
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At x
1

 0 u
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A.4 Velocity and Thickness Profiles assuming a Linear Temperature Distribution

The governing equations are:

The associated boundary conditions are:

Equations A.16a and A.16b are integrated to find the following:

where F represents the force per unit width and Q is the volume flux per unit width.  Now

Equation A.16c and A.18b are substituted into Equation A.18a.

If the relations for viscosity and temperature are substituted into the above equation then
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where C1 is a constant that simplifies the expression.  Now both sides of the previous

equation can be integrated to obtain

where C2 = C1/am.  Applying the exponential function to both sides of the equation

yields:

For x1 = L

C2 can be substituted into Equation A.22 for the solution:
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h 
 hdieDr
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� amL (A.25)

The above solution approaches the isothermal solution as “am” approaches zero. 

Substituting the velocity into Equation A.18b and using the boundary condition that Q =

udiehdie, the theoretical thickness profile is found:
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A.5 Velocity Profile for a Viscous Fluid Falling from Rest under its Own Weight

Brown (1961) derives a non-dimensional differential equation for the velocity of a

thin film of viscous liquid falling under its own self weight:

Where U is the dimensionless velocity and X is the dimensionless distance along the

direction of flow.  The actual velocity (u1) and distance (x1) are related to the

dimensionless values by:

Where � is the shear viscosity, g is the acceleration due to gravity and ! is the density of

the fluid.

The solution to this differential equation is found in Clarke (1966) for the

boundary condition that U = 0 at X = 0:

Where Ai is the Airy function, which is defined as (Miller 1987: 246, 249):
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A.6 Solution for 2D Film Casting when Thickness does not Vary Across the Width

Given the drawing force (F) in the film, Avenas et al. (1986: 359-369) and

Agassant et al. (1991: 239-250) present relations to find the following variables: the draw

ratio (uroll/udie), the neck-in (wroll/wdie) and the thickness change (hroll/hdie).  The theoretical

relations assume that the process is isothermal and that the fluid is Newtonian.  Also,

restrictions are made on the admissible velocity field: u1 = u1(x1), u2 = u2(x1, x2) and u3 =

u3(x1, x3).  This means that the film maintains a rectangular shape from the die to the roll,

as the thickness does not vary in the transverse direction.

The neck-in at the roll is calculated from the following transcendental equation:

Once wroll/wdie is known the following relation is used to solve for hroll/hdie:

The continuity equation can then be used to determine the draw ratio (Dr):

In addition to the above relations, Avenas et al. (1986) and Agassant et al. (1991) present

the theoretical limit for the neck-in:
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Appendix B Derivation of the Tangential Stiffness Matrices

B.1 Derivation of the 1D Tangential Stiffness Matrix

This derivation is for a n-noded 1D element that has the same order of

interpolation for all of the unknowns (u1, h, and T).  The finite element discretization is

summarized as follows:

where n is the number of degrees of freedom and u1i, hi, Ti and Ni are the velocity,

thickness, temperature and shape function values for node i.

The finite element equations for equilibrium, continuity and the conservation of

thermal energy can be expressed concisely as:
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in which Keqlb, Kcont and Kthrm are the stiffness matrices for equili brium, continuity and the

conservation of thermal energy; Kgrad and Kinrt are the contributions to Keqlb from the

gradient of stress and from inertia; Kadvt, Kcond and Knewt refer to the contributions to Kthrm

from advection, conduction and Newton’s law of cooling; and Reqlb and Rthrm are the load

vectors for equili brium and thermal energy.  In these equations the stiffness matrices and

Reqlb are functions of the degree of freedom vector a.

The expanded form of the stiffness matrices and load vectors is found by

substitution of the discretization (Eq. B.1) into the weighted residual forms of the

governing equations (Eq. 2.26, Eq. 2.27 and Eq. 2.30).  The results are as follows:

where le is the element length.
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The stiffness matrices and load vectors can be evaluated using standard Gauss

quadrature, with the possible exception of Kadvt.  If upwinding is used then the advection

stiffness matrix is evaluated as:

Where � is the optimum integration point, Oe is the origin of the isoparametric

coordinates for the element, J is the Jacobian determinant of the isoparametric

transformation and  is the weight factor, which is two for 1D problems.W

For an element the residual is defined as:

The tangential stiffness matrix is the derivative of each component of the residual load

vector with respect to each degree of freedom:

To evaluate KT, the pattern in the rows of the residual load vector is used:

or:
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where:

Equation B.9 shows that the stiffness matrices and load vectors correspond to specific

rows of the residual vector.  This occurs because of the first matrix in the calculation of

each of the terms in Equations B.3.  The matrices Nu
T and Bu

T, for example, when

multiplied with another matrix will result in nonzero entries only in the first and fourth

rows.  The result then, is that these rows correspond to the equilibrium residual (�eqlb).  A

similar pattern is observed for the other two finite element equations and their associated

residual load vectors (�cont and �thrm).

To simplify the derivation of the tangential stiffness matrix further, the derivative

with respect to the degree of freedom vector (a) is broken down into three steps:

The derivatives with respect to au, ah and aT provides the columns of KT that are

associated with the u1, h and T degrees of freedom, respectively.  The idea then, is to
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arrange the matrices that make up the residual so that the derivatives with respect to au, ah

and aT are obvious.  Where possible this is done by arranging the matrix so that the terms

within the integral are not a function of the degrees of freedom in question; for example,

the derivative of Kau with respect to au is straightforward if K is not a function of au.  The

vectors au, ah and aT can be used in place of a when the only non-zero matrix

multiplications are associated with the u1, h and T degrees of freedom, respectively.

The derivatives are taken systematically below, for each residual, each of their

components and with respect to each of the three degree of freedom vectors.  For the

advection stiffness matrix the derivation is shown both with and without upwinding.
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c) Body Force Load Vector
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The thermal load vector does not depend on any of the degrees of freedom; therefore, it

does not contribute to the tangential stiffness matrix.

Now that all of the contributions to KT have been found, the results can be

summarized.  The tangential stiffness matrix is best expressed as the assemblage of

submatrices based on the terms derived above:



132

Ke
T 


Keqlbu11
Keqlbh11

KeqlbT11
Keqlbu12

Keqlbh12
KeqlbT12

Kcontu11
Kconth11

à à à KcontT12

Kthrmu11
�

Keqlbu21
�

Kcontu21
�

Kthrmu21
à à à à KthrmT22

(B.19)

Keqlbu

P
le

0

BT#4�hBdx1 � P
le

0

NT!hu1Bdx1 � P
le

0

NT!h
du1
dx1

Ndx1

Keqlbh

P
le

0

BT
1
11
Ndx1 � P

le

0

NT!
du1
dx1

Ndx1 	 !gP
le

0

NTNdx1

KeqlbT

P
le

0

BT#4h
du1
dx1

d�
dx1

Ndx1

Kcontu

P
le

0

NT dh
dx1

N � hB dx1

Kconth

P
le

0

NT u1B �

du1
dx1

N dx1; KcontT

 0

Kthrmu

!Ch(O e)J(O e)#2

dT
dx1

NT(�)N(O e)

Kthrmh

!Cu1(O

e)J(O e)#2 dT
dx1

NT(�)N(O e) � P
le

0

BTNk dT
dx1

dx1

KthrmT

2!Cu1(O

e)h(O e)NT(�)B(�)J(O e)�P
le

0

BThkBdx1�2.P
le

0

NTNdx1

where: N 
 [N1 á Nn], B 


dN1
dx1

á
dNn
dx1

(B.20)

Where the submatrices are:

If upwinding is not included then:
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B.2 Derivation of 2D Tangential Stiffness Matrices

The derivation of the 2D tangential stiffness matrices follows the same approach

as for the 1D matrix.  However, the 2D case involves the additional complexities of a

second velocity degree of freedom and an unknown free surface.  To simplify the

presentation, the stiffness matrices for the field variables and for the free surface are

derived separately.

Local Tangential Stiffness Matrix for the Field Variables

To express the governing equations in finite element form involves a change of

notation; therefore, the first part of this presentation details the 2D finite element

notation.  For three-noded constant stress triangular (CST) elements the velocity vector (u

� u � ), thickness (h) and temperature (T) are expressed in terms of the degree of freedom

vectors (a, au, ah, aT) and the shape functions (N1, N2, N3):
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For CST elements the shape functions are equal to the area coordinates (L1, L2, L3); that

is, Ni = Li, where i equals 1 to 3.

The rest of finite element notation is introduced in the context of the constitutive

equation, momentum equation, continuity equation and conservation of energy equation. 

Each of these equations is considered in turn by converting the index notation expression

into a finite element notation equivalent.

i) Constitutive Equation 

The stress and strain vectors are defined as follows:

The strain vector in terms of the degree of freedom vector is expressed as

To relate the stress to the strain a constitutive matrix is introduced as follows:
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1 
 D0, where D 
 �

4 2 0

2 4 0

0 0 1

(B.26)

P� /J � � 1 � � hd � P� /u � !hu �
0u �

0x �
d 
 P� /u � !hb � d (B.27)
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0

0x1

0

0x2

(B.28)

0u �

0x �
� (/uT)T 


0u1
0x1

0u1
0x2

0u
2

0x
1

0u
2

0x
2

(B.29)

ii) Momentum Equation

To express this equation in a finite element notation a gradient operator is introduced:

This operator is used to express the gradient of the velocity vector:

To express this matrix in terms of the degree of freedom vector the following matrix

expansion is introduced:
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0u
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0x
1

0u
1

0x
2

0u
2

0x
1

0u
2

0x
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0

0x
1

0

0
0

0x1

u
1

u
2

[1 0] �

0

0x
2

0

0
0

0x2

u
1

u
2

[0 1]


Lx1
u[1 0] � Lx2

u[0 1]


Lx1
Nua[1 0] � Lx2

Nua[0 1]


Bx1
a[1 0] � Bx2

a[0 1]

(B.30)

b 
 <gx1
0>T (B.31)

P� /h
0h
0x �

u � � h
0u �

0x �

d 
 0 (B.32)

0h
0x �

� /h 
 Bhha, where Bhh 
 /Nh

0u �

0x �

� /Tu 
 Bhua, where Bhu 
 /TNu

(B.33)

P� /T!Chu �
0T
0x �

d � P�
0/T
0x �

kh
0T
0x �

d � P� /T#2.Td 
 P� /T#2.Taird (B.34)

Finally, a vector is introduced for expressing the acceleration vector:

in which gx1 is the component of the acceleration due to gravity in the x1 direction.

iii) Continuity Equation

The gradient operator can be used to express the thickness and velocity gradients as

follows:

iv) Conservation of Thermal Energy Equation
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0T
0x �

� /T 
 BTa, where BT 
 /NT (B.35)

Once again the gradient operator is used, this time for the temperature gradient:

With the notation defined, it is now possible to proceed with the derivation of the

tangential stiffness matrix.  This derivation follows the same approach as that outlined

above for the 1D case; that is, the derivatives are taken for each residual, each of their

components and with respect to each of the three degree of freedom vectors.

1) Equilibrium Residual, 
d%eqlb

da



d
da

Kgrada � Kinrta 	 Reqlb

a) Stress Gradient Residual, 
dKgrada

da



dKgrada

dau

�

dKgrada

dah

�

dKgrada

daT

i) 
dKgrada

dau



d
dau

P� B
T
uDBuhd au 
 P� B

T
uDBuhd

ii) 
dKgrada

dah



d
dah

P� B
T
u1Nhd ah 
 P� B

T
u1Nhd
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iii) dKgrada

daT



d
daT

P� B
T
u�D̂0hd, where D̂ 


1
�
D


 P� B
T
uD̂0h

d�
daT

d


 P� B
T
uD̂0h

d�
dT

dT
daT

d


 P� B
T
uD̂0h

d�
dT

dNTaT

daT

d 
 P� B
T
uD̂0h

d�
dT

NTd

b) Inertia Term Residual 
dKinrta

da



dKinrta

dau

�

dKinrta

dah

�

dKinrta

daT

i) dKinrta

dau



d
dau

P� N
T
u!h(/u

T)TNud au


 P� N
T
u!h(/u

T)TNud �
d
dau

P� N
T
u!h(/u

T)Tud


 P� N
T
u!h(/u

T)TNud �
d
dau

P� N
T
u!h(Bx1

au[1 0]�Bx2
au[0 1])ud


 P� N
T
u!h(/u

T)TNud �
d
dau

P� N
T
u!h(Bx1

u
1
�Bx2

u
2
)dau


 P� N
T
u!h(/u

T)TNud � P� N
T
u!h(Bx1

u
1
�Bx2

u
2
)d

ii) 
dKinrta

dah



d
dah

P� N
T
u!(/u

T)TuNhd ah 
 P� N
T
u!(/u

T)TuNhd

iii) 
dKinrta

daT


 0

c) Body Force Load Vector
dReqlb
da




dReqlb
dau

�

dReqlb
dah

�

dReqlb
daT
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i) 
dReqlb
dau


 0

ii) 
dReqlb

dah



d
dah

P� N
T
ub!Nhdah 
 P� N

T
ub!Nhd

iii) 
dReqlb

daT


 0

2) Continuity Residual
d%cont

da



d
da

Kconta

i) 
dKconta

dau



d
dau

P� N
T
h (/h)

TNu�hBhu d au 
 P� N
T
h (/h)

TNu�hBhu d

ii) 
dKconta

dah



d
dah

P� N
T
h /

TuNh�uBhh d ah 
 P� N
T
h /

TuNh�uBhh d

iii) 
dKconta

daT


 0

3) Thermal Energy Residual
d%thrm

da



d
da

Kadvta � Kconda � Knewta 	 Rthrm

a) Advection,
dKadvta

da



dKadvta

dau

�

dKadvta

dah

�

dKadvta

daT

i) 
dKadvta

dau



d
dau

P� N
T
T!Ch(/T)

TNud au 
 P� N
T
T!Ch(/T)

TNud

ii) 
dKadvta

dah



d
dah

P� N
T
T!C(/T)

TuNhd ah 
 P� N
T
T!C(/T)

TuNhd



141

iii ) 
dKadvta

daT



d
daT

P� N
T
T!Chu

TBTd aT 
 P� N
T
T!Chu

TBTd

b) Conduction Residual
dKconda

da



dKconda

dau

�

dKconda

dah

�

dKconda

daT

i) 
dKconda

dau


 0

ii ) 
dKconda

dah



d
dah

P� B
T
T k(/T)

TNhd ah 
 P� B
T
T k(/T)

TNhd

iii ) 
dKconda

daT



d
daT

P� B
T
T khBTd aT 
 P� B

T
T khBTd

c) Newton’s Law of Cooling 
dKnewta

da



dKnewta

dau

�

dKnewta

dah

�

dKnewta

daT

i) 
dKnewta

dau


 0

ii ) 
dKnewta

dah


 0

iii ) 
dKnewta

daT



d
daT

P� N
T
T#2.NTd aT 
 P� N

T
T#2.NTd

d) Thermal Load Vector
dRthrm
da




dRthrm
dau

�

dRthrm
dah

�

dRthrm
daT

The thermal load vector does not depend on any of the degrees of freedom; therefore, it

does not contribute to the tangential stiffness matrix.
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Ke
T 


Keqlbu11
Keqlbu12

Keqlbh11
KeqlbT11

Keqlbu13
Keqlbu14

à KeqlbT13

Keqlbu21
Keqlbu22

Keqlbh21
KeqlbT21

à à à KeqlbT23

Kcontu11
Kcontu12

à à à à à KcontT13

Kthrmu11
�

Keqlbu31
�

Keqlbu41
�

Kcontu21
�

Kthrmu21
�

Keqlbu51
�

Keqlbu61
�

Kcontu31
�

Kthrmu31
à à à à à à KthrmT33

(B.43)

Now that all of the contributions to KT have been found, the results can be

summarized.  The tangential stiffness matrix is best expressed as the assemblage of

submatrices based on the terms derived above:

Where the submatrices are defined as follows:
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TNud
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T
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Nu 


N1 0 N2 0 N3 0

0 N1 0 N2 0 N3

Ns 
 [N1 N2 N3]

Bu 
 LNu

Bx1

 Lx1

Nu

Bx2

 Lx2

Nu

Bus 
 /TNu

Bss 
 /Ns

(B.45)

The shape function and shape function gradient matrices used above have the following

definitions:
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dNw
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1
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 Bwa

Nu 


N
1
0 0 0 0 N

2
0 0 0 0

0 N
1
0 0 0 0 N

2
0 0 0

Nh 
 [0 0 N1 0 0 0 0 N2 0 0]

NT 
 [0 0 0 N1 0 0 0 0 N2 0]

Nw 
 [0 0 0 0 N1 0 0 0 0 N2]

(B.46)

in which the u represents the matrices associated with velocity vector and the s represents

the matrices associated with the thickness and temperature scalars.

Local Tangential Stiffness Matrix for the Free Surface Calculation

For the two-noded surface elements the velocity vector (u), thickness (h),

temperature (T) and width are expressed in terms of the degree of freedom vectors (a, au,

ah, aT, aw) and the shape functions (N1, N2):

This discretization can be substituted into the free surface equation to yield the free

surface residual:



145

%wdth 
 Kwdtha 	 Rwdth 
 0

where Kwdth 
 P
le

0

NT
w
dw
dx1

u1ds; Rwdth 
 P
le

0

NT
wu2ds

(B.47)

where s is the distance along the free surface.

The procedure for finding the tangential stiffness matrix for the free surface is the

same as that used above, except that the temperature degrees of freedom have no

influence and there are now width degrees of freedom.

Width Residual, 
d%wdth

da



d
da

Kwdtha 	 Rwdth

a) Tangential from stiffness matrix, 
dKwdtha

da



dKwdtha

dau

�

dKwdtha

dah

�

dKwdtha

daw

i) 
dKwdtha

dau



d
dau

P
le

0

NT
w
dw
dx1

[1 0]Nuds au 
 P
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0

NT
w
dw
dx1

[1 0]Nuds

ii) 
dKwdtha

dah


 0

iii) dKwdtha

daw



d
daw

P
le

0

NT
w[1 0]uBwdsaw 
 P
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0

NT
wu1Bwds

b) Tangential for load vector 
dRwdth

da



dRwdth

dau

�

dRwdth

dah

�

dRwdth

daw

i)
dRwdth

dau



d
dau

P
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w[0 1]Nuds au 
 P
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ii) 
dRwdth
dah


 0

iii) dRwdth

daw


 0

The submatrices derived above can be assembled into a local 10x10 tangential

stiffness matrix for the determination of the free surface.


