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Abstract

Finite element model sweredevel oped for simulating one-dimensional (1D) and two-
dimensional (2D) nonisothermal film casting of a viscous polymer. These models
accommodate inertiaand gravity, allow the thicknessto vary acrossthewidth of thefilm (in
the 2D case), but exclude die swell and sag. The numerical algorithm isbased on aNewton-
Raphson approach to solve simultaneously for the velocity, thickness, temperature and the
width of the film. Numerical simulations using the finite element model found the
following:

)] upwinding is unnecessary for predicting the temperature distribution;

i) the average temperature distribution in the air gap is well approximated by alinear
function,

i) once the film contacts the chill roll the geometry remains essentially unchanged;

iv) for low viscosity polymers, the self-weight of thematerial canaid in reducing neck-in
and in promoting a uniform thickness;

V) nonconstant thicknessand/or velocity profilesat thedie could potentially lead to less
neck-in and a more uniform thickness for the finished product; and

Vi) cooling of the film, especially when localized cooling jets are employed, reduces

neck-in and promotes a uniform thickness.
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Chapter 1 Introduction and Background

Cast film production is alarge component of the polymer processing industry.
The global output of cast film was 2.79 million tonnesin 1996 and is expected to grow to
3.65 million tonnes by the year 2000 (Gabriele 1996). This growth trend in the industry
puts pressure on cast film technology to improve both the quantity and quality of the film
produced. In determining how to accomplish this, the designer of acast film lineis
currently forced to rely on experimenta and trial-and-error approaches, rather than on
theoretical analyses and numerical simulations. Increasing the contribution of theory to
the design phase would make it possible for more design alternatives to be investigated
and optimized, before resorting to experimentation. Thiswould provide three potential
advantages:

)] areduction in the time required for design;

i) areduction in materials wasted in experimentation; and

11)] amore efficient final design.
These advantages transl ate directly into economic and environmental benefits. The
economic benefit is reduced cost because of the reduction in wasted time and materials,
while the environmental benefit is the reduction in wasted materials that have to be
scrapped. A more efficient final design isimportant for gaining both benefits because

even asmall percentage improvement results in a significant reduction in wastage, given
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the large amounts of film produced. As a step toward realizing the above advantages, this
thesis contributes to the theoretical and numerical modelling of the cast film process.
This chapter acts as the introduction and background for the subsequent
development of the theoretical model and numerical solution technique. Section 1.1
provides an overview of the cast film process, which includes the uses of the finished
product, identification of the range of material and processing conditions, and a
description of the overall process. Section 1.2 consists of aliterature review that
identifies the current state of theoretical knowledge on film casting. Thisreview provides
the context for further studies by showing what has been researched and what areas are
still open to investigation. Given this context, Section 1.3 details the contribution of this

study through a description of its purpose and scope.

1.1 Description of the Cast Film Process

Film casting produces plastic sheets for many different applications, such as
plastic bags, packaging for food and other consumer products, magnetic audio and video
tape, and air and vapour barriers used in construction applications. Filmsare aso
produced by the blown film process, but film casting is generally preferred when a
uniform thickness or a smooth surface is needed, or when products are manufactured with
low viscosity polymers (Cotto, Duffo and Haudin 1989). Cast film is also considered
superior to blown film for clarity, efficiency, and coextrusion operations (Keller 1989).
Coextrusion is used to produce films with multiple layers where each layer contributes a

desired trait to the finished product, such as impermeability to oxygen or moisture, heat
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sedability, strength, chemicd resistance or colour. Although thisthesis focuseson
polymer films, similar film casting processes are used in the production o metal foil s.
Furthermore, the physics of film casting closely resemble thase for curtain coating, which
isused to apply laaguer or paint to a wntinuowsly moving substrate.
1.1.1 Materials and Processing Conditions

To produce sheds for the broad variety of uses described abowve, an extensive
range of materials and processng condtions are used by manufadures. A few examples
of film casting materials are low density polyethylene (LDPE), high density polyethylene
(HDPE), pdyethylene terephthalate (PET), pdystyrene (PS), and pdypropylene (PP.
These polymers cover alarge range of viscosity values, from 10? Pasto 1¢ Pa:s. The
range of processng condtionsis aso large due to the wide range of products
manufadured. Infad, the processng condtions can be set for film with awidth of
between 0.1m and 10m (Peason 1985 473 and with athicknessof between 20um and
2000um (Peason 1985 473). Ancther indicaion d the diversity of the processng
conditions used, is that the throughpu can be between 20 kg/h and 2000 ky/h.
1.1.2 An Overview of the Cast Film Process

Figure 1.1 povides an overview of atypicd continuous film casting operation.
At the | eft side of the figure the solid pdymer, usually in pellet form, enters the extruder
from the hopper. The extruder consists of a screw that melts the polymer and provides
the presaure for it to exit the centre-fed “T” or coat-hanger die. After exiting the die, the
film is exposed to the ar whereit is cooled by conveded cold air or an inert gas before it

contads the thermoregulated chill roll. To ensure good contad of the film with the dill
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roll and to aid in freezing, an air knife is used to blow ajet of air at thefilm. Uptothis
point the film is called the primary film; once it is outside the air gap region however, it is
termed the secondary film. After freezing, the secondary film is hauled off for further
treatment, such as biaxia stretching. Once treated, the finished product goes to a winder
that puts the film onto rolls, which is the final stage shown on the right of Figure 1.1.
Some examples of winder technology are described in Kreisher (1993) and Wilder

(1991).

HOPPER

DIE

EXTRUDER

SECONDARY
TREATMENT

WINDING

ROLL OF
FILM

AIR KNIFE

Figurel.l  Overview of the cast film process

Although the preceding description istypical for film casting, variations on this
approach are possible. For instance, air jets can be added in the air gap region to freeze
the edges of the film, thereby reducing tearing problems. Another variation is to replace
the air knife with an electrostatic pinning system (Barg et a. 1992) that consists of ahigh
voltage wire held parallél to the zero voltage roll. The wire creates an electric discharge

and the associated electrostatic force is responsible for pinning the film to theroll. A
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vaauum box is ancther alternativeto an air knife. This deviceremovesthe ar, plusair-
born dirt and contaminants, from beneah the film and the negative presaure forces
intimate wntad between the film and theroll (Flanagan 1993. An dternative to the dill
roll shownin Figure 1.1,isto use awater bath to freeze the film. Many options are dso
avail able when it comes to the secondary treament phase, with the choice of treament
depending on the properties required o the finished product. For the secondary treament
of magnetic films, the paymer isheld at atemperature just below the film’s melting point
whil e being stretched in the transverse and longitudinal diredions. Thisisfollowed by
stabili zation d the film in an oven maintained at a temperature of approximately 100 °C.
Further detail s of this processare presented in d Halewyu et al. (1990.
1.1.3 The Behaviour of the Film in the Air Gap

Studies onfilm casting, including the one presented in this thesis, focus on hav
the film behavesin the ar gap becaise the properties of the finished product are mainly
determined here (Barq et al. 1992. The ar gap behaviour isimportant as the successof
downstream operations depends on the quality of the film supgied from upstream. A
close up schematic of the ar gap is shownin Figure 1.2. Just outside of the die, the film
swell s due to the sudden change from a @nfined shea flow to an essentially extensional
flow field. To keep the reductionin the width (nedk-in) as snall as possble, the ar gap
length is kept short, generally only afew centimetres. Besides trying to reduce ned-in,
film line designers also want to control adefed cdled “edge bead” or “dog-bore.” This
defed appeas as an increase in thicknessat the film’s edges, which istypicdly several

centimetres wide and can be five times the thicknessof the midde of the film (Dobroth
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and Erwin 1986. Edge beads are aproblem, asthey can lea to entrapped air between
the film andtheroll. In addition, edge beals have to be trimmed and then either scrapped
or regycled. For these reasons, manufadures consider it desirable to reduce elge bead
size, dthowgh nd necessarily to eliminate them entirely, since a edge bead can be
helpful in reducing ned-in and in ensuring the uniformity of the thicknessover the rest of
the film’swidth (Peason 1985 476). Infad, to gain these benefits, some production

lines intentionall y add edge beals.

< Die —>

——Film >

- < Rdl ——>

FRONT VIEW RIGHT VIEW

Figurel.2  Overview of the cast film processin the ar gap
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1.1.4 The Draw Ratio and Draw Resonance
The properties of the film in the ar gap are influenced considerably by the anourt
of stretching. The dimensionlessnumber used to express s$retching is the draw ratio (Dr),

which isdefined as

Dr = roll (1.1)
die

where u,,, and y;, are the velocities of the film, at the dill roll and de, respedively. The
value of Dr istypicdly between 2and 20(Peason 1985 475), although some film lines
operate with Dr as high as 40 a more. A potential problem, termed draw resonance,
exists when the draw ratio istoo high. Draw resonance @nsists of aperiodic variation d

the film’ s width and thickness even at steady state operations.

1.2 Literature Review on Cast Film

Compared with ather industrial paymer processng techniques, simulation d film
casting has nat receved as much attentionin the literature. Therefore, before cnsidering
the research dore spedficdly on cast film, it isworthwhil e to look at the gopli cability of
related work on membrane deformation, coating flows and fibre spinning.

Studies on the deformation d Newtonian and viscoel astic membranes (Wineman
1976 White 1975 Aciernoet a. 1976 have limited appli cability to film casting because,
unlike film casting, the thicknessis assumed constant over the membrane & ead time
step. Research oncoating flows (Kistler and Scriven 1983 Brown 196) and ona aurtain

of Newtonian fluid falli ng under its own weight (Adaci et al. 1989 include the dfeds of
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changesin thickness bu differ from the film casting processbecause they do nd all ow
for displacement control at theroll. Furthermore, coating flows, unike film casting,
invalve low viscosity fluids and complicaions caused by unusually shaped fluid and solid
surfaces. Fibre spinning studies (Mewis and Petrie 1986 Denn 1980 also consider
iswues related to film casting, bu whereas fibre spinning is essentialy one-dimensiondl,
film casting istwo-dimensional. From the precealing discusson, film casting clealy has
requirements that are not addressed by the related reseach.

The following literature review addresses film casting's gedal requirements. To
start with, the mathematicd models propaosed in the literature ae discussed. Next, the
solution techniques used in solving the mathematicd models are reviewed and finally, the
experimental data avail able from the literature aeidentified.

1.2.1 Mathematical Modelling of Film Casting

A mathematicd model for film casting describes the physics of the process that
is, it provides the governing equations for continuity, equili brium, and conservation d
energy. Such amodel must also addressthe seledion d an appropriate constitutive
equation and boundry condtions. Severa different mathematicad models of film casting
have been presented in the literature. These models are distinguished from one ancther
by the simplifying assumptions made; for example, al of the proposed models assume
that surfacetension, air drag and de swell effeds can be negleded. The most genera
model propcsed to date is provided by Pearson (1985 473-479). Hismodel isfully two-
dimensional and can capture both nedk-in and edge beal phenomena. Furthermore, the

model alowsfor inertia, gravity, the sag of the shed and nonsothermal conditions.
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Unfortunately, owing to the complexity of the model and the lack of a specific
constitutive law, Pearson (1985: 473-479) presents the governing equations, but does not
solve the system. Other models, which are less general, have been used to develop
solutions for specific film casting boundary-valued problems. A summary of these
modelsisgivenin Tables 1.1 and 1.2. Table 1.1 has the models associated with draw
resonance research, whereas Table 1.2 has the models used in simulation studies. These
tables compare the research according to: the number of dimensions allowed; whether the
model isfor isothermal conditions; the constitutive law used and whether the model
includes edge beads. For the dimension column, the model is considered one-
dimensional (1D) if the width of the sheet is either assumed constant or infinite. On the
other hand, the two-dimensional (2D) models allow the width to vary and the 3D model

makes no restrictive assumption about how the variables change with respect to direction.
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Table 1.1 Summary of the Mathematical M odelsin Draw Resonance Resear ch

Reference Dim | Constitutive Therma | Edge
Equation | Bead
Y eow (1974) 1D | Newtonian iSO N
Aird and Y eow (1983) 1D | Power-Law iSO N
Minoshima and White 1D | Newtonian noniso N
(1983)
Lee (1984) 2D | Power-Law iSO
Anturkar and Co (1988) 1D | Modified Convected iSO
Maxwell
Barq et al. (1990) 1D | Newtonian iSO N
Silagy et a. (1996a) 2D | Newtonian iSO N
Silagy et a. (1996b) 2D | Newtonian iSO N
lyengar and Co (1996) 1D | Modified Giesekus iSO N

The theoretical models used for draw resonance research are generally simpler

than those used for simulation studies because the interest is on predicting the critical

draw ratio, not on finding precise steady state values. Thisisillustrated by the fact that

all of the research on the stability of film casting neglects the edge bead defect and only

three of the nine studies cited alow for neck-in. Moreover, those studies that do include

neck-in, do so in asimplified manner. For example, the model proposed by Lee (1984)

does not actually predict neck-in, but instead uses it as an input parameter. Silagy et al.

(19963, 1996b) reduce the complexity of the neck-in phenomenon by using asimplified

flow field and neglecting the shear termsin the rate of deformation tensor. Another

simplification that is common to the models proposed in the stability research, isthe

assumption that the processisisothermal. The only exception to thisis the study by
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Minoshima and White (1983), but their focus is on comparing the heat transfer behaviour
of film casting with fibre spinning and blown film extrusion, rather than on finding a
specific solution for their system of equations.

The main areafor complexity in the stability research comes from the constitutive
laws considered. Table 1.1 shows that four of the nine studies cited use non-Newtonian
fluids. Two of these studies are for power law fluids (viscosity depends on the shear rate)
and the other two introduce viscoelasticity. The viscoelastic equations studied are all of
the differential type. That is, some objective measure of the stress rate appears in the
constitutive equation.

From examining the models proposed in the draw resonance research, one finds

that they are too simple to predict neck-in, edge beads and nonisothermal effects.
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Table 1.2 Summary of the Mathematical M odels Found in Simulation Studies

Reference Dim | Constitutive Thermal | Edge
Equation Bead
Avenaset a. (1986 2D | Newtonian iSO N
Cotto, Duffo and Haudin (1989 2D | Newtonian noniso N
d'Haewyu, Agassant and Demay 2D | Newtonian iSO Y
(1990
Duffo, Monasse andHaudin (1991) | 2D | Newtonian nonso N
Agassant et a. (199]) 2D | Newtonian iSO N
Alaie and Papanastasiou (1991) 1D | BKZ-typeintegral nonso N
Barg et a. (1992 2D | Newtonian nonso N
lyengar and Co (1993 1D | Modified Giesekus | iso N
Debbaut et a. (1995 2D | Power-Law, iSO Y
Maxwell-B and
Giesekus
Sakaki et al. (1996 3D | Newtonian iSO Y

Table 1.2 summarizes the simulations sudies, which use mathematicd models

that are dharaderized as one, two o threedimensional. The 1D models proposed have

the drawbacdk that they canna show nedk-in or edge beals. Alaie and Papanastasiou

(1991 aso suggest that a 1D model may make poa predictions nea the die due to flow

rearangements and rea the dill roll dueto contad problems. To avoid these

drawbadks, two-dimensional models have been propased. Although all of the 2D models

in Table 1.2 allow for nedk-in, most do nd alow for edge beals because they assume that

the thicknessdoes not vary acossthe width of the shed. All of the 2D studies that

incorporate this assumption cite Sergent (1977) asthe original source of their model.
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Possbly becaise Sergent’s model canna acourt for edge beads, it also cannat properly
cgpture the width reduction duing stretching. Thisis demonstrated by Barg et a. (1992
who, kased onthe model of Sergent, show goodagreement with their experimental data
except for the width reduction, which they predict as linea but observation shows as
curved. D’Halewyu et a. (1990 show that by al owing the thicknessto vary acossthe
width, amore redi stic width reductionis obtained. Unfortunately, their model does not
provide aredistic thicknessprofile acossthe width. They obtain an edge bead, bu the
thicknessprofile is U-shaped over the centre of the film, instead of being closeto uriform
as often olserved in pradice A U-shaped thicknessprofil e is reproduced in the three
dimensional analysis of Sakaki et al. (1996, except that Sakaki et al. (1996 show a
larger nedk-in than d Halewyu et a. (1990. A paossble explanation for why films
typicdly have auniform thicknessin the midde has been pu forward by Debbaut et al.
(1995. Their anaysis howsthat the U-shaped profile in the cantre of the film predicted
for aNewtonian fluid is replacead by a cnstant thicknessprofile when viscoelasticity is
introduced. Christodouou (1996 aso states that increasing the dasticity of the melt
resultsin amore uniform thickness Furthermore, the explanation that a more uniform
thicknessis dueto elastic dfedsis sippated by Chambonet a. (1996, asthey show
that when alow elasticity melt is cast, the uniform thicknessislost and a U-shaped
profileis obtained. An open question remains concerning how nonisothermal effeds
influence alge beal formation and red-in.

Although no nomsothermal model including edge beads appeasto have been

developed, the thermal effeds have been introduced into ather models. Thermal effeds
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are presented in Michaeli and Menges (1982) for extrusion processes, but the effects of
stretching in the air are excluded. Another thermal study recognizes the influence of the
stretching, but separates its influence from the thermal effects by assuming al of the
stretching occursin the air gap and all of the cooling occurs on the chill roll (Billon et al.
1991). Only afew studies allow for combined thermomechanical effectsin the air gap,
and all these assume that the mechanical effects on the roll are unimportant. One reason
thermal effects have been introduced isto consider crystal growth in the film (Cotto and
Haudin 1988; Duffo et al. 1991; Cotto et al. 1989). The crystal growth studies show that
the crystallization of the polymer does not begin until contact has been made with the
chill roll.

The influence of heat transfer on the velocity and thickness of the film differs
considerably, depending on the polymer and the processing conditions simulated. Some
studies (Barq et al. 1992; Duffo et al. 1991; Cotto et al. 1989), show only a minor
difference between isothermal and nonisothermal results, whereas, for the processing
conditions of Alaie and Papanastasiou (1991), the thickness is dramatically changed when
heat transfer isintroduced. Alaie and Papanastasiou (1991) has the only nonisothermal
viscoelastic model proposed to date. Moreover, this study is the only one that uses an
integral-type constitutive equation for viscoel asticity.

Severa factors are common to al of the papersin Table 1.2. For one, they all use
constant value boundary conditions at the die; that is, the velocity, thickness and
temperature are assumed constant across the width, which is not aways the casein

practice. Furthermore, al of the studies, except Barq et al. (1992), assume that inertia,
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gravity and sag effects can be neglected. Finally, only asingle layer of film is considered
in each of these studies. To date, multilayer films have received only limited theoretical
study (Park 1991; Pis-Lopez and Co 1996a; Pis-Lopez and Co 1996b).
1.2.2 Solution Techniques

Table 1.3 summarizes the solution techniques corresponding to the simulation
studies of Table 1.2. This summary shows that closed-form solutions are rare and only
exist for the simplifying assumption that thickness does not vary across the width. Of the
numerical techniques used, the finite element method (FEM) is the most popular, asit is
used for 4 out of the 8 studies that require numerical solutions. The remaining 4 studies
are equally divided between the finite difference method, and Runge-Kutta methods. For
the finite element simulations, the algorithm is either step-wise uncoupled or coupled.
When the analysisis uncoupled, the velocity, width and thickness are each solved in turn,
based on the current values of the other variables. This approach may be slow or it may
have convergence problems; therefore, use is often made of coupled algorithms, which
solve all of the variables simultaneously in each step. No coupled solution technigque has

been proposed for two-dimensional nonisothermal simulations.
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Table 1.3 Techniques used for Solving the Mathematical M odels

Reference

Solution Technique

Avenaset a. (1986

closed-form solution

Cotto, Duffo and Haudin (1989

an explicit finite difference method

d'Haewyu, Agassant and Demay
(1990

step-wise uncouped solution technique:

)] the velocity isfound wsing FEM;

i) the width isfound wing the Newton-
Raphson method and then

iii) the thicknessis found wsing the finite
volume method.

Duffo, Monass and Haudin
(1997

an explicit finite difference method

Agassant et a. (199])

closed-form solution

Alaie and Papanastasiou (1991)

fully cougded Newton-Raphson FEM

Barg et al. (1992

Runge-Kutta's and Adams-Bashforth’s methods
(Conte and De Boor 1980 373376

lyengar and Co (1993

4™ order Runge-K utta with adaptive step size
control

Debbaut et . (1995

fully couged Newton-Raphson mixed FEM

Sakaki etdl. (1996

streamline finite dement method

1.2.3 Experimental Data

Little experimental datafor film casting appeasto have been reported in the

literature. For draw resonance, some data has been published (Barq et al. 199Q

Bergonzoni and DiCresce 1966, bu this data has a periodic variation and canna be used

for cdibrating models that simulate behaviour below the aiticd draw ratio. The most

comprehensive set of dataisfoundin Kase (1974 for the temperature and thickness
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profiles of steady state PP film casting. Some datais also reproduced in Cotto et al.
(1989) and in Duffo et al. (1991) that shows the width and thickness at the roll for
different polymers and inlet conditions. Barg et al. (1992) present datafor PET casting,
but for proprietary reasons their dataisin dimensionless form. Chambon et al. (1996)
include data for velocity, thickness and width as part of the validation of severa film
casting models. Finally, experimental datais provided in deGroot et a. (1993). Thisdata
examines how changing the fabrication variables affects the ultimate stretch, load

retention, cling characteristics, and abuse resistance of the film.

1.3 Purpose and Scope

The purpose of the study reported in this thesis is to investigate film casting using
afinite element model. Important requirements were that the model could take into
account the following: two-dimensional, nonisothermal behaviour; a viscous constitutive
law; gravitational and inertial effects; and the possibility of the formation of edge beads.
The effects of die swell, sag and elasticity were neglected. To be able to solve the highly
nonlinear system of equations, which contain a strong coupling between velocity and
thickness, a Newton-Raphson strategy was adopted. Parametric studies were performed
using the finite element model to investigate the influence of heat transfer and self-weight
on the velocity, thickness, temperature and width.

This study is original in several respects. First, thisisthe only model that predicts
the thickness variation across the width and simultaneously accommodates nonisothermal

effects, gravity and inertia. Second, unlike previous studies, this thesis considers the



influence of nontrivial boundary conditions at the die by allowing the boundary
conditions to vary over the width. Third, this study leaves as an open gquestion whether
modelling the mechanics of the film is necessary once contact has been made with the
chill roll. Finally, thisthesis presents an algorithm that uses atangential stiffness matrix
for solving the coupled system of equations. Although not an immediate contribution of
thisthesis, it is hoped that the model developed here will eventually provide a framework
for the addition of aviscoelastic constitutive equation.

The analysis of film casting beginsin Chapter 2, with a one-dimensiona model of
the film casting process. The theoretical model is presented, along with a discussion on
the validity of the assumptions used. After that, the solution technique is detailed and
tested by comparison to the closed-form solutions that are available. This chapter also
includes a parametric study considering the influence of nonisothermal effects and a
comparison of the simulated results with the experimental data of Kase (1974). Chapter 3
has the same organization as Chapter 2, except that here the focus is on the development,
solution and investigation of atwo-dimensional model. Chapter 4 consists of conclusions

and recommendations for future work.



Chapter 2 One-Dimensional M odel

A one-dimensional (1D) model has several advantages over atwo-dimensional
(2D) model: a 1D model is simpler to derive and implement than a 2D model; the
appropriateness of modelling assumptions can be presented more clearly in one
dimension; a 1D model provides a convenient framework for considering the effect of
boundary conditions and for doing parametric studies; and a 1D model is often a
reasonabl e representation of wide sheets, and of the central portion of smaller sheets.
Once a 1D model has been fully investigated, the analysis can proceed to a 2D model
with greater confidence.

This chapter starts with a presentation of the governing equations and boundary
conditions for a cast film simulation, including both mechanical and thermal equations
and a discussion of the assumptions made in their derivation. Thereafter, the numerical
algorithm used to solve the thermomechanical system is described. One aspect of the
numerical algorithm described is whether upwinding is necessary for the heat advection
term. The following sections present specific numerical simulations, including:

)] comparison to the theoretical isothermal solutions, with and without the
effects of self-weight;

i) investigation of the effects of heat transfer to the chill roll and to the air;

19
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1)) investigation of theinfluence of the temperature sensitivity of the
viscosity; and

iv) comparison of the numerical solution to published experimental data.

The final section in this chapter provides a summary of the results.

2.1 Governing Equations and Boundary Conditions

In this section, the 1D mathematical model for film casting is devel oped, using the
momentum, continuity, constitutive, and conservation of energy equations, together with
suitable boundary conditions. Thereafter, the appropriateness of the modelling
assumptionsisdiscussed. The presentation of the 1D model is based on the setup shown
in Figure 2.1, with the origin of the coordinate system placed at the midpoint between the
dielips. By definition, the x,, X, and x, axes are in the machine, transverse and out-of-
plane directions, respectively. This system can be considered one-dimensional in the x;-
direction if the following conditions hold: the film is thin; extrudate swell is neglected;
and thefilm is either infinite, or constrained, in the transverse direction. Although Figure
2.1 shows achill roll, awater bath could have been illustrated in its place. Furthermore,

the machine direction (x;) need not be vertical as shown.
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Figure2.1  Setup for one-dimensional film casting

2.1.1 Mechanical Equations

To find the 1D momentum equation, one can consider the forces applied to a
section of film with unit width and infinitesimal length. Figure 2.2 shows the tension and
body force applied to the film; air drag and surface tension are neglected as they are
assumed small. Thetension isthe product of thickness (h) and longitudinal stress (c,,),
while the body force is the product of density (p), acceleration (b), thickness (h) and
length (dx,). Equilibrium requires that the unbal anced force be equal to the changein

momentum. In aspatial frame of reference this requirement is expressed as
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d( hOll) dUl

1 | obh = phu,—t
ax, P o G (2.1)

where theinertial term on the right corresponds to the materia derivative of velocity in
the x,-direction (u,), under steady state conditions. When thefilmisvertical, the
acceleration (b) isequal to the acceleration due to gravity (g). The gravity term and the
inertial term in Equation 2.1 can be neglected when they are much less than the tensile

force. Thissimplification is discussed further in Section 2.1.3.

X, ho,

L

pbhdx, dx,

hoy, + d(how)

d
dx *

Figure2.2  Derivation of the 1D momentum equation

A similar approach to that used for deriving the momentum equation can be used

to derive the continuity equation. Figure 2.3 shows the mass flux into and out of a
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control volume at steady state. For an incompressible fluid these rates are equal;
therefore,

d( pu,h)

d—Xl =0 (2.2)

Assuming the density is constant, this equation can be written as

d(u, h)

a0 (23)

puh

d(puh)

1

puh + dx,

Figure2.3  Derivation of the 1D continuity equation

The constitutive equation adopted in this research is that for a Newtonian fluid,

S ~ _p6ij + Zﬂsij (24)
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where o;; is the stress tensor, p is the hydrostatic pressure, §; is the Kronecker delta, n is
the shear viscosity and ¢; isthe rate of deformation tensor. For afilm, the out-of-plane
stress (o,) IS zero, thereby allowing one to relate the hydrostatic pressure to the rate of
deformation in the x;-direction via

au3

p =2n—
ax3

(2.5)

where u, is the out-of-plane velocity. The pressure (p) can in turn be related to ou,/ox, by
using the continuity requirement. Since the rate of change of the velocity in the
transverse direction (du,/0x,) is zero for plane strain conditions, continuity requires that

au3 _ aul

= = 2.6
ax3 ax1 (2.6)

Substituting Equations 2.5 and 2.6 into Equation 2.4, allows one to relate the stressin the
machine direction to the rate of deformation in that direction; that is,
ou,

ax1

aul

o = 4n ~ Tp X,

2.7)

wheren,, is by definition the planar elongationa viscosity.

Equations 2.1, 2.3, and 2.7 govern the mechanical response of the domain. A
solution however, requires specification of the boundary conditions, which are defined in
Figure 2.4. Theinflow at the die is specified by the velocity and thickness at the die, uy,
and hy,, respectively. For adisplacement-controlled setup, the downstream velocity is
specified asu,,,. Thisisthe velocity at the location where the film is assumed to stick to

the roll so that no further deformation is possible. As mentioned in Chapter 1, the ratio of
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U, /Uge 1S defined as the draw ratio (Dr). On the other hand, for aload-controlled
problem, the force (F = ho,,;) can be specified at the point where the film sticks to the roll.
This sticking is assumed to occur at adistance of L from the die, where

L =Ly + Lian (2.8)
In this equation L, isthe length in the air gap and L, is the length along the roll before
sticking. This study assumes that there is no friction between the film and the roll prior to
the point where the film ceases to deform. The other parameters provided in Figure 2.4
apply to the thermal boundary conditions and heat transfer and are defined in the next

section.

3
= (U, h, Tge

9ap

(T, ®)gap

L

roll

(U, T! a)roll

Figure2.4  Mechanical and thermal boundary
conditions and heat transfer
characteristics
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2.1.2 Heat Transfer Equations
Figure 2.5 shows the hea transfer for asedion o film due to condction, surface
coadling and the change in the hed energy stored in the sedion. At stealy state, the
change in storage of the hed energy leads to an advedive term. Advedionisthe product
of density (p), spedfic hea cgpadty (C), velocity (u,) and thickness(h), while conduction

(q) follows Fourier'slaw; that is, q = —kﬂ,wherekisthethermal conductivity and

dx,
T isthefilm temperature. The surface ©dling is modelled using Newton's law of
coaling, with a being the one-sided hed transfer coefficient and T, the temperature of
the surroundng air. If the principle of conservation o energy is applied to this edion o

film, the foll owing equation results:

dT d2T
eCuh X + 2a(T-T,,) - kh =

2
1 dx;

0 (2.9)

Equation 2.9 des nat include asourceterm for viscous disspation, asit is assumed

negligible for the film casting process
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Figure25 Derivation d the 1D conservation d thermal energy
equation

Anillustration d the thermal boundary condtions and hea transfer coefficientsis
provided in Figure 2.4. At the die, the temperature is prescribed as T, and ower the
film’slength the hea transfer coefficient (a,,, and a,,) and ambient temperatures (T,
andT,,) are spedfied. Thefilm isdivided into two sedions, of lengthsL ,, and L, as
the hea transfer properties of these two sedions differ. Over L, the hea transfer isto
the surroundng air, whereas over L, the hea transfer isto the dill roll, or water bath.

In genera, the hea transfer coefficient must take into acourt free ©nvedion, forced
convedion, andradiation. The hea transfer then, will vary along the length of the film

and from one side of it to the other. A detail ed analysis of the hed transfer for L, is
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found in Barg et a. (1992) and for L, in Billon et al. (1991), Cotto et al. (1989) and
Duffo et al. (1991). Inthe current investigation a simple approach is considered
adequate; a single heat transfer coefficient and ambient temperature are specified for each
section.
Estimation of a,,

To estimate the heat transfer coefficient over L, the processis considered
analogous to forced convection over aflat plate. For thistype of heat transfer a,,, is

found using the following equation (Incropera and DeWitt 1985: 277):

K, Nu
Ogap = —| (2.10)
gap

where a4, isthe average one-sided heat transfer coefficient, k;, isthe thermal
conductivity of the surrounding air and Nu, isthe average Nusselt number. The Nusselt
number for laminar forced convection of afluid over aflat plate is approximated by

(Incropera and DeWitt 1985: 318)

1 1

Nu,_ = 0. 664Re?Pr ? For Re, < 5x10% and Pr > 0.6 (211)
For Equation 2.11 the Reynolds number (Re,) and the Prandtl number (Pr) have the
following definitions:

S u.. L V.
ReL _ PairYairgap and Pr = _A&r 2.12)
nai r Kair

inwhich u,, isthe speed of the forced air relative to that of the plate, L, isthe length of

thefilmintheair gap, p,, isthe density, n,, is the absolute viscosity, v , isthe kinematic
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viscosity and x , isthe thermal diffusivity. The air properties are estimated for a
pressure of one atmosphere (101.3 kPa) and atemperature of T, = (T, + T,)/2, where T,
isthe air temperature far from the plate and T, is the temperature of the plate. For the
cast film process, T, is assumed equal to the temperature at the die (Ty,). Figure 2.6

summarizes the variables of interest for the calculation of Olgap-

uair! Tair
<—
<—

T, Ty Tt Paies Mairs Vair Kai
pr !die fr Pairs Ylairs Vairr Mair
7 / -

- =

gap

Figure2.6  Definition of the variables for the
calculation of the heat transfer coefficient in
the air gap (o,

gap)

Estimation of a,,

Over the chill roll the heat transfer coefficient does not have asimple anaogy like
that for a,,, because of two complications: each side of the film is cooled at a different
rate; and the hest transfer characteristics of an air-knife or a vacuum box are difficult to
estimate. With awater bath however, a simple analogy can be used; o, can be estimated

using the approach described above for aflat plate, but now the fluid properties are for
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water, instead of air. Theinfluence of the heat transfer over L, is considered further in
Section 2.4.1.
Temperature Dependence of Material Properties

Changes in the temperature of the melt result in changes to its material properties.
In this analysis, the assumption is that, over the range of temperatures in question, only
the viscosity change is significant. An Arrhenius relation is generally agood

representation of the temperature dependence of viscosity:
(5 4)
N = ne RLT T, (2.13)

wheren, is the reference viscosity, E is the activation energy, R is the gas constant (8.314
Jmol*K™), T isthetemperature and T, isthe reference temperature. Thisrelation has
the drawback that the viscosity of the material near the solidification temperature may
increase more rapidly than is predicted by Equation 2.13. To address this shortcoming,
an alternative viscosity function has been introduced within the context of blown film

production (Sidiropoul os 1996):

1 1
(T-TY? (T,-Ty®

-a(T-T,) +c( )
n(T) =n.e when T > T, (2.14)

n(T) = when T < T,

where g, ¢ and d are constant parameters and T is the solidification temperature. Both

viscosity-temperature relations are used in subsequent simulations.
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2.1.3 Discussion of Assumptions

The assumptions made in the above derivations of the governing equations place
several physical requirements on the system, including the following: the film isthin; the
thickness gradient is small; viscoelasticity can be neglected; a simple thermal model is
adequate; and the viscosity is within an appropriate range of values. The appropriate
range of viscosity values is determined by the assumptions that viscous dissipation,
inertia, self-weight and surface tension can be neglected. This section discusses the
physical requirements placed on the system and whether or not they are reasonable for a
typical cast filmline. To make quantitative statements about the validity of the various
assumptions, the behaviour of the 1D, gravity free, isothermal solution isused asabasis
for comparison. Appendix A.1 presents the closed-form solution for this case.
i) The Thin Film Requirement

In the derivation of the governing equations the film is considered thin, so that the
variables of longitudinal stress (c,,), velocity in the machine direction (u,), and
temperature (T) can be assumed independent of x;. This assumptionisused in the
derivations so that the film can be considered in plane stress, and so that the derivations
of the equilibrium, continuity and conservation of energy equations are straightforward.
The assumption that velocity and stress do not vary over the thickness appears valid, but
Pearson (1985: 475) points out that thisis not true for the temperature. Pearson shows
this by demonstrating that the Graetz number (Gz) is generally too high to consider the

temperature constant over the thickness. The Graetz number, which represents the ratio
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of thermal conductance due to advection over the length to the thermal conductance due

to conduction over the thickness, is defined as

_ QR
a1, (215)

where Q (= ugnge ) 1S the volume flux per unit width, k isthe thermal diffusivity of the
polymer and h is acharacteristic sheet thickness. Figure 2.7 shows a schematic of these
variables for film casting. Generally, thickness values are not small enough to
compensate for the facts that the polymer melt is a poor thermal conductor and that the
processing speeds are relatively high. However, the 1D conservation of energy equation

(Eq. 2.9) istill valid if T is considered as the mean temperature (T):

| =

T(x,) = fT(xl, x,) dx,/ h (2.16)

The assumption that the mean temperature is adequate for relating the temperature and

viscosity is suggested by Pearson (1985: 475).
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gap

Figure2.7  Definition d the variables for the
cdculation d the Gragz number

ii) The Small Thickness Gradient Requirement

In the derivation d governing equations, the implicit assumption that the
thicknessgradient is gnall is necessary in two places. First, thisrequirement is necessary
for the plane stressassumption that 5, equals zero. In order for this assumptionto be
true, the x;-axis and the normal to the surfacehave to be the same, which implies that the
thicknessgradient must be small. Second,the hea transfer from the surfaceof the film
asumes that dhdx, is snall. Inthe derivation d the energy conservation equation
(Figure 2.5) the film loses hed over the length Ax,. This approximationisonly valid if
the thicknesschanges very littl e over the length; that is, if the ac length of the surfaceof

the film can be considered equal to the film’ s length along the x;-axis. For the theoreticd
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isothermal solution (Appendix A.1), the requirement that dn/dx; be small ismet. Thisis
seen from the solution for the thickness gradient, which is largest at the outlet where

dh/dx, = -h, I n(Dr)/L. Fortypica valuesof h;,=10°m,Dr=10and L =0.5

die
m, the value of dh/dx, = 5x10°. Although dhdx, is generally small, thisis not always the
case. Therefore, care shoud be taken when interpreting the numericd results. The 2D
model for example, has dharp corners at the alges and the nonsothermal simulations may
show high thicknessgradients at the die outlet.
iii) Viscoelasticity

The constitutive egquation used in the derivations of Sedion 2.1.1lassumes a
viscous fluid, bu often pdymers are better represented by a viscoelastic constitutive
equation. Thisthesis uses the simpler viscous model for two reasons. First of al, the
main goal of thisreseach isto investigate the influence of nonsothermal effeds, and
viscoel asticity adds complexity that does not diredly contribute to thisgoal. Secondy,
some polymers used in film casting are well represented by a viscous model, such as
palyethylene terephthalate (Peason 1985 10, 42 Barq et al. 19929.
iv) Simple Heat Transfer Model

Hea transfer in this dudy is smpler than that adually observed in film casting.
The propased model uses a onstant hed transfer coefficient and regledsfree
convedion, radiation and the hea released duing solidificaion. Suppat for the dedsion
to use asimpler modd for hea transfer isfoundin the fad that even amore rigorous

model shows an amost constant hed transfer coefficient in the ar gap, except nea the

die andtheroll (Barget a. 1999. Also, the proposed model can provide aframework for
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investigating the influence of nonisothermal effects without necessarily having to provide
guantitative predictions. Furthermore, assuming that heat released during solidification
can beignored is valid because solidification occurs on theroll, after the geometry isno
longer changing (Cotto et a. 1989; Duffo et al. 1991, Billon et a. 1991). Findly, in
recognition that the heat transfer coefficients may not be estimated accurately, a
parametric study is presented in Sections 2.4.1 and 2.4.2, to learn the sensitivity of the
model to changes in these coefficients.

V) Viscous Dissipation

The assumptions made in deriving the governing equations restrict the admissible
range of viscosity values. The upper limit is set by the assumption that viscous
dissipation can be neglected, while the lower limit is set by the assumptions that inertia,
self-weight and surface tension can be neglected. Once the limits are determined, they
can be compared with the limits typically encountered for polymer melts, 10° Pars < n <
10° Pas.

To find the viscosity below which viscous dissipation would not make a
significant contribution, one can consider the theoretical isothermal solution under typical
processing conditions. Viscous dissipation can be neglected if its contribution to the heat
transfer in the conservation of energy equation (Eg. 2.9) is much less than that dueto
advection; that is, if

du dT
gy, < PMigy,

1

o (2.17)
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The nstitutive equation (Eq. 2.7) and the theoreticd solutions for u, and du/dx,

X,/ L .

(Appendix A.1) can be substituted into this equation. By recognizingthat (Dr) ™t " is
largest for X, = L and rearanging, the following relationship is found

dT, ,
C—L
° dx

« L (2.18)
4u, Dr(InDr)2

For typicd values of p =900 kyym?, C = 2000J/(kg K), dT/dx, = 100K/m, L =0.2m, u,
=0.01m/s, and Dr = 10, the requirement is that n << 3.4x10° Pas. This means that the
contribution d viscous disspation can be considered negligible up to andincluding the
upper limit of typicd viscosity values. Even for n = 10° Parsthe hea transfer by viscous
disspationisonly abou 3% of that due to advedion.
vi) Inertia Term

The lower limit for the value of viscosity is influenced by the assumptions that the
inertiaterm in the momentum equation can beignored. To find the lower limit associated
with negleding inertiaone cnsiders the Reynalds number (Re), which istheratio of
inertial to viscous forces. Reynolds number is defined in Equation 2.12and can be
evaluated for the film. So that the inertiaterm can be negleded, Re must be lessthan
one; therefore,

n » pu,l (2.19)

where u, isa tharaderistic velocity, which has an upper estimate of u,,,. For the typicd
values defined previously andfor u, = u,,, = 0.1 m/s, the viscosity (n) must be much

greaer than 18Pas. This showsthat at the lower limit of viscosity, n = 10? Pars, caution
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should be used if ignoring the inertial contribution. Therefore, the inertial termis
included as an option in the numerical model proposed in this study.
vii) Surface Tension

Another assumption that effects the admissible lower limit of viscosity is that
surface tension can be neglected. The capillary number (Cn), which isthe ratio of surface
tension to viscous forces, is presented in Dobroth and Erwin (1986) in order to figure out

the importance of surface tension:

Cn = P 1 (2.20)

where Sisthe surface energy per unit area, and t is the processing time, which is
considered as the time spent in the air gap. These variables are summarized for film

casting in Figure 2.8. Equation 2.20 implies that

n» = (2.21)

Sample numbers that provide a maximum estimate for the right-hand side of this equation
are provided in Dobroth and Erwin (1986): h =0.001 m,t=10sand S=0.035 N/m.
Theresult isthat  >> 350 Pars. This suggests that the lower limit of typical viscosity
values (10% Pars) must include surface tension effects when the processing time is greater
than 10 s. However, the processing time is usually much shorter than this, so generally

surface tension can be neglected.
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Figure2.8  Definition of the variables for the
calculation of the Capillary number (Cn)

viii) Self-Weight

Finally, the assumption that the self-weight can be ignored aso places alower
limit on the viscosity value. The self-weight can be ignored if it is much less than the
tension applied to the film. For avertical film the weight is greatest at the die. To find an
approximate weight, the theoretical weightless solution for thickness is substituted into an
expression for the differential weight (dW = pghdx,) and integrated over the length to
yield:

~ pghy L(Dr -1)
" Drin(Dr)

(2.22)

To relate the tension (F) to the viscosity, the constitutive equation and the theoretical
solution for h are substituted into the tension equation (F = ho,,) to find:

F = 4nhy u, I n(Dr)/L (2.23)
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If the self-weight can be negleded then W << F. Using this condtionwith Equations
2.22and 2.23the lower limit required for viscosity can be expressed as

pgL ?(Dr -1)
4u Dr (1nDr)?2

»

(2.24)

Typicd values of p =900 kym?, g=9.81m/s, L =0.2m, Dr = 10and y;, = 0.01m/s,
requirethat n >> 1.5x10° Pas. This means that, for viscosity values lessthan
approximately 10° Pars, the self-weight of the film can make a ontribution.
Consequently, self-weight isincluded as an ogionin the aurrent model of polymer film
casting.

A summary of how the dove esumptions relate to viscosity is provided in Figure

2.9,along with the typica viscosity range.

10 +
Z
g °7
.E
s ®7
=
g 4 + Typicd
5 Range
§ 2
el
)

) ) )
t t t
Viscous Dissip. Inertia S. Tension Weight

Figure2.9  Ranges of viscosity values for which viscous disspation,
inertia, surfacetension and self-weight may haveto be
included in the mathematica model of film casting



40

2.2 Solution of the Coupled System

The goal of thisanalysisisto find the velocity, thickness and temperature
distributions. To find these variables a coupled algorithm was devel oped that solves the
governing equation simultaneously, as opposed to an uncoupled algorithm, which solves
each equation in a stepwise manner. A coupled approach has the advantage of more rapid
convergence. Moreover, the solution provided by a coupled agorithm does not depend
on the order the equations are solved in, which is a potentia pitfall for uncoupled
algorithms.
2.2.1 Finite Element Equations

The solution of the thermomechanical system by the finite el ement method first
involves expressing the governing differential equations in their equivalent integral form.
For the equilibrium equation (Eg. 2.1), thisis done by multiplying by avirtual velocity

(8u,) and integrating over the length to obtain

L
Su Mq—pgh—phu&dx =0 2.5
1 Xm lXm 1 ( )

0

After integrating by parts, this equation can be modified to express the weak form of

equilibrium,
L L dul L L
f5€11h011dx1 + f5“1ph“1WdX1 = féulpghdx1 + 6u1hollc\) (2.26)
0 0 1 0

where 3¢, isthe virtual rate of deformation in the machine direction that is consistent
with the virtual velocity 6u,. These integrations are carried out for a unit width and the

product he,; = Fistheforce applied at the roll. When solving boundary value problems,
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either the force (F) or the velocity (u,) is specified at the boundary, but not both
simultaneously.
The integral form of the continuity equation (Eg. 2.3) involves multiplication by a

weighting function (6h) and integrating over the length to yield:

L
dh du,
dhju,— + —=h|dx, =0 227
{(1dxl dxl) L (2.27)

Finally, the integral of the conservation of energy equation multiplied by avirtual

temperature (6T) is

d2T

dT
- hk 5+ 20(T - Tair)de1 =0 (2.28)

dx 1 Xm

f6T[pCu h—

which after integration by parts resultsin the following:

l

L L L
[5Tocu,h ;'T dx, - 5Thkﬂ f
0 0

ydx, - 0 (2.29)

v f6T'20(( T-T,,
0
Although T is known at the upstream boundary (x, = 0), it is not known at the
downstream boundary (x, = L), as this boundary is artificial and the physics of heat
transfer are unknown here apriori. The approach used in this analysisisto specify a
natural boundary condition of q =0 at x, =L, for two reasons. First, specifying that the
heat flux due to conduction is zero is a good approximation of the conductive flux for
polymers, which have very low thermal conductivity. Second, specifying a zero boundary

flux at synthetic boundaries has often shown success (Papanastasiou et al. 1992). With

the boundary terms removed the equation is
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L L
[5Tocu,nTax, + [92Thk AT
0

L
——hk —dx 5T -2aTdx
dx, podx, dx, t ' { T

L (2.30)
= [8T 24T, dx,

0
With the governing equations expressed in an integral form, afinite element

discretization can be introduced. The discretization for a n-noded, one-dimensional

element is
ul
hl
u, N, 0 0 «N O OffT,
h| =Na=/0N O -~ 0N O : (2.31)
T 0 0 N 0 0 NJ]|Un
hn
Tn

in which N is the shape function matrix, a is the degree of freedom vector, and u,, h;, T,
and N, are the velocity, thickness, temperature and shape function values corresponding to
nodei. Some researchers have suggested that the order of interpolation of thickness
should be one order less than that for velocity, in an analogy with the pressurefield in a
mixed formulation (Debbaut et al. 1995). Thisisnot adirect analogy however, asthe
thickness in the continuity equation (Eg. 2.3), unlike the pressure, depends on the vel ocity
aswell asthe gradient of the velocity.

The above discretization (Eq. 2.31) can be substituted into the field equations
(Egs. 2.26, 2.27 and 2.30), along with the constitutive law (EQ. 2.7), to yield the

following finite element equations:
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KEQ' b Reql b

Kcont a = 0

Kihrm Rihe (2.32)
V\,here, Keqlb - Kgrad * Ki nrt

thrm = Kadvt * Kcond * Knewt

inwhich K o, K @nd K, e the stiff nessmatrices for equili brium, continuity and the

eqlby

conservation d therma energy; K,y and K, are the contributions to K, from the

eqlb
gradient of stressand from inertia; K ., K oong @d K, refer to the ontributionsto K.,
from advedion, condiction and Newton's law of coding; and Ry, and Ry, are the load
vedors for equili brium and thermal energy. In these equations the stiffnessmatrices and
Rq are functions of the degreeof freedom vedor a. The stiff nessmatrices and load
vedors are presented in full in Appendix B.1.
2.2.2 Derivation of the Tangential Stiffness Matrix

To solve the muped system using the Newton-Raphson method, the nation d the
residual vedor (y) isintroduced, where

V= [Kegp * Keont * Kinerd @ = Regip = Ripnem (2.33)

For equili brium y = 0. In this equation the stiff nessmatrices, load vedors and the
solution vedor (a) are gplied to the aentire system, as oppcsed to asingle dement. The
residual can be goproximated using afirst order Taylor’s expansion abou any neaby

norequili brium solution a,,,

dy(a,)
7dann Al

¥(a,,) =¥(a,) + =0 wherea,, -a, 4, (239

n n
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The tangential stiffness matrix (K-) isthe derivative of the components of the residua

load vector with respect to the degrees of freedom,

Ki(a) = ¥ (2.35)

Appendix B.1 explains how the tangential stiffness matrix was calculated.
Once the global tangential stiffness matrix is found the change in the variablesis
determined by solving
Kraa, = -¥(a,) (2.36)
A new approximation to the solution vector is calculated by adding Aa, to a,. This
process continues until the relative change in the variables is less than some prescribed
tolerance. The stopping criterion used for this study was,

auf - ah] o AT
ful = Ihl T

Max( I H) < Tol erance, where Ju| = yuu' etc. (2.37)

inwhich u, h and T are the current solutions found in a for velocity, thickness and
temperature, while Au, Ah, and AT are the changes to these variables contained in Aa.
Unless stated otherwise, the tolerance used in the 1D study was 0.001.

For the Newton-Raphson method, convergence depends on agood initial estimate
of the solution. Based on experience from the problems studied in this thesis a good
initial guess for the velocity and thickness are their theoretical isothermal solutions,
which are provided in Appendix A.1. A linear profile proved to be a good estimate for
the temperature. Even with good initia estimates, the algorithm was found not to

convergeif the heat transfer coefficient was too high. In this case, the final solution was
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foundthrough progressvely incrementing the hea transfer coefficient urtil it readed its
full value.
2.2.3 Upwinding Finite Elements

Although the other stiff nessmatrices defined in sedion 2.2.1can be evaluated
using standard Gaussquadrature, cautionis required when evaluating the alvedion
stiffnessmatrix (K ,4,) in thismanner. For hed transfer problems in which advedion
dominates, the standard Galerkin method can lead to spurious oscill ations in the solution
(Christieset d. 1976. Oneindicaion d whether this may be aproblem ishow large
advedionis relative to conduction, which is represented by the Pedet number (Pe),

u,L Kk
Pe = L 9% where x = —
. X = (2.38)

Peis snalest at the die, where typicd values of the parameters are: Uy, = 0.01m/s, L, =
0.5m, k=0.2W/(mK), p =900 ky/m?, and C = 2000J/(kg K). For these values Peis
4.5x10%, which shows the importance of advedion relative to condiction and that the
standard Galerkin method could paentially cause problems. When advedion daninates
upwindfinite dement schemes can be used to all eviate the difficulti es.
An Upwind Finite Element Scheme

Severa approaches are avail able for 1D upwind finite dements, but one of the
simplest is presented by Hughes (1979. In his method upvinding is accomplished for a

1D element by evaluating the alvedion stiffnessmatrix as

Kot = oQU;(0°%) h(0®) Nr( §) B;(£) I(09) W (2.39)
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where & is the optimum integration point, O° isthe origin of the isoparametric coordinates
for the element, Jis the determinant of the Jacobian of the isoparametric transformation
and W is the weight factor, which is 2 for 1D problems. The optimum integration point
(&) isdefined as

B Pe) 2
£ = cot h( 7) Pe (2.40)

Neglecting Upwinding for the Thermal Analysis of Film Casting

Upwinding was found unnecessary for the numerical simulation of the
temperature distribution in afilm, even though the Peclet number ishigh. The reason for
thisisthat the proposed model circumvents the usual cause of trouble, which is
unnaturally forcing an essentially 1D equation to satisfy two extreme boundary
conditions. In Equation 2.9 the advection term is 1D and dominates the behaviour, but
this equation is required to satisfy not one but two boundary conditions because of the
conduction term. However, the thermal boundary conditions proposed in Section 2.2.1
have only one extreme boundary condition. The condition for zero thermal flux at the die
does not place any extreme requirements on the solution. Therefore, the boundary
conditions are in keeping with the essentially 1D nature of the governing equation and the
source of troubleis bypassed.

As suggested by the previous paragraph, upwinding is generally required when
two thermal boundary conditions are fixed. Thisis shown by considering the heat
transfer in a sheet moving with a constant velocity, with the temperature specified at x =0

and x = L. Carslaw and Jaeger (1959: 148) derived the closed-form solution for this
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problem, which is reproduced in Appendix A.2. The parameters used werek = 0.2 W/(m
K), p = 900 kg/m?, C = 2000 J/(kg K), u, = 0.01 m/s,h=0.001 m, L =0.5m, a = 2.0
W/(m?K), T,,=0.0 °C, T,,=180 °C,and T, = 100 °C. A comparison of the
theoretical solution and the numerical solutions with and without upwinding (Figure
2.10) shows that upwinding is essential here. The upwinding solution has less than a0.13
% relative error, while the standard Galerkin solution has arelative error exceeding 479

%, in addition to spurious oscillations.

1000 > = = -~ —
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0 0.1 0.2 0.3 0.4 0.5
Distance (m)

Figure2.10 Temperature distributions for fixed boundary conditions at the die and at
theroll for theory (-), upwinding (T) and no upwinding (--0--)

Film casting however, does not use a boundary condition at the roll like that of the
previous example. In film casting, thereis a zero thermal flux condition at the die, which
allows the standard Galerkin method to make satisfactory temperature predictions. The
theoretical solution used to illustrate thisis that for a sheet with an infinite length in the

machine direction. Carslaw and Jaeger (1959: 148) derive a closed-form solution for this
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case, which isreproduced in Appendix A.2. Figure 2.11 shows the theoretical and
numerical results over thefirst 0.5 m of the infinite length, using the same parameters as
above, except that T, isno longer specified. These results show that the standard
Galerkin method performs dlightly better than the upwind finite elements (0.608 %
maximum relative error versus 0.612%). In conclusion then, upwinding is not considered

necessary for the heat transfer in the film casting problem.
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Figure2.11 Temperature profilesfor an infinite sheet for the theoretical (-), upwind
() and standard Galerkin (©) solutions.

Upwinding for the Continuity Equation

Debbaut et al. (1995) use upwinding for the continuity equation (Eg. 2.3), but this
was not considered necessary in this study. Upwinding is not included because the
coefficients for the different order derivatives of velocity are approximately the samein
the continuity equation. The coefficients for u, and du,/dx, which are dh/dx, and h,

respectively, have similar magnitudes.
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2.3 Isothermal Simulations

Before investigating the dfeds of all owing the temperature to vary, the finite
element program was tested against two closed-form isothermal solutions. One solution
isfor film casting, negleding gravity and inertia, and the other is for afilm falli ng under
its own weight and includes gravity andinertia. These two dfferent cases, along with
other simulations, provide abasis for considering the influence of gravity andinertiaon
isothermal film casting.
2.3.1 Comparison to the Theoretical | sothermal Solution

The dosed-form solutionfor 1D isothermal film casting, which assumes that the
polymer’s slf-weight andinertia can beignored, is derived in Baird and Colli as (1995
andisreproduced in Appendix A.1. A comparison d the dosed-form and numericd
solutions for the dimensionlessvel ocity and thickness(Figure 2.12), shows that the
numericd solutionisin excdlent agreement with the dosed-form solution. The
maximum relative aror for the velocity is0.005% and for the thicknessis 0.1%. For the
simulation 30elements were used and the inpu data were & follows: ug, = 0.01m/s, hy,
=0.001m, Dr =10, = 1.6x10° Pass, andL = 0.3m. Inthe cae of 15elementsthe
maximum relative arorsincreased to 0.0R%6 and 1.®4 for the velocity and thickness

distributions, respedively.
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Velocity u/u,
Thickness h/h g,

Distance x,/L

Figure 2.12 Isothermal drawn film solutions for the theoreticd velocity (-) and
thickness(---) and the numericd velocity (0) and thickness(0)

2.3.2Thelnfluenceof the Film’s Self Weight

A closed-form solutionis also avail able for a shed of viscous fluid falli ng
verticdly under its own weight. For this case, the self-weight isincluded becaise it
drivesthe solution. Inertiais aso included as Reynalds number is nolonger small
because in the foll owing simulation alow viscosity and alarge length were used. The
closed-form solution, cerived in Clarke (1966, isgivenin Appendix A.5. Clarke's
solutionisfor ug, = 0, which is an impossble boundry condtion for the numericd
algorithm, sinceif uy, = O then u, iszero for al x,, becaise continuity requiresthat hu, =
hgeUgee ASaresult, the numericd algorithm was garted from a point where the velocity is

known from the dosed-form solution. For theinitia guess the velocity profile for afree

falling body wasused, u, = 4/2gx; + u(ﬁe. Theinpu parameters weren = 107 Pas, p
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=900 kg/m®, L, = 13.5 m and hy, = 0.001m. The numerical solution used 30 elements
and ug, = 2.542 m/s at x, = 0.836 m. Asshown in Figure 2.13, the numerical results are
in excellent agreement with the theory. If the number of elementsis decreased to 15 then
essentially the same solution is found. The plot uses the dimensionless variables (U and

X) defined in Brown (1961).
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Figure2.13 Curtain velocity versus distance for theory (-) and numerical simulation

(0)

In film casting the effect of the self-weight of the polymer can be seen by
increasing its influence with an associated decrease in the viscosity. Figure 2.14 shows
how the velocity profile changes for avertical film casting line as the viscosity decreases
by factors of 10. The results agree with the assumption that the self-weight and inertia
are not important for large viscosity values. For n >10* Pa's the solution is essentially
identical to the theoretical solution neglecting self-weight and inertia, which does not

depend on viscosity. For n < 10° Pars though, the self-weight has a notable influence. As
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the viscosity decreases the self-weight of the polymer leads to amore rapidly increasing

velocity (and associated decreasing thickness).

50
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Figure2.14 Velocity profilesfor the cast film process with n) valuesin Pas of 10° (D),
10° (V), 10%(---) and 10°(--)

2.4 Performance of the Nonisothermal Model

The previous section tested the numerical solution for the isothermal model. The
next step, is to combine the mechanical and thermal models to see how they interact.
This section investigates this interaction by varying the thermal parameters that are
difficult to estimate; that is, heat transfer to the chill roll, heat transfer to the air, and the
temperature dependence of the viscosity.

So that the simulations in this section could be compared with one another, they
were al completed with the same grid, polymer, and processing conditions. The grid

consisted of 30 elements and the polymer was LDPE (low density polyethylene), for
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which p =920 ky/m?, k = 0.24W/(m K), and C = 2300J/(kg K) (Rauwendad 1986 218).
For LDPE, the temperature dependence of the viscosity can be represented using
Equation 2.14 with the foll owing parameters: n, = 1.6x10° Pas, T, =180°C, T,=95 °C,
a=0.214,c =5.75and d=1.0(Sidiropodos 1995. Owing to the large viscosity, the
effeds of self-weight andinertiawere negleded. For the smulationsin this dion,the
processng condtions were defined as snown in Figure 2.15. Thisfigureincludes the

hed transfer coefficients, which are derived in the foll owing paragraphs.

Uge = 0.01 m/s
3~ hy.=0.001m
Tge= 180 °C

Ly =0.2m
Ty =30 C
tgep = 10 WI(NPK)

— Lg=01m

Ua = 0.1m/s
Ta1=20 C

T Gy = 60 W(NPK)

Film Sicks

Figure2.15 Processng condtions used as abasis of
comparison in the parametric study of
hed transfer

A reasonable value for o, can be found wsing the gproach outlined in Sedion

2.1.2. 1f T, isasuumed as30 °C then T, =105 °C andthe ar properties at a presaure of
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one amosphere aek,, = 25x10° W/(m K), n,, = 18x10° Pas, p,, = 13x10" kg/m* and Pr
=0.76(Avenaset al. cited in Barg et al. 1999. For these data and arelative ar speed of
Uy, = 1.2m/s, Equations 2.10, 2.11and 2.12 pedict a hed transfer coefficient of
approximately 10 W/(m? K). Thisvalue ayreeswith Michadi and Menges (1982 andis
of the same order of magnitude & thase used by Barq et al. (1992, Cotto et al. (1989
andDuffo et a. (1991).

Asexplained in Sedion 2.1.2 0, isdifficult to oltain from the theoreticd
equations of hed transfer. However, it ispassble to provide areasonable estimate, from
the knowledge that the film freezes during contad with the dill roll. To take advantage
of this knowledge use is made of an equation that is derived in the next sedion, Equation
2.41.

Equation 2.41 relates the temperature of the film to the hea transfer coefficient.
For the paymer and processng condti ons described abowe, this equation estimates
T(Lgp) = 154°C. Asauming that, over the length L, the film’s temperature drops from
154 °C to the solidificaion temperature, Equation 2.41requiresthat o, ~ 60 W/(m* K).
Thisvalue likely underestimates the hea transfer coefficient becaise films often freeze
over adistanceshorter than L.

If the dternative method d using awater bath were employed then the aaling
would occur a ahigher rate. With awater bath, the goproach used for o, can be used,
with water as the fluid instead of air. If T, isassumed as20 °C and T, is assumed as 154
°C,then T; = 90°C. Thewater properties at T, and a presaure of one amosphere ae &

follows: K, e = 0.67W/(M K), Nyarer = 3.16x10* Paxs, p e = 965.3 kg/m?* and Pr = 1.98
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(Bgan 1984: 462). If these values are substituted into Equations 2.10, 2.11 and 2.12,
along with uy, = U, then the value of a,,, is about 990 W/(m? K).

In the simulations that follow, the value of 60 W/(m? K) is used as the basis for
comparison. Thisvalue likely represents a conservative estimate for o,
2.4.1 Effect of Heat Transfer to the Chill Roll

Over the air gap, the thermal response does not depend on the heat transfer at the
roll. Although the chill roll rapidly cools the film, the poor thermal conductivity of the
polymer means that this affects the upstream temperature very little. Temperature
profilesfor a,,, values of 30, 60, 90 and 120 W/(m? K), which are shown in Figure 2.16,
have a maximum relative difference of only 0.1% in the air gap. The temperature profiles
of Figure 2.16 consist of two distinct, approximately linear, segments. This figure also
shows the temperature val ues predicted by solving the energy conservation equation

neglecting conduction,

T=(T,, -T,)e ™ " 1. (2.41)

This equation is derived in Appendix A.3. A solution for temperature can be found
independent of the velocity and thickness profiles, because the solution depends only on
the product of velocity and thickness, which is constant. Values from Equation 2.41 are
in excellent agreement with the numerical predictions, with a maximum relative
difference of only 0.1% between them. Clearly, the effects of thermal conductivity of the

polymer can be ignored.



56

Temperature T/T g,

0 | t t t t + $ + 4 + ]
0 0.2 0.4 0.6 0.8 1
Distance x,/L

Figure2.16 Numericd temperature profil es (-) and theoreticd profiles for pure
advedionfor ag, = 10 W/(m* K) and a,, = 30 (D), 60(0) and 90(v)
W/(m? K)

As a onsequenceof the insensitivity of the temperature in the ar gap to the hea
transfer at the dhill roll, the mechanicd variables of film casting are dso esentialy
independent of o,,,. With a,, vauesof 30, 60, 9Gand 120W/(m? K), the maximum
relative difference anong all of the simulated thicknessdistributionsis lessthan 0.3%.
Experimental observations suppat the onclusionthat the film’s thicknessdistributionis
insensiti ve to changes in a,,,, as they show that the geometry of the film does nat change
once @ntad is made with the dill roll (Billonet a. 1991 Cotto et a. 1989. These
numericd and experimental resultsindicae that it is not necessary to model the dill roll

to predict the mechanicd or thermal resporse of the film in the ar gap.
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2.4.2 Effect of Heat Transfer to the Air

To learn the influence of heat transfer to the air, the parameter o, is given values
of 2.0, 10.0 and 20.0 W/(m? K). Simulated temperature profiles for these values are
provided in Figure 2.17, along with profiles found using the following linear

approximation:

2a( Tie — Ty )
T=T. B ie air X
die pCUlh 1 (2-42)

The slope for this equation comes from the derivative of Equation 2.41, which is constant
as long as the exponential function is close to unity. Equation 2.42 has a maximum
relative error of 7.1% compared with the numerical solution when a,, = 20.0 W/(m? K)
and x, equals L ,,. Anincreasein the error occurs because the assumption that the slope

is constant, made by Equation 2.42, is not strictly valid over the entire range of Xx;.

Temperature T/T,

065 T + t + } + | + |
0 0.2 0.4 0.6 0.8 1
Distance X;/Lee

Figure2.17 Temperature distributions for numerical simulations (-) and using
Equation 2.42 with o, = 2.0 (CJ), 10.0 (V), and 20.0 (0) W/(m? K)
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For larger values of a,,, the linea approximation for temperature introduces error,
but for smaller values it provides goodresults, as one might exped. Therefore, the linea
temperature profil e was used to find an approximate dosed-form solution for the

nonisothermal velocity (Appendix A.4):

1-e am(l)
e 20 (T, - T
= UdieDr( 1-e™m where m = %ap( Taie ~ Tair) (2.43)

- oCuh

1

where "a” is the temperature sensitivity of the Arrhenius equation (Eq. 2.14. Equation
2.43agrees very well with the numericd results (Figure 2.18), with amaximum relative
error of 4.3%. The maximum error occurs for the aurve with the highest hea transfer
coefficient, because for the higher values of a,, the @sumption o alinea temperature
profile beginsto breaks down. Figure 2.18shows that as the hea transfer coefficient
increases the velocity increases more rapidly. Thisisaresult of ahigher o, leading to a
more rapid deaeasein T. Thisin turn causes a higher viscosity, which resultsin u,

approaching u,,, faster for the same x,.
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Figure2.18 Velocity profilesfor numericd simulations (-) and for Equation 2.43with
O = 2.0(0J), 10.0(V) and 20.0(0) W/(m? K)

2.4.3 Effect of the Temperature Sensitivity of the Viscosity

Up to this paint in the analysis, the temperature dependence of the viscosity has
been modelled using Equation 2.14. This equation hes better agreement with viscosity-
temperature data nea the solidificaion pant than the mnventional Arrhenius relation,
which is obtained when ¢ equals zero. However, away from the solidificaion
temperature the two relations are esentially the same. In film casting solidificaion daes
not occur in the ar gap; hence the more cmplex viscosity-temperature relation may not
be necessary. After rerunning the simulations of sedion 2.4.2with ¢ =0, instead of 5.75,
it was foundthat the original results were reproduced. This suggeststhat ¢ can be

asumed equal to zero and the sensitivity study can focus onthe “a” parameter alone.
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To determine the influence of the “a” parameter onthe film, it was given values
onether side of its estimated value of 0.214. Velocity distributions for “a” equal to 0.1,
0.214and 0.3are plotted in Figure 2.19 wsing the numericdly simulated results and
Equation 2.43. Again the dosed-form solution performs well, with a maximum relative
difference of 4.7 between the solutions. A comparison d Figure 2.19with Figure 2.18
shows that varying “a” has asimilar effed to varying a,,. Why thisoccursisclea from
Equation 2.43 which shows that m depends on the parameter “a” and 2 in an identica

manner.
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Figure2.19 Veocity profiles for numericd simulations (-) and wsing Equation 2.43
witha =0.1(0), 0.214(V) and 0.3(0)

2.5 Comparison to Published Experimental Data
Although littl e experimental datais avail able for comparison with the model

developed in this chapter, Kase (1974 does contain a useful set of temperature and
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thicknessdata for palypropylene (PP film casting. In order to simulate Kase's
experiments, the material properties and processng condtions were required.
Unfortunately, Kase does nat provide the material properties for the experiment, so they
had to be estimated. From ancther experiment involving PPin the same paper, data ae
cited as p = 830 kg/m?® and C = 2931J/(kg K). An estimate for thermal conductivity (K) is
0.15W/(m K) (Rauwendad 1986 218). For the viscosity-temperature dependence,
Tanner (1985 353 providestypicd parameters that correspondto Equation 2.13E/R =
5.1x10*°K, T,=190°C andn, = 3.2x10° Pas. Althowh it is recognized that with this
low value of n,, inertia and gravity may be important, their effeds are nat included in the
simulations that follow. Thisisdone becaise the PPused by Kase (1974 could have had
significantly larger viscosity value. The analysis of Kase suppatsthis posshility because
gravity andinertia aeignored. Moreover, the description d the experimental setup daes
not state whether the film lineis verticd or at some other angle. Asaresult, the dfed of
gravity onthefilm isunclea.

Hea transfer properties for the simulations were found ly cdibration d the model
with the temperature data provided by Kase (1974). Kase's experiment for measuring
temperature used the foll owing processng condtions: Ty, =215°C, L, =0.95m, L, =
0.242m, y;, = 0.015m/s, h;, =990x10° m and y,, = 0.5m/s. Vaduesfor T, and T, are
not provided, so in the simulations that foll ow they were assumed as 30 °C and 20°C,
respedively. With these processng condtions and Equation 2.41 the hed transfer

coefficients were estimated as o, = 13.0W/(m* K) and o, = 52W/(m? K). Figure 2.20

shows that the experimental data points agreewith the simulated results. As expeded
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from the preceding numericd analyses, the temperature profil e is approximately a bili nea
function with the sudden change in slope @rrespondng to contad with the dill roll.

These results confirm that the experimental setup is nonsothermal.

220 ¢
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Figure2.20 Experimental temperature data (x and ©) and numericd simulation results
for oy, = 13.0W/(m* K) and a,,, = 52 W/(m?*K) (-)

Oncethe estimates for the hed transfer coefficients had been establi shed,
simulations were cmmpleted to compare numericd and experimental thicknessdata.
These data ae for two experiments with the same draw ratio of 33, bu with dfferent film
speeds at theroll. For the first experiment L, = 0.95m, Uy, = 0.0155m/s, hy, = 660<10
®mand y, = 0.341m/sand for the second experiment L, = 0.95m, uy, = 0.0364m/s,
hge = 550x10° m and y,, = 0.67m/s. Inthislist of processng conditions the values for
Uy, and hy, are not adualy the values at the die, but the values for the first data point past

the zone of extrudate swell, as the numericd model negleds this phenomenon.
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Figure 2.21, which uses alogarithmic axis for the thickness, shows that the
experimental and numerical trends are similar, but the magnitudes differ. Several factors
could contribute to the difference. First of all, the quality of the original datais unknown
because no error estimates were published and data collection for film casting can be
difficult. Secondly, the constitutive model developed in this chapter, which neglects
elasticity, could be an important factor. Seyed and Papanastasiou (1991) favour this
explanation and show that including viscoelasticity leads to better agreement with the
data of Kase (1974). Finaly, PP can have alarge range of material properties and the
properties assumed in this simulation could very well be different than the actual ones.
For instance, if the viscosity of the actual polymer were less dependent on the
temperature, then the simulated results for thickness would be in better agreement with
the experimental data. This can be seen by considering how areduction in temperature
dependence would improve agreement with the experimental data; the ssmulated results
would approach the isothermal solution, which would improve agreement because the
isothermal solution is astraight line on a semi-logarithmic plot. This influence of the
temperature dependence of viscosity explains why the higher roll speed isin better
agreement with the experimental data than the lower speed. For the higher speed the
temperature does not decrease as much, so the influence of the viscosity-temperature
dependence is not as pronounced and the simulated results are closer to the approximately

linear experimental data.
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Figure2.21 Comparison between experimental thickness profilesfor u,,, = 0.34 m/s
(x) and u,,, = 0.67 m/s ((J) against the corresponding nonisothermal
simulations, (-) and (---), respectively

2.6 Summary of Results

The governing mechanical and thermal equations for the cast film process, along
with their associated boundary conditions, have been presented in this chapter. Also
presented were the following physical requirements for the system: the film isthin; the
thickness gradient is small; viscoelasticity can be ignored; a simple heat transfer model is
adequate; viscous dissipation and surface tension can be ignored and self-weight and
inertia are only important for low viscosity polymers. This chapter also detailed the
solution technique for the coupled thermomechanical system, for which upwinding was
found to be unnecessary. In addition, this chapter demonstrated that isothermal
simulations reproduce the closed-form solutions for a viscous fluid including and

excluding the influence of self-weight. For the nonisothermal simulations, it was
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observed that the mechanical and thermal results are insensitive to the heat transfer over
theroll. Therefore, modelling this part of the process is not necessary. The numerical
results for the nonisothermal simulations also suggested a theoretical approximation for
the temperature and velocity profiles. These approximate solutions agreed well with the
numerical results. By considering the approximate solutions, it was seen that the
temperature sensitivity of the viscosity and the heat transfer coefficient affect the velocity
profilein the sameway. Finally, this chapter compared the numerical results with some
experimental data availablein the literature. Although the therma model agreed with the
experimental data, the mechanical predictions were off. The discrepancy was accounted
for by experimental error, uncertainty in the material parameters and the influence of

viscoel asticity.






Chapter 3 Two-Dimensional M odel

Although the 1D model of the previous chapter provides useful insight into film
casting, a 2D model is necessary to capture the neck-in and edge bead phenomena. A 2D
finite element model, which alows the thickness to vary in the transverse direction, is
developed in this chapter for nonisothermal film casting of aviscous fluid. The model
accommodates low viscosity polymers by including inertiaand gravity. However, the sag
of the film, the elasticity of the polymer and die swell are neglected. A Newton-Raphson
agorithm is used to solve simultaneously for the velocity, thickness and temperature
distributions, aswell as for the width of the sheet.

Section 3.1 presents the governing thermomechanical equations and boundary
conditions, while Section 3.2 presents the numerical algorithm used to solve the system
of equations. Section 3.3 compares isothermal simulations with a closed-form solution
and with published results. The nonisothermal finite element model is the subject of
Section 3.4. In this section the influence of gravity on film casting is also investigated.
Nontrivial boundary conditions, such as a nonconstant thickness at the die or localized
cooling jets, are the topic of Section 3.5. Finally, Section 3.6 summarizes the results for

the 2D simulations.
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3.1 Governing Equations and Boundary Conditions

This section presents the two-dimensional model of the cast film process using the
same physical requirements as discussed in Section 2.1.3; that is, the film isthin, the
thickness gradient is small, elasticity is neglected, and a simple thermal model is
considered adequate. The 2D setup is defined in Figure 3.1, in which the origin of the
axesis centred between the dielips, L isthe length of the air gap and 2w, is the total
width of the film at theinlet. In the smulations that follow, only half the width of the

film (wg,) is modelled as the sheet is assumed to be symmetric.

B 2W 4 N
I~ 1
< Die —
X X3
X
L

B S _é RO” %
FRONT VIEW RIGHT VIEW

Figure3.1  Setup for two-dimensional film casting
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3.1.1 Mechanical Equations
To derive the momentum equation, the same approach as that used in Section
2.1.1 can be applied in two dimensions, to yield

a(h 0
M + phb = phu i (3 1)
X, o Pox, '

inwhich histhe thickness, o, is the planar stress tensor, p isthe density, bisthe
acceleration vector and u, isthe velocity vector. For the subscripts a and 3, the Einstein
summation convention is applied over therange of 1 to 2. If thefilmisvertical, then the
acceleration vector has the componentsb, =gand b, = 0.

The continuity equation can aso be derived using an approach similar to that of
Section 2.1.1, to find

a(hu ) oh au

- h__® =
ax(X E)xau<x " ax(X 0 (3.2

To relate the stress to the rate of deformation, the Newtonian constitutive equation
(Eg. 2.4) isused, along with the relation between the pressure (p) and the out-of-plane
rate of deformation (du,/0x;) (Eq. 2.5). Unlikein 1D, for the 2D case the rate of
deformation in the transverse direction (du,/ox,) is not zero; therefore, continuity requires

ou
ox

5 [au1 . auz] ( r ) 53
= - = - € g = —-g .
2 axl ax 11 22 ao

If Equations 2.5 and 3.3 are substituted into Equation 2.4, then the constitutive equation

can be expressed as

Opp = 20 €y + €,,8,) (3.4)
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Figure 3.2 defines, for the domain Q, the boundaries at the die, roll, line of

symmetry and free surface as I, I',q1s ['sme @00 [y, respectively. At these surfaces the

sym?

mechanical boundary conditions are as follows:

on Iye Up = Uge U =05 h=hy,

on Proll ul - uroll; u2 =0

on Ty u, =0; o, =0 (3.5)
on Ty, .. Oy = 0; un =0

on I|freedeie W:Wdie

where n, is the unit vector normal to the free surface and the last boundary condition

applies at the intersection of the free surface and the die.

X,
I, Tree
I, die
‘Q ‘rroll
X
I sym

Figure3.2  Boundariesfor the two-dimensional domain
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At the freesurface the boundry condtions are for zero tradion and zero mass
flux. The massflux boundiry condtion can be used to find the freesurface(w), where w
isfunction d the distance dong the machine diredion:
W= W(X,) (3.6)
The normal to the freesurfaceis the negative redproca of the slope of thisequation. As
the normal can berelated to the freesurface the zero flux boundary condtion can be used
to findthe freesurface Thisisdonre by setting the dat product of the velocity vedor and

the normal vedor to zero; that is,

. W u -0 (3.7)

3.1.2 Heat Transfer Equations
The 1D approach of Sedion 2.1.2can be extended to two dmensionsto find the

conservation d thermal energy equation,

oT °T
pChu_ ™ +2(T -T,,) - kh =0 (3.8)

axqax(X

Sedion 2.1.2explained haw to estimate a over the ar gap. Furthermore, the parametric
study of Sedion 2.4.1showed that modelli ng the hea transfer over the dhill roll is
unrecessary, asthe film’s geometry does nat change oncethe film contadstheroll. The
equations for viscosity as afunction d temperature ae provided in Sedion 2.1.2. Based
on the observations from the parametric study of the viscosity-temperature dependence of
Sedion 2.4.3the 2D model uses the simpler Arrhenius relation that does not include a

sharp increase in viscosity nea the solidification pant; that is, c =0in Equation 2.14.
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Thermal boundry condtions are defined, with referenceto Figure 3.2, as follows:

onrT T=T

die die

o (3.9)

T and T

on Pr0| [ sym free qana

where g, is the thermal flux vedor and n, is the unit vedor normal to the surfaces.
Although the thermal flux normal to the freesurfaceis not adually zero, it is assumed
zero asthe hed transfer over the adge is much smaller than that over the rest of the film’s
surface At theroll the thermal flux isalso assumed zero for the reasons discussed in

Sedion 2.2.1.

3.2 Solution of the Coupled System

To solve the 2D thermomedhanica system, the dgorithm developed for the 1D
case can be used, except that in 2D thereis an additional velocity degreeof freedom and
an unknavn freesurface This dion presents the 2D finite dement equations and
couped solution agorithm for finding the freesurface ad the velocity, thicknessand
temperature fields.
3.2.1 Finite Element Equations

The wed form of the euili brium equationisfound ty multi plying Equation 3.1
by avirtual velocity vedor (5u,), integrating over the domain (€2) and applying Gauss s
theorem:

au(x

E)xﬁ

féeqﬁoqﬁth + féquhuﬁ do - féunqth + f@quhqug (3.10)
Q Q r Q
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inwhich de,, isthe virtual rate of deformationthat is consistent with the virtual velocity
vedor and T  isthe tradion applied to the boundhry. However, in the smulations that
foll ow, the load-controll ed boundry-valued problem is not solved, as the displacement-
controlled problem is more representative of film casting.

For the continuity equation (Eq. 3.2, the integral equivalent isfound ly

multi plying by aweighting function (6h) and integrating over the domain:

oh [V
[h 5o Us *h==]de =0 (3.11)

Similarly, the weighted residual form of the mnservation d thermal energy
equation involves multi plication d Equation 3.8 ly avirtual temperature (6T), integration

over the domain and application d Gauss s theorem:

f5T ohu, STde + ?kh_dg . féT-ZochQ - [oT20T, do (319)

In this equation the load due to the thermal flux at the freesurfaceis not included as the
thermal boundxry condtions (Eq. 3.9 spedfy zero flux. When Equation 3.12was lved
upwinding was nat introduced, as the results of Sedion 2.2.3 @monstrate that it is
unrecessry.

Finaly, the kinematic boundary condtion for the freesurface(I’,.o) can aso be
expressed in an integral equivalent form. Equation 3.7is multiplied by aweighting

function (6w) andintegrated over the freesurfaceto oltain

free

dw
f 6Wd—Xlu1dP f 6V\’uzdl—‘free (313)

rfree rfree
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When STW isintegrated ower the freesurface the dhain rule was used to expressthe
1
derivative & %V STS where sisthe ac length aong the freesurface

1
A solution for stealy state film casting is found ty satisfying Equations 3.4, 3.10,

3.11,and 3.12 with the boundry condtions of Equations 3.5, 3.9,and 3.13. To find this
solution afinite dement discretization was introduced, as hown in Figure 3.3. Over the
film’s surfacethreenoded triangular el ements were used as they are simple, spatialy
isotropic dements. At the film’s edge two-noded elements were used. For the triangular
elements ead nock has four degrees of freedom: u,, u,, hand T. An additional degreeof
freedom was introduced for the linea elements, the film’swidth. The finite dement
equations were obtained by substitution d this discretization, with the gpropriate shape
functions and shape function derivatives, into the system of equations and boundary
condtions. Appendix B.2 provides the detail s on the caculations of the stiffness

matrices and load vedors for the solution d the boundry value problem.
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Figure3.3  Surface element (three-noded) and edge element (two-noded) for
finite element discretization of 2D film casting

3.2.2 Solution Algorithm

The overall solution algorithm can be summarized with aflowchart (Figure 3.4).
This flowchart shows that, unlike in the 1D case, for convergence in 2D thefinal draw
ratio (Dr) must be approached in an incremental fashion. Thisis necessary because for
the 2D case the geometry is unknown at the outset. Since the draw ratio isincremented,
the 2D algorithm did not require incrementing the heat transfer coefficient, as was done in

the 1D case.
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Initial guessfor field
vars. (u, U, h, T)

and for width (w)
Coupled Newton
Raphson Finite
Element Method
Dr=Dr + ADr
Update Mesh
NO
) YES NO
Fina Dr vaue? Convergence?
YES

Simulation Complete

Figure3.4  Fowchart of the algorithm used for the numerical
simulation of 2D film casting

Theinitial guesses used for the field variables were the 1D closed-form solutions.
For u,, the isothermal solution (Appendix A.1) and the nonisothermal solution (Eq. 2.43)
were used as appropriate. A value of zero was assumed as the initial guess for u,, and h
was found from the continuity requirement. Equation 2.42 was used for the initial
estimate of the temperature. A rectangular domain was used for the initial geometry; that

is, dl of the width values wereinitialy set equal to wy,.
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Within each iteration the variables were updated using the finite element method.
Section 2.2.2 describes how the Newton-Raphson method was used and Appendix B.2
details how the tangential stiffness matrices for the 2D system were derived. With each
new estimate for the free surface, the mesh geometry was updated. Thisinvolved
changing the x,-coordinates of the nodes so that the new x, values maintained the same
ratio to the new width as they had with the previous width.

The convergence criterion used in 2D was the same as that for the 1D case, except

that the width variable was also considered:

x( jlau|  Jah] AT [aw
jul ™ thy T w
where |u| = yuu' etc.

) < Tol er ance
(3.14)

inwhich u, h, T and w are the current solutions for the velocity, thickness, temperature
and width degrees of freedom, A represents the change in these variablesand | |
represents the Euclidean norm of the vector. Unless stated otherwise, the 2D studies used

atolerance of 0.01.

3.3 Performance of the I sothermal M odel

Before proceeding to nonisothermal problems, two comparisons are made
involving isothermal simulations. One comparison iswith a closed-form solution that
assumes no edge bead, and the other is with published simulation results.
3.3.1 Comparison with a Closed-Form Solution that Assumes no Edge Bead

As mentioned in the literature review of Section 1.2.1, the 2D closed-form

solution proposed by Sergent (1977) has been employed in many subsequent studies.
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Sergent’s model, which is siammarized in Appendix A.6, canna cgpture an edge bead
because the model assumes that the thicknessdoes nat vary in the transverse diredion.
Sincethe arrent study does not make this assumption, the influence of an edge bead on
the force thicknessand redk-in ratio can be observed by comparing the numericd
solution d this gudy with Sergent’ s closed-form solution.

The dosed-form solution o Sergent (1977 is presented in Avenas et a. (1986
368 and Agassant et al. (1991 249) through an example film casting problem. This
example problem was used as the basis for the aurrent comparison. For this problem the
polymer has aviscosity of 3x10" Pars and processng conditions that are defined in
Figure 3.5. Thefigure dso shows the 2400element mesh used for the simulation. A
finer mesh was not required, as more than douldi ng the number of elementsto 5408
resulted in little changein the variables. Similarly, atoleranceof 10? is adequate, as

deaeasing the toleranceto 10° also resulted in orly minor changes to the variables.

W4 =0.1m

Uge = 0.01 m/s

hge =550 pm

= X,

= = €
I
(=]
= )
=
w
B

U, =0.09 m/s

Xl

Figure3.5  Processng condtions and mesh for comparison to
the dosed-form solution that assumes no edge
bead
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Figure 3.6 shows that the freesurfacefound ly the dosed-form solutionislinea,
whil e the freesurfacefound ty the numericd algorithm is curved. The differencein the
two solutions can be acourted for by Sergent’s exclusion d the freesurfaceboundiry
condtion (Eqg. 3.7. Thisboundry condtionisresporsible for the arved shape becaise
it requires the freesurfaceto have azero slope & thedie androll. A zero slopeis
obtained at these locaionsasu, = 0 and y, # 0 andthus Equation 3.7leals to dw/dx, = 0.
Introduction d the freesurfaceboundary condtion leals to amore redistic smulation o
the freesurface as the predicted curved shapeisin better qualitative agreament with
experimental evidencethan the linea surface which would have been oltained atherwise

(dHalewyu et a. 199Q Barq et al. 1992.

0 0.2 0.4 0.6 0.8 1
X, /L

Figure3.6  Freesurfacefor the dosed-form solution (---) and for the numericd
simulation (—)

A comparison d the thicknessaaossdifferent crosssedions of the film (Figure

3.7) shows that the numericd simulation daes nat agreewith the dosed-form solution's
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asumption d constant thickness In fad, the numericd solution shows a U-shape with a
significant edge bead. This shape is quditatively similar to the experimental data of
Chambonet a. (1996 for aviscous paymer. However, the U-shaped profil e does not
compare well with typicd industrial polymer casting, which shows a doseto uriform
thicknessover the midd e of the film and arapid rise nea the alge. Ancther fedure of
Figure 3.7is sveral sharp oscill ations in the slope of the thicknessprofil e nea the elge
of thefilm. A possble explanationfor these changesis that the asumption made in the
model’ s derivation that the thicknessgradient is snall doesnot apply at the edge of the

film.

0.7

0.6 +
0.5
o4+ - -

0.2 +
0.1 +

Xo/ Wie

Figure3.7  Thicknessprofil es acosstwo crosssedions for the dosed-
form solution (---) and for the numericd simulation (—)

The @ove comparisons between the dosed-form and numericd solutions were
made & one draw ratio; comparisons can aso be made to seehow the solutions change &

the draw ratio isvaried. Figure 3.8 shows the dependence of thickness nedk-in andforce
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onthedraw ratio. Inthisfigure, the thicknessfor the numericd simulationistaken as
that at the line of symmetry and the force (F) isfoundfrom numericdly integrating the

foll owing equation:

Wl 1

F =2 [ hoydx, (3.15)
0

inwhich w,, isthe film’s half width at theroll. Figure 3.8 shows that the force ayrees
well between the two solutions. This agreanent isaresult of equili brium requiring that
the tensileforce d thedie androll be equal. Both the dosed-form and the numericd
solutions $houd have asimilar force d therall, sinceboth have similar resporses at the
die. For the thickness the numerica solution foll ows the same trend as the dosed-form
solution, whil e remaining consistently below it. This behaviour islikely dueto the edge
beads, as thicker edges mean that, for a mnstant massflux, lessmaterial is avail able to
passover the midd e of the film. Finally, the width can be mmpared between the two
solutiontechniques. Although asimilar trend is observed, the numericd solution nav
lies above the dosed-form one. Thisfinding may again be related to the presence of an
edge beal, as athicker edge will li kely resist nedk-in more dfedively. Moreover, if the
finite dement predictionfor thicknessis below the dosed-form solution, then the reverse

has to be true for the width values, or else the massflux is not conserved.



82

e 15 T7
= —
\B_ 0.8 + A e = < ~
Bl—t o \ — ~
_c 06 T N B - =~ N 4 8
fm] ~ P 7z 2
5 04 o~ 13 ©
% 0.2 /7/ - E'\\:. — - T2 -
% Te e oo — —
£= P e ]
[=}
= 0 | 0
1 3 5 7 9
Uron/Ugie

Figure3.8  Force(V), width (0) and thickness([J) variation for the dosed-
form solution and the crrespondng numericd solutions (---, —,
and ----, respedively)

3.3.2 Comparison with Published Resultsthat Allow an Edge Bead

In the pulished film casting research two studies, namely d' Halewyu et al. (1990
and Sakaki et a. (1996, simulate the same problem, bu obtain dfferent thicknessand
ned-in results. The problem in questionis defined as follows: wg, =0.5m, L =0.2m,
Uge = 0.01m/s, hy, =0.001m and Dr = 10. Figure 3.9 shows the thicknessprofile & the
chill roll for both published studies, and for asimulation wsing the dgorithm propased in
this gudy. Thisfigure showsthat the 3D formulation o Sakaki et a. (1996 has a greaer
nedk-in than the 2D formulation d d’Halewyu et a (1990. The greder nek-in cannd,
however, be acouned for by one study being 3D and the other 2D, asthe aurrent study is
2D and it suppats the 3D results of Sakaki et a. (1996. One reason for the difference
may be the method wsed by d’ Halewyu et a. (1990 to relate the freesurface adthe

normal vedor, as the paper does not detail what approach isused. Anacther possble
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explanation might be becaise the velocity and thicknessare uncougded in the numericd
agorithm of d’ Halewyu et al. (1990, and this causes convergenceto a solution dfferent
from that of the other algorithms. Asafinal point, Figure 3.9 shows, at least for the
simulationin guestion, that there is littl e reason for resorting to a 3D formulation ower a

2D one.

h/hg;,

0 0.2 0.4 0.6 0.8 1
XolWie

Figure3.9  Thicknessprofile & the dill roll for d Halewyu et a. (1990 (---),
Sakaki et a. (1996 () andfor the aurrent study (-)

3.4 Performance of the Nonisothermal M odel
In this edionthe influence of gravity on 2D nonsothermal film casting is
investigated. In addition, a parametric study is condicted to examine the dfeds of hea

transfer onthe field variables and onthe width of the film.
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3.4.1 TheInfluence of Gravity on Film Casting

The study of Barq et al. (1992 provides agood context for investigating the
influenceof gravity onfilm casting, asthis gudy dedswith alow viscosity poymer.
Although Barg et a. (1992 provides a goodstarting point for the investigation, afull
comparison with their results canna be made & me of their data were not pullished for
proprietary reasons.

The polymer used by Barq et al. (1992 is padyethylene terephthalate (PET), for
which they provide the following data: n, = 119Pa-s, E/R = 6498K, T, = 553K, k=0.25
W/(m K), p = 1340 lg/m® and C = 1991 J/(kg K). These data use Equation 2.13for the
viscosity-temperature dependence. The values of the other material parameters are
approximated at atemperature of 278 °C. This temperature was chosen as a
representative value &, acording to the experimental data of Barg et a. (1992, thisis
the average temperature of the film midway between the die androll.

In the simulations that foll ow, gravity and inertia have an influence because the
viscosity of the pdymer islow. To seethe influence of self-weight one simulation was
verticd and the other horizontal. For the horizontal simulation the sag of the film was
negleded. The simulations assume the foll owing processng condtions: w,, =0.5m, L =
0.2m, Uy, = 0.1 m/s, h;, =0.001m and Dr = 10. Regarding the thermal conditions, the
temperature data presented by Barg et a. (1992 shows an approximately linea trend
deaeasing from T, = 282 °Cto 270°C; therefore, using T,, = 30 °C and Equation 2.41,
the hea transfer coefficient was estimated as 34.0W/(m? K). In the numerica

simulations a 5408l ement mesh was used.
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Before discussing the influence of gravity, the temperature dependence of the
processis considered. The temperature field of the current ssmulation agrees with the
linear trend found in the data of Barq et al. (1992). Thisis noteworthy, since Barg et al.
(1992) use a much more complex thermal model than that adopted in the current study.
Figure 3.10 shows that changes in temperature have little influence on the thickness
profiles at the chill roll, as the isothermal and nonisothermal simulations are close to
identical. This agrees with the conclusion of Barq et al. (1992) that a nonisothermal

model is unnecessary for the PET in question under typical processing conditions.

0 0.2 04 0.6 0.8 1
Xof Weie

Figure3.10 Thickness profile at the chill roll for nonisothermal simulations
of vertical film casting (-) and horizontal film casting (--).
Isothermal simulations (---) are aso included.

Figure 3.10 shows that the influence of gravity for vertical smulationsisto cause
less neck-in and alarger edge bead than when the film is horizontal. Thisis because,
with gravity, the thicker film at the edge falls more rapidly and thus reaches the roll

sooner than when self-weight is not an issue. Figure 3.10 also shows that gravity aidsin
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promoting a more uniform thickness which in turn leads to alarger edge beal, so that the
continuity requirement can be met. The wnclusionfrom this Smulation then isthat the
self-weight of apolymer can be used to promote uniform thicknessfor low viscosity, low
elasticity, low temperature dependencefilm casting. Thisinfluencewould likely be
increased if the speed at the die is deaeased, as Equation 2.24suggests that adeaease in
Uy, May lead to an increase in the relative contribution d self-weight over viscous forces.
To seehow self-weight influences the thicknessfield, the thicknesscontours for
verticd and haizontal film casting are compared in Figure 3.11. Thisfigure showsthe
expeded behaviour that the verticd casting draws the thicknessdown more rapidly,
whichis shown by the doser contour lines at the die. Figure 3.11aso demonstrates that
the more pronourced edge bead for verticd casting, shown in Figure 3.10,is naot limited
to the dill roll. The thicknessis more uniform for other film crosssedionsaswell. This
manifests itself in the more pronourced bendin the verticd film’s contours as the edgeis

approadched.
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L

Flow

Figure3.11 Thicknesscontoursfor verticad and
horizontal film casting

3.4.2 Nonisothermal Effect on Edge Bead

To seethe dfed of hea transfer onfilm casting, simulations were cnducted with
hed transfer coefficients of 0, 5, 10,and 15W/(m? K). These simulations were done with
the LDPE material used in the 1D simulations of the previous chapter. For this polymer,
with Equation 2.14for the viscosity, the material parameters are & follows: n, = 1.6x10°
Pas, T,=180°C,a =0.214,c =0, p = 920 ky/m?, k = 0.24W/(m K), and C = 2300J/(kg
K). Inthese smulations, the processng condtions were asumed to be, wy, = 0.5m, L =

0.2m, u,, = 0.01m/s, h,, = 0.001m, T4, = 180°C, and T, = 30 °C.
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The simulations ow that, overall, higher hea transfer resultsin lessnedk-in.
Thisisill ustrated in Figure 3.12,which plots the dependence of w,,/wg, onDr for
different hea transfer coefficients. Nedk-in deaeases asthe hea transfer increases, due
to the associated increase in viscosity and the @rrespondng increasein thefilm’s
resistanceto changing geometry. An exceptionto thistrend acaurs at a = 5 W/(m? K), for
which the nedk-in increases dightly compared with the isothermal simulation. The

reason for this behaviour isunclea.

Wroll/ Wdie

0.6 +

0.5

0 5 10 15 20 25 30
Dr

Figure3.12 Ned-inratio asafunction d thedraw ratiofora=0(---), 5
(), 10(---), and 15(—) W/(m?K)

The change in the velocity field as the hea transfer increasesis sen from
considering the streamlines at adraw ratio of 16 (Figure 3.13. With increasing a, there
isa mrrespondng increase in the regionin which u, isrelatively independent of x,, as
shown by the parall el streamlinesin Figure 3.13. Ancther observation from the
streanline plotsisthat the freesurfaceneds in more rapidly as the nonsothermal

influenceincreases. Thisresults because, as a increases the temperature deaeases more
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rapidly and thereis an associated increase in viscosity for the same x, value. Theincrease
in downstream viscosity results in the film changing geometry upstream, where the

viscosity isrelatively low.

a=0 o =5 a=10 a=15

Figure3.13 Streamlinesfor five values of the heat transfer
coefficient with adraw ratio of 16

Figure 3.14 shows the thickness contours that correspond to the above
streamlines. With larger heat transfer the thickness draws down more rapidly and the
edge bead becomes more prominent. Once again thisis due to the increase in resistance
to changes in geometry as the viscosity increases. The thickness contour plots show that
increases in heat transfer promote a more uniform thickness in the middle of the film.
Thisis suggested by the overall straightness of the contours over the middle of the film

and the sharp bend as the edge is approached.
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a=0 o =5 a=10 a=15
Figure3.14 Thicknesscontoursfor five values of the hed transfer
coefficient with adraw ratio of 16

Figure 3.14 suggests that the film has a more uniform thicknessin the centre of
the film when the hed transfer is greaer. Thisisaso shown by looking at the thickness
profile & the dill roll, whichis dhownin Figure 3.15. For adraw ratio of 4 and 16,an
increase in hed transfer extends the region d close to unform thicknessthat existsin the
midde of the shed. The slope of the film’s thicknessprofile dso shows a dhangein sign

at the edge. This edge dfed has been olserved in ather studies (Debbaut et al. 1995.
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Figure3.15 Thickness profilesat the chill roll for a =0 (--), 10 (---),
and 15 (—) W/(m? K).

The thicknessfield of Figure 3.14 strongly influences the temperature field, for
which contour lines are shown in Figure 3.16. Thisis shown by the correspondence of
the temperature peak and the edge bead region. With the greater thickness here, heat
transfer by advection increases relative to the surrounding film, and thus the temperature
decreases less at the edge bead. Over the rest of the domain, the temperature follows an
approximately linear trend from the die to theroll, as evident from the parallel, evenly

spaced contour lines.
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a=0 o =5 a=10 o=15
Figure3.16 Temperature contours for five values of the heat transfer
coefficient with adraw ratio of 16.

3.5 Performance of Model with Nontrivial Boundary Conditionsand Heat Transfer
In the published research to date, the inlet conditions have been considered as
constant along the die and the heat transfer coefficient has been assumed constant in the
transverse direction. This section considers simulations that do not make these
simplifying assumptions. The intention here isto demonstrate the usefulness of the
numerical model for considering the possible effects associated with changing the
manufacturing process.
3.5.1 Boundary Conditions at the Die
Although film casting dies are usually designed to extrude a uniform thickness, a
nonconstant thicknessis possible. This section briefly investigates how anonuniform

thickness at the die effects the thickness field. To do this, a simulation was conducted
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excluding heat transfer, accommodating a nonuniform thickness at the die and retaining
the remaining processing conditions of Section 3.4.2. The boundary condition for the
thickness at the die was set using the following equation:

hgie(X,) = hgyy - 0.002x; (3.16)
inwhich hy,, is the thickness at the line of symmetry. In the smulation hy,, = 0.001 m,
the value previously used across the entire width of the die. Equation 3.16 then,
represents an inverse parabolic thickness profile that decreases to half the value of hg,, at
the edge of the sheet. This profile was selected in an attempt to compensate for the
tendency of the film, once outside the die, to increase in thickness as the edge is
approached.

Figure 3.17 shows the thickness contours for the nonconstant thickness and for the
corresponding constant thickness at a draw ratio of 16. The two show different behaviour
near the die as anticipated, but the contours are similar asthe roll is approached.
However, the nonconstant thickness solution shows a smaller edge bead with amore

rounded shape.
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il

Constant thickness Nonconstant thickness

Figure3.17 Thickness contours for nonconstant and
constant thickness at the die with a draw
ratio of 16

Although the nonconstant thickness boundary-valued problem changes the
thickness field from the constant thickness problem, it is unclear at this time how this
behaviour can be used to reduce neck-in and increase the region of uniform thickness. In
fact, neck-in is slightly increased and the region of uniform thickness changes little
between the two simulations. Thisis shown by considering the thickness profile at the
die for the two cases (Figure 3.18). Neck-inislikely greater for the nonconstant
thickness simulation because the edge bead is smaller and thus has less of arestraining
influence. The more rounded edge bead for the nonconstant thickness simulation is also
shown by Figure 3.18. It should be noted that differences in the two simulations could be

attributed to the fact that the mass flux isless for the nonuniform thickness problem.
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Figure3.18 Thickness profiles at the chill roll for nonconstant (—)

and constant (---) thickness at the die with adraw ratio of
16

Although the observations may not be considered conclusive, as only one
simulation was presented, it is possible that changing the die geometry could aid in
reducing neck-in and promoting a more uniform thickness. To investigate this possibility
amore comprehensive study should follow that addresses the effects of different dielip
geometries, different mass fluxes, and nonisothermal conditions. These other factors are
not considered here, as a more robust model that includes elasticity would make the
results more meaningful.

3.5.2 Localized Cooling Jets

Often in film casting localized cooling jets are directed at the edges of the film to

reduce tearing problems. To see the influence of these jets on the thicknessfield a

simulation was performed using the processing conditions defined in Section 3.4.2, with
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a = 10 W/(m? K) over the surface ad a = 20 W/(m? K) over approximately 7 cm of the
film’s edge.

Locdized codling jets direded at the edge of the film significantly reduced ned-
in, as sown by Figure 3.19. Moreover, the film did na ned-in as rapidly with
increasing draw ratio when the jets were present. The nedk-in was reduced because the
cooling jets increase the viscosity at the elge of the shed, thereby reinforcing it in the

transverse diredion.

09
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Figure3.19 Ned-inratio asafunction d the draw ratio with
locdized coding (—) and withou (--).

Ancther advantage of alocdized codling jet isthat it leads to amore uniform
thicknessin the centre of the film. Thisinfluenceis demonstrated by the thicknessprofile
at the dill roll shown in Figure 3.20. Therefore, locdized coaling jets for LDPE film
casting benefit the finished product by leading to auniform thickness resulting in less

ned-in, and by reducing tearing problems.
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Figure3.20 Thicknessprofile & the dill roll with locdized
coaling (—) andwithou (--).

3.6 Summary of Results
The 2D isothermal and nonsothermal simulations of this chapter have resulted in
nine major findings:
)] The freesurfacefound sing the numerica algorithm developed in this
reseachiscurved, nd linea asfound ty Sergent’s closed-form solution.
i) Asthedraw ratio is varied, the numerica solution agrees with the d osed-
form solution for force and foll ows the same trend for the ned-in ratio
and the thicknessreduction.
iii ) Isothermal film casting simulations have aroughly U-shaped thickness
profile acossthe film. An edge bead is present, bu the cosssedion daes

not show aregion d uniform thicknessin the middle of the shed.



iv) The 2D isothermal simulations of this gudy agreewell with the 3D
simulation d Sakaki et a. (1996; however this dudy does not agreewith
the 2D simulation d d'Halewyu et a. (1990.

V) In the aurrent study, a mnstant hea transfer was applied to bah sides of
thefilm. Thislealsto similar average temperature predictions as the more
complex model of Barq et al. (1992.

vi) For low viscosity padymers the self-weight of the shed can be used to
promote auniform thicknessin the middle of the film. In addition, self-
weight can reduce neck-in.

vii)  Higher hea transfer can reduce ned-in and increase the zone of constant
thicknessat the centre of the film.

viii)  Although anonunform thicknessprofile & the die dtersthe flow field,
how this can be used to reduce ned-in and increase the uniformity of the
final film thicknessis unclea.

iX) Theintroduction d locd codling jets dramaticdly reduces nedk-in and
increases the region d uniform thickness

For efficient film casting, nedk-in shoud be limited and the region d uniform

thickness $ioud extend ower most of the width of the shed. The simulations of this
chapter suggest that both goals can be promoted by the self-weight of the film,
nonsothermal condtions, locdized codling jets and nonuiform boundiry condtions at

thedie.



Chapter 4 Conclusions and Recommendations

This thesis presented finite element models for 1D and 2D nonisothermal film
casting of aviscous fluid. The models neglect sag and die swell, but are capable of
including the effects of gravity and inertia. For the 2D case, the model alows the
thicknessto vary in the transverse direction. A numerical solution to the finite element
eguations is obtained by using afully coupled Newton-Raphson approach. Solutions
were found for different polymers and processing conditions to determine how neck-in
and edge beads were affected by the following factors. nonisothermal conditions; the self-
weight of the film; and nonconstant boundary conditions at the die. Also of interest was
determining whether the geometry of afilm changes after it makes contact with the chill
roll.

The conclusions made from the 1D and 2D film casting simulations of Chapters 2
and 3, respectively, are summarized in Section 4.1. Section 4.2 provides
recommendations for future work that include, collecting more experimental data;
improving the mathematical model; enhancing the numerical algorithm and shifting focus

from analysisto design. A concluding statement is provided in Section 4.3.
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4.1 Conclusions

From the 1D simulations and the discussion of Chapter 2 the following

conclusions were made;

i)
i)
i)

Vi)

vii)

Inertiaand gravity are only important for low viscosity polymers.

Upwinding is not necessary for predicting the temperature distribution of the film.
Once contact is made with the chill roll, the geometry of the film remains
essentially unchanged; therefore, amodel of the film casting process does not
have to extend onto theroll.

Asthe heat transfer coefficient increases, the temperature decreases more rapidly,
and thus the viscosity increases at a quicker rate. Thisresultsin the velocity and
thickness more rapidly approaching their final values.

The temperature of thefilm in the air gap is well approximated by alinear
function.

A closed-form solution for the nonisothermal velocity distribution, based on the
assumption of alinear temperature profile, compares well against simulated
results.

The influence of the temperature sensitivity parameter in the temperature-
viscosity relation is similar to that of the heat transfer coefficient. Furthermore,
the solution changes very little when the temperature-viscosity relation is
modified to account for an increase in viscosity as the solidification temperatureis

approached.
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Simulated results for temperature cmpared well with the experimental data of
Kase (1974.

Simulated results for thicknessdid na compare a well with the experimental data
of Kase (1974, posshbly because of experimenta error in the data, urcertainty in
the material parameters or the influence of viscoelasticity, which is negleded in
the aurrent model.

The @ove mnclusions, made from the 1D simulations, led to several dedasions

when proceeding to the 2D case, such as, only modelli ng the film in the ar gap;

excluding upwinding; not using the more cmplex viscosity-temperature relationship; and

using the dosed-form 1D solutions as an initia guessfor the 2D field variables. The 2D

simulationsin turn led to several conclusions:

i)

i)

When comparing the numericd results with the dosed-form solution o Sergent
(1977 several observations were made: the freesurfacewas foundto be arved,
nat linea; the thicknessprofil e was U-shaped, nd uniform; the forces were
approximately equal; agreaer deaease occurred in the thickness and alesser
deaease occurred in the width at theroll.

A simulated thicknessprofile & the dnill roll using the gpproach o this gudy
agreed with the results of Sakaki et a. (1996, bu neither the aurrent study nor
Sakaki et a. (1996 agreed with d Halewyu et al. (1990.

The self-weight of the paymer for low viscosity fluids contributes to reducing

ned-in andincreasing the region o uniform thicknessin the centre of the shed.
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For some combinations of polymer and processing conditions, such as that
described by Barq et a. (1992) for PET, the isothermal and nonisothermal results
are essentialy identical.

A simple thermal model with a constant heat transfer coefficient seems to predict
the temperature distribution as well as a more complex model.

For those processes that are temperature dependent, an increase in heat transfer
was found to reduce neck-in and enlarge the region of uniform thickness.
Although a nonuniform thickness at the die influences the final film geometry, it
isunclear at this time how this can be used to reduce neck-in and to decrease the
width of the edge bead.

Localized cooling jets can be used to reduce neck-in and promote a uniform
thickness in the centre of the sheet.

Cast film line designers attempt to waste as little material as possible. Thisis

reflected in the goals of limiting neck-in and in reducing the amount of edge bead that has

to be trimmed. It has been found that polymers that are more elastic tend to towards these

goals (Debbaut et a. 1995; Christodoulou 1996). However, elasticity is not helpful for

some polymers, such as PET, which behave viscously. The simulations of this study

suggest that other phenomena can contribute to the above design goals. For one, cooling

the film may reduce neck-in and increase the uniform thickness zone, especialy if

localized cooling is employed. Another factor that can be helpful, when the viscosity of

the polymer is not overly temperature dependent, is the self-weight of the polymer. For
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low viscosity polymers the self-weight of the film can contribute to reducing the quantity

of wasted materia by reducing neck-in and promoting a uniform thickness.

4.2 Recommendations for Future Work

Although useful insights into the film casting process can be gained from the
model developed in thisthesis, future work is required to increase the robustness of the
model and improve its quantitative predictive power. This section details some potential
approaches for continuing the cast film research.
4.2.1 More Experimental Data

Currently, little experimental data are available for testing and calibrating
numerical simulations. Thisis shown by the limited number of studies listed in Section
1.2.3. These studies cover only asmall portion of the wide range of polymers and
processing conditions used in industrial film casting. Moreover, they only include data
for afew variables. Data are needed for awide range of polymers and processing
conditions. The polymers should have different rheological properties, especially
viscosities and relaxation times, and the processing conditions should have different heat
transfers, mass fluxes, draw ratios, air gap lengths, die widths etc. From the experiments,
the data of primary interest would be the thickness and temperature fields, heat transfer
coefficients, the rheological characteristics of the material, and a complete description of
the boundary conditions. Once more data are available, cast film research will be better
ableto relate finished film properties to the material and to the processing conditions

employed.
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4.2.2 Improve Mathematical Model
To improve the mathematicd model of the film casting processthe assumptions

made in the derivations of the governing equations could be dtered. For example, die

swell, sag, surfacetensionand air drag could be alded to the model. In addition, the hea
transfer medhanism could beimproved to acoommodate radiation, crystalli zation, locd
hea transfer, and dff erent rates of hea transfer from ead side of the film. The most
significant assumptionthat could be removed is the simple nstitutive law currently
used. Asalfirst step toward addressng more redistic paymer behaviour a power-law

model for viscosity could be implemented. A more ambitious goal would beto use a

viscoelastic constitutive eguation. In seleding a spedfic constitutive law many types of

differential andintegral laws are avail able, bu Tanner (1985 223) suggests that for
mainly extensiona flows, like film casting, the K-BKZ integral constitutive eguation

(Bernstein et a. 1963 performs best.

4.2.3 Enhance Numerical Algorithm
Threerecommendations can be made for enhancing the numericd agorithm:

)] Increase the order of interpolation wsed by the finite dements from linea to
guartic. If 15-noded elements are used instead of the 3-noded elements then the
large number of elements nealed could be reduced. However, thiswould involve
atradeoff in that the locd stiff nessmatrix size would be increased.

i) Although the numericd algorithm presented in this thesis converges to a solution,
the posshility exists that it isanonunque solution. This passhility is highlighted

by the diff erent solutions found ty the aurrent study and by d’'Halewyu et al.
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(1990. To investigate whether the solutionis nonunque, the dgorithm could be
modified to use apseudo-time stepping algorithm to approach the steady-state
solution gradually.
iii) If the mathematicd model is modified to include viscoelasticity then the
numericd algorithm shoud be changed to acaoommodate this. Methods of
handli ng viscoel asticity have been propcsed for diff erential constitutive egquations
(Louand Tanner 1986 Marchal and Crochet 1987 Sunet a. 1996 and for
integral constitutive equations (Duport et a. 1985 Lou and Tanner 1986 Lou
and Mitsoulis 1990. All these methods use an Eulerian or spatial framework, like
that adopted in the arrent study. An alternative goproach, which would all ow
easier handling of the constitutive law, would be to adopt aLagrangian o material
description d the motion. Anather optionis Arbitrary Lagrangian-Eulerian
(ALE) finite dements, which have been used for other studies of continuows
media (Liu et a. 1988 Huétink and van der Helm 1992).
4.2.4 Change of Focusfrom Analysisto Design
The arrent study has focused onanalyzing agiven film casting problem. For the
future, ashift in focusto design would be helpful. A computer program would be a
powerful tod if it could provide an optimal film line design, given a set of objedives and
the gpropriate data. Thiswould certainly involve optimization algorithms, which would
guantify the trade-off s between edge-bead size and reck-in. Furthermore, aknowledge

base of design heuristics would be required. This could posshbly be handed by using an
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expert system. If a package such as this could be created then theoretical modelling

would take alarge step toward being integrated into the design process for film lines.

4.3 Concluding Statement

Thisthesis provided several insights into some specia cases of film casting, such
asthe casting of low el asticity melts. Moreover, thisthesis has provided a framework for
building a more robust model, one that can handle alarger range of polymers and
processing conditions. In building on the current research, a more robust model would
benefit from future film casting studies that increase the experimental data, improve the
mathematical model, enhance the numerical algorithm and shift the focus from analysisto
design. These future research contributions will move theoretical modelling closer to
being an integrated part of the film line design process. In addition, the theoretical tools
could aid in diagnosing problems as they occur on film lines. Asthe theory becomes
more advanced, cast film line designers will be able to produce more efficient designs, in
less time and using less material, which means the economic and environmental benefits

outlined at the start of thisthesis could eventually be realized.



References

Acierno, D., LaMantia, F. P. and Titomanlio, G., (1976), Model Analysis of Uniaxial and
Biaxia Stretching of Polymer Mélts, Rheologica Acta, 15: pp642-647.

Adachi, K., Aoki, T., Nishida, S. and Nakamura, R., (1988), A Hydrodynamic
Investigation of aFalling Liquid Film for Curtain Coating and Sheet Casting, Xth
Internationd Cong esson Rheology, Australian Society of Rheology, Sydney:
ppl22-124.

Agassant, J. F., Avenas, P., Sergent, J. P. and Carreau, P. J., (1991), Polymer Processng.
Principles andModdling, Hanser Publishers, Munich; Viennaand New Y ork.

Aird, G. R. and Yeow, Y. L., (1983), Stability of Film Casting of Power-Law Liquids,
Induwstrial Engineeing Chemical Fundamentals, 22: pp7-10.

Alae, S. M. and Papanastasiou, T. C., (1991), Film Casting of Viscoelastic Liquid,
Polymer Engneeing and 8ience 31, 2: pp67-75.

Anturkar, N. R. and Co, A., (1988), Draw Resonance in Film Casting of Viscoelastic
Fluids: aLinear Stability Analysis, Journa of Non-Newtonian Fluid Mechancs,
28: pp287-307.

Avenas, P., Agassant, J. F. and Sergent, J. Ph., (1986), La mise en forme des matieres
plastiques. Technique & Documentation, 2 ed., Lavoisier, Paris.

Baird, D. G. and Callias, D. I., (1995), Postdie Processngin Polymer Processng:
Principles and Design, Butterworth-Heinemann, Boston.

Barq, P., Haudin, J. M., Agassant, J. F., Roth, H. and Bourgin, P., (1990), Instability
Phenomenain Film Casting Process, Internationd Polymer Processng, V, 4
pp264-271.

Barq, P., Haudin, J. M. and Agassant, J. F., (1992), Isothermal and Anisothermal Models
for Cast Film Extrusion, Internationd Polymer Processng, VI, 4: pp334-349.

107



108

Bejan, A., (1984), Convection Heat Transfer, John Wiley & Sons, New Y ork.

Bergonzoni, A. and DiCresce, A. J., (1966), The Phenomenon of Draw Resonancein
Polymeric Méelts, Polymer Engineering and Science, January: pp45-59.

Bernstein, B., Keardley, E. A. and Zapas, L. J., (1963), A Study of Stress Relaxation with
Finite Strain, Transactions of the Society of Rheology, VII: pp391-410.

Billon, N., Barg, P. and Haudin, J. M., (1991), Modelling of the Cooling of
Semi-crystalline Polymers during their Processing, International Polymer
Processing, VI, 4: pp348-355.

Brown, D. R., (1961), A Study of the Behaviour of a Thin Sheet of Moving Liquid,
Journal of Fluid Mechanics, 10: pp297-305.

Carslaw, H. S. and Jaeger, J. C., (1959), Conduction of Heat in Solids, Clarendon Press,
Oxford.

Chambon, F., Ohlsson, S. and Silagy, D., (1996), Validation of aModel for the Cast-Film
Process, First Joint Topical Conference on Processing, Sructure and Properties
of Polymeric Materials, Conference Preprint, American Institute of Chemical
Engineers, New York, New Y ork: pp39-42.

Chrigtie, 1., Griffiths, D. F., Mitchell, A. R. and Zienkiewicz, O. C., (1976), Finite
Element Methods for Second Order Differential Equations with Significant First
Derivatives, International Journal for Numerical Methods in Engineering, 10:
pp1389-1396.

Christodoulou, K. N., (1996), Finite Element Analysis of Thickness Nonuniformity,
Instabilities, and Orientation Development in Casting and Stretching of
Viscodastic Films, First Joint Topical Conference on Processing, Sructure and
Properties of Polymeric Materials, Conference Preprint, American Institute of
Chemical Engineers, New York, New Y ork: pp43-45.

Clarke, N. S., (1966), A Differential Equation in Fluid Mechanics, Mathematika, 12:
pp51-53.

Conte, S. D. and deBoor, C., (1980), Elementary Numerical Analysis An Algorithmic
Approach, 3 ed., McGraw-Hill Book Company, New Y ork.

Cotto, D., Duffo, P. and Haudin, J. M., (1989), Cast Film Extrusion of Polypropylene
Films, International Polymer Processing, IV, 2: pp103-113.



109

Cotto, D. and Haudin, J. M., (1988, Etude de la Cristalli sation danslaMise en Forme
des Polymeéres Applicaion al'extrusion cefilms de paypropyléne, Matériaux &
Tedhniques, 6. pp9-16.

dHaewyu, S., Agassant, J. F. and Demay, Y ., (1990, Numericd Simulation d the Cast
Film Process Polymer Engneeing and Sience 20, 6 pp335340.

Debbaut, B. and Marchal, J. M., (1995, Viscoelastic dfedsin film casting in Zeitschrift
fur Angewande Mathematik undPhysick Speaal Isaue, Casey J. and Crochet M.
J. (eds)), Birkhauser Verlag, Boston, 46 ppS679-S698.

deGroat, J. A., Doughty, A. T. and Stewart, K. B., (1993, Effeds of Cast Film
Fabricaion Variables on Key Stretch Film Properties, Tapp Journal, 76, 6
ppl61166.

Denn, M. M., (1980, Continuows Drawing of Liquidsto Form Fibers, Annud Review of
Fluid Medharics, 12 pp365387.

Dobroth, T. and Erwin, L., (1986, Causes of Edge Beals in Cast Films, Polymer
Engneeing and Sience 26, 7 pp462467.

Duffo, P., Monass, B. and Haudin, J. M., (1991), Cast Film Extrusion o Polypropylene.
Themomedanicd and Physicd Aspeds, Journa of Polymer Engneeaing, 10,
3. ppl51228.

Duport, S., Marchal, J. M. and Crochet, M. J., (1985, Finite Element Simulation o
Viscodastic Fluids of the Integral Type, Journa of Non-Newtonian Fluid
Medhanics, 17 ppl57183.

Flanagan, J. L., (1993, Better Die Design and Equipment Enhancethe Cast Film Process
Modern Plastics, 70,Feb: pp53+.

Gabriele, M. C., (1996, Systems Innovetion Helps Drive Cast Film Growth, Modern
Plastics, 73, Sept: pp6263+.

Huétink, J. and van der Helm, P. N., (1992, On Euler-Lagrange Finite Element
Formulationin Forming and Fluid Problems, Internationd Conferenceon
Numerical Methodsin Industrial Forming Processes, 4th, Chenaot, Wood &
Zienkiewicz (eds.), Bakema, Rotterdam. pp4554.

Hughes, T. J. R., (1978, A Simple Scheme for Developing Upwind Finite Elements,
Internationd Journa for Numerical Methods in Engneeing, 12 pp13591365.

Incropera, F. P. and DeWitt, D. P., (1985, Fundamentals of Heat and Mass



110

Transfer, 2 ed., John Wiley & Sons, United States.

lyengar, V. R. and Co, A., (1993), Film Casting of a Modified Giesekus Fluid: a
Steady-State Anaysis, Journal of Non-Newtonian Fluid Mechanics, 48: pp1-20.

lyengar, V. R. and Co, A., (1996), Film Casting of a Modified Giesekus Fluid: Stability
Anaysis, Chemical Engineering Science, 51, 9: ppl417-1430.

Kase, S., (1974), Studies on Melt Spinning. 1V. On the Stability of Melt Spinning,
Journal of Applied Polymer Science, 18: pp3279-3304.

Kdler, R., (1989), Comparing the Cast Film and Blown Film Processes, Plastics
Engineering, 45, Aug: pp31-34.

Kistler, S. F. and Scriven, L. E., (1983), Coating Flows in Computational Analysis of
Polymer Processing, J. R. A. Pearson and S. M. Richardson (eds), Applied
Science Publishers Ltd., London and New Y ork, pp243-297.

Kreisher, K. R., (1993), Downstream Innovations Increase Cast-Film Speed, Modern
Plagtics, 70, May: pp48-49+.

Lee, W. K., (1984), A Slit Die Design for Stable Film Extrusion, Advances in Rheology,
International Congress on Rheology Mexico, Elsevier Science Publishing
Company, New York, New Y ork: pp473-481.

Liu, W. K., Chang, H., Chen, J., and Belytschko T., (1988), Arbitrary Lagrangian-
Eulerian Petrov-Galerkin Finite Elements for Nonlinear Continua, Computer
Methods in Applied Mechanics and Engineering, 68, pp259-310.

Luo, X. L. and Mitsoulis, E., (1990), An Efficient Algorithm for Strain History Tracking
in Finite Element Computations of Non-Newtonian Fluids with Integral
Constitutive Equations, International Journal for Numerical Methods in Fluids,
11: pp1015-1031.

Luo, X. L. and Tanner, R. 1., (1986), A Streamline Element Scheme for Solving
Viscodastic Flow Problems. Part |. Differential Constitutive Equations, Journal
of Non-Newtonian Fluid Mechanics, 21: pp179-199.

Luo, X. L. and Tanner, R. 1., (1986), A Streamline Element Scheme for Solving
Viscodastic Flow Problems Part 1l: Integral Constitutive Equations, Journal of
Non-Newtonian Fluid Mechanics, 22: pp61-89.

Marchal, J. M. and Crochet, M. J., (1987), A New Mixed Finite Element for Calculating
Viscodastic Flow, Journal of Non-Newtonian Fluid Mechanics, 26: pp77-114.



111

Mewis, J. and Petrie, C. J. S., (1986, Chapter 4 Hydrodynamics of Spinning Polymersin
Encydopedia o Fluid Medharics, Volume 6, N. P. Cheremisinoff (ed.), Gulf
Publi shing, Houston, pp111139.

Michadi, W. and Menges, G., (1982, Caculation d Codling Processesin Extrusion,
Polymer Engneeing Reviews, 2, 2 pp99121.

Miller, R. K., (1987, Introdwctionto Differential Equations, Prentice-Hall, Inc.,
Englewood Cliffs, New Jersey.

Minoshima, W. and White, J. L., (1983, Stahility of Continuows Film Extrusion
Processes, Polymer Engneeing Reviews, 2, 3 pp211226.

Papanastasiou, T. C., Malamataris, N. and Ellwood, K., (1992, A New Outflow
Boundary Condition, Internationd Journa for Numerical Methodsin Fluids, 14
pp58%608.

Park, C. W., (199]), A Study on Bicomporent Two-Layer Slot Cast Coextrusion,
Polymer Engneeing and Sience 31, 3 pp197203.

Peason,J. R. A., (1985, Medarics of Polymer Processng, Elsevier Applied Science,
London.

Pis-Lopez, M. E. and Co, A., (1996), Multil ayer Film Casting of Modified Giesekus
fluids Part 1. Steady-state analysis, Journa of Non-Newtonian Fluid Medharics,
66. pp7193.

Pis-Lopez, M. E. and Co, A., (19960, Multil ayer Film Casting of Modified Giesekus
fluids Part 2. Linea stability analysis, Journa of Norn-Newtonian Fluid
Medharics, 66. pp95114.

Rauwendad, C., (1986, Polymer Extrusion, Maamill an Publi shing Company, Inc., New
York.

Sakaki, K., Katsumoto, R., Kgiwara, T. and Funatsu, K., (1996, Three Dimensional
Flow Simulation d aFilm-Casting Process Polymer Engneaing and Sience
36, 3 pp18211831.

Sergent, J. P., (1977, Etude de deux Procédés de Falrication ce Filns. Le Sodflage de
Gaine. L'exrusion ce Filma Plat, Thesis, Université Louis Pasteur, Strasbourg.

Sidiropodos, V., (1995, Comparison d Experimentswith aMode of the Blown Film
Process M. Eng. Thesis, McMaster University, Hamilton, ON.



112

Sidiropodos, V., Tian, J. J. and Vladchopouos, J., (1996, Computer Simulation d Film
Blowing, Tapp Journd, 79, 8 pp113118.

Silagy, D., Demay, Y. and Agassant, J. F., (1996), Study of the Stability of the Film
Casting Process Polymer Engneaing and Sience 36, 21 pp26142625.

Silagy, D., Demay, Y. and Agassant, J. F., (19960, Etude de |a stabilit é linédre de
I'étirage d'un film newtonien, Comptes Rendus de |’ académie des Sciences, 322,
Sériellb, 4 pp283289.

Sun, J., Phan-Thien, N. and Tanner, R. I., (1996, An Adaptive Viscoelastic Stress
Splitti ng Scheme and its Applicaions: AV SSSI and AV SSSUPG, Journa of
Non-Newtonian Fluid Medhancs, 65 pp7591.

Tanner, R. ., (1985, Engneeing Rheology, 2 ed., ClarendonPress Oxford.

White, J. L., (1975, Theoreticd Considerations of Biaxia Stretching of Viscoelastic
Fluid Shees with Applicationto Plastic Shed Forming, Rheologica Acta, 14
pp600611.

Wilder, R. V., (199), Cast film or cast shed? Machines can now do bah, Modern
Plastics, 68,Nov: pp54+.

Wineman, A. S., (1976, Large Axisymmetric Inflation d aNonlinea Viscoelastic
Membrane by Lateral Presaure, Transactions of the Saciety of Rheology, 20, 2
pp203225.

Yeow, Y. L., (1974, On the Stability of Extending Films. aModel for the Film Casting
Process Journd of Fluid Medharics, 66, @rt 3: pp613622.



Appendix A Closed-Form Solutions

A.1 Derivation of the Solution for 1D I sothermal Film Casting Neglecting Gravity
The governing equations from Section 2.1.1 are as follows:

d(hoy,)
dxl
d(hu,)
dx

=0 (A.1)
1

O11 7 4HW

The associated boundary conditions are:

At X,
At X,

0 ulzudieandhzhdie
L u

(A.2)

1 - roll

Integration of Equations A.1laand A.1b yields

ho,, = F A3
hu, = Q (A.3)

Where F represents the force per unit width and Q is the volume flux per unit width.

Now Equations A.1c and A.3b are substituted into Equation A.3a:
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du
N
1 d 1
1 au, F
—-_t1-_ -cC
u, dx, 4nQ 1 (A.4)
du,
TR = Cdx,

1

Now both sides of the resulting equation are integrated as follows:

Ul dal Xl )
f 5 = fCldx1
Ugig 1L 0
Inu, -Inuy, =Cx, (A.5)
Uy _ eC1X1
Ugi e

Applying the boundary condition for velocity at x; = L, the theoretical velocity profileis

found:

Ugie (A.6)

Substituting this result into Equation A.3b, the theoretical thickness profileis found:

4
h=h,D (A7)
The gradients of velocity and thickness can be found from Equations A.6 and A.7,
respectively:
du U e
— - 9 (Dr)Dr T
dx, L
(A.8)

h, n
dh _ Tdiep (pryor T
dx, L
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A.2 Temperature Distribution in a Moving Sheet

The differential equation describing the thermal energy conservation for a shee
moving with a mnstant velocity (u,), which islosing hea by Newton's law of coadling
into a medium with atemperature of zero is:

d2| dT Kk 2a
- — - 6T =0 wh = —= de =
K X12 Ul Xl ere x an ol (A9)

Where x isthethermal diffusivity, T isthe temperature, k isthe thermal conductivity, p
isthe density, C isthe spedfic heda cgpadty, o isthe one sided hea transfer coefficient
and histhethickness The solutionto this differential equationisfoundin Carslaw and
Jagger (1959 148) for two dff erent boundary condtions:

i) For an infinite shed in the x,-diredionwith T=T, . a x; =0

2
u, - (uy+4xe) A
T=T, eexp[ o X, (A.10)

i) For an infinite shed in the x,-diredionwith T=T ., a x,=0andT=T,,, ax;, =L

7u1(L7X1) U1X1
o Ton® P sinh(ex) «Tyee *sinh(g(Lx,)
i si nh( £L)
(A.12)
2
u
where € = 1, 2o

4x2 K
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A.3 Temperature Profilein a Moving Sheet without Conduction

The differential equation and boundary condition for energy conservationin a

moving sheet with athermal conductivity of zero are:

dT
pQU;h dx

+2(T -T,,) =0
1

If the following substitution is used:

-i— =T - Tair
dx, dx,
then
dT 20 = i i
i = pCUlhT and T(0) = Ty, = Tye - Ta,

The solution of this differential equation using separation of variablesis

and T(0) =T,

(A.12)

(A.13)

(A.14)

(A.15)
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A.4 Velocity and Thickness Profilesassuming a Linear Temperature Distribution

The governing equations are:

d(ho,)
dx,
d(hu)
dx,
du,
©11 7 4ndT
1
-a(T —'T&
n = nye
20( T, T..
T =The - ( dpléuha”)xl
1
Tgie = MKy

The associated boundary conditions are:

At X4
At X4

0 U, = Uge and h = hdie

L ul - uroII

Equations A.16a and A.16b are integrated to find the following:

hGll =

F
hu, = Q

(A.16)

(A.17)

(A.18)

where F represents the force per unit width and Q is the volume flux per unit width. Now

Equation A.16¢ and A.18b are substituted into Equation A.18a.

du
an Q1 _F
u, dx1
& _ Fdx1
u, 4nQ

(A.19)

If the relations for viscosity and temperature are substituted into the above equation then
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du Fdx ATgeTo) ~
- = - - Fe € am(ldxl = Ce am(ldxl (A.20)
U ange (e AnQ -
0

where C, is aconstant that simplifies the expression. Now both sides of the previous

equation can be integrated to obtain

Ul d[:l Xl
[ &+ = [ce ATadg,
10

| | S e ™ (A.21)
nu, -Inug,, = —=(1-e€ ) :

Ugie

u

L) =C(1 -e ™
die

In (

where C, = C,/am. Applying the exponentia function to both sides of the equation

yields:
U, = Uy exp(C(1 - e ™™ (A.22)
Forx, =L
u
ol —exp(C(1 -e?m)) =Dr
Ugie
u
In (—2L) =InDr =C(1 - e2m) (A.23)

di e
c, - In Dr
1 - e

C, can be substituted into Equation A.22 for the solution:

1 B e—am(l
1 - e

l _ e’arn(l
Dr 1 -eamt

U, = Uy eexp(ln Dr
(A.24)

U, =Ugie
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The &ove solution approacdhes the isothermal solution as “am” approaches zero.
Substituting the velocity into Equation A.18band wsing the boundxry condtionthat Q =

UgNger the theoreticd thicknessprofileisfound

| 1-e?™
h _ h D' 1 - e —an (A25)
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A.5Velocity Profilefor a Viscous Fluid Falling from Rest under its Own Weight
Brown (1961) derives anon-dimensional differential equation for the velocity of a

thin film of viscous liquid falling under its own self weight:

c

dflduy 1 du _ g
axl Uax) " U dx (A-26)

Where U is the dimensionless velocity and X is the dimensionless distance along the
direction of flow. The actual velocity (u,) and distance (x,) are related to the

dimensionless values by:

1 2 1
ul _ ( 41’]9) 3U, Xl — (ﬂ) 3g 3X (A.27)
P P
Where 1 is the shear viscosity, g is the acceleration due to gravity and p is the density of
the fluid.
The solution to this differential equation isfound in Clarke (1966) for the

boundary conditionthat U =0at X =0:

1

2 *(Ai(r))?

T TGREN
[ i ()

(A.28)

1
where r =2 (X + k) and k, = -2. 94583

Where Ai isthe Airy function, which is defined as (Miller 1987: 246, 249):
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Ai(r) =Cy, - Gy, where C, ~ 0.355028, C, ~ 0. 258819,

S 14 (30 - 2)
.~ (amr ' and (A.29)

y(r) =1+
n

~ 12 (30 - 1) a1

yz(r) =T +nZ::1 (3n+1)|
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A.6 Solution for 2D Film Casting when Thickness does not Vary Acrossthe Width
Given the drawing force (F) in the film, Avenas et al. (1986: 359-369) and
Agassant et al. (1991: 239-250) present relations to find the following variables. the draw
ratio (U,y/Uge), the neck-in (w,,,/wy,) and the thickness change (h,,,/hg.). The theoretical

relations assume that the process is isothermal and that the fluid is Newtonian. Also,
restrictions are made on the admissible velocity field: u; = u,(X,), U, = U,(X,, X,) and ug =
Us(X4, X3). Thismeans that the film maintains a rectangular shape from the die to the roll,
as the thickness does not vary in the transverse direction.

The neck-in at theroll is calculated from the following transcendental equation:

AAL = | ZroII -1
- =(Zio1 ~ Zgio) * nm
where A= — . Q- Ugi eNei eWai e (A.30)

12nQ’

ZroII = \/1 + 8A2Wr20II: and Zdie - m

Once w, /W, is known the following relation is used to solve for h,,/hy,:

w h
In—2l 4 opn_rol - _gAL (A.31)

Wai e die

The continuity equation can then be used to determine the draw ratio (Dr):

Dr = uroII

Ugi e

Wi e:die (A32)

roll

WroII

In addition to the above relations, Avenas et al. (1986) and Agassant et al. (1991) present

the theoretical limit for the neck-in:

(A.33)



Appendix B Derivation of the Tangential Stiffness M atrices

B.1 Derivation of the 1D Tangential StiffnessMatrix
This derivation isfor an-noded 1D element that has the same order of

interpolation for al of the unknowns (u,, h, and T). The finite element discretization is

summarized as follows:

1 u
g—zi = B,a, :;1 = B,a, :Jl = B;a
where a = Uy, h, T, -~ uy, h, THT,
N, =[N, 00 - N, 00| 6.1)
N,=[0 N 00N, 0|
N, =0 0N, - 00 NJ
dN dN dN
and B, = dxr, B, = d_X: B, - dTI

where n is the number of degrees of freedom and uy;, h;, T, and N; are the velocity,

thickness, temperature and shape function values for nodei.

The finite element equations for equilibrium, continuity and the conservation of

thermal energy can be expressed concisely as.
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KEQ' b Reql b

Kcont a = 0

Kt hrm Rt hrm (B.Z)

K = K + K.
wher e eql b B gr ad inrt

thrm Kadvt * Reond * Knewt
inwhich K o, Kooy and Ky, are the stiff nessmatrices for equili brium, continuity and the
conservation d therma energy; K,y and K, are the contributions to K, from the

gradient of stressand from inertia; K ., K oong @d K, refer to the ontributionsto K.,
from advedion, condiction and Newton's law of coding; and Ry, and Ry, are the load
vedors for equili brium and thermal energy. In these equations the stiffnessmatrices and
Rq are functions of the degreeof freedom vedor a.

The expanded form of the stiff nessmatrices and load vedorsisfound ly
substitution d the discretization (Eq. B.1) into the weighted residual forms of the

governing equations (Eq. 2.26,Eq. 2.27and Eq. 2.30Q. Theresults are asfollows:

le
Korao th 4nB,dx, Kagvt = pCfNLthBdel
Ki e fNTphu B dx, Keong = ka hB.dx,
du T
cont fN N Xm Knewt = ZO(fN N dX (B.3)
0
le
Regio = pgfh Nidx, + <F(le) 0..-F(0) ..0>T
0
le
Rthrm - 20([N$dxl
0

where| e isthe dement length.
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The stiffness matrices and load vectors can be evaluated using standard Gauss
quadrature, with the possible exception of K .. If upwinding is used then the advection

stiffness matrix is evaluated as:

Kot = QU3 (0°) h(0®) N £) By(£) J(0%) W (B4)

advt
Where  is the optimum integration point, O° is the origin of the isoparametric
coordinates for the element, Jis the Jacobian determinant of the isoparametric
transformation and W is the weight factor, which istwo for 1D problems.
For an element the residual is defined as:
¥ = [Kegin * Keont * Kined @ = Regp = Ripn = 0 (B.5)

The tangential stiffness matrix is the derivative of each component of the residual |oad

vector with respect to each degree of freedom:

Ky(a) = % (B.6)

To evaluate K, the pattern in the rows of the residual load vector is used:

weql bl ll’reql bl 0 0
IJJcont 1 0 wcont 1 0
I|J 3 ll’rthrml B 0 N 0 N ]‘l'[thrml (B7)
ll’reql b2 ll’reql b2 0 0
IJJcont 2 0 wcom 2 0
0 0 wt hr ng
IJJt hr n2

or:
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I'I’ - l'Ileqlb * ‘I"cont * ‘I"thrm

Cdy  Beqn | Do | BWipem (B.8)
. da da da da
where:
Veain = Keqind = Regip
"I’cont = Kconta (B.9)

ll’thrm = Kthrma B Rthrm

Equation B.9 shows that the stiffness matrices and load vectors correspond to specific
rows of the residual vector. This occurs because of the first matrix in the calculation of
each of the termsin Equations B.3. The matricesN," and B, for example, when
multiplied with another matrix will result in nonzero entries only in the first and fourth
rows. Theresult then, is that these rows correspond to the equilibrium residual (¥oy,). A
similar pattern is observed for the other two finite element equations and their associated
residual load vectors (¥ ., and W)

To simplify the derivation of the tangential stiffness matrix further, the derivative

with respect to the degree of freedom vector (a) is broken down into three steps:

i = d + d + d
da da, da, da,
where a, = <u,; 00 ..u,, 0 0>" (B.10)
a,=<0h, 0.0h, 0>7
a;,=<00T, ..00T>"

The derivatives with respect to a,, a, and a; provides the columns of K that are

associated with the u;, h and T degrees of freedom, respectively. Theideathen, isto
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arrange the matrices that make up the residual so that the derivatives with respect to a,, &,
and a; are obvious. Where possible thisis done by arranging the matrix so that the terms
within the integral are not afunction of the degrees of freedom in question; for example,
the derivative of Ka, with respect to a, is straightforward if K isnot afunction of a,. The
vectors a,, a, and a; can be used in place of a when the only non-zero matrix
multiplications are associated with the u;, h and T degrees of freedom, respectively.

The derivatives are taken systematically below, for each residual, each of their
components and with respect to each of the three degree of freedom vectors. For the

advection stiffness matrix the derivation is shown both with and without upwinding.

. . d¥ g p d
1) Equilibrium Residual, — =22 - ﬁ(Kgrada + Kipe@ = Regp
a) Stress Gradient Residud, ng:da = dzgéada + dzgéada + dzgéada
u h T
' dK da d le T le T
) dgéi = da“[{BuAnhBudxlau - {Bu-4nhBudxl
- dK da d le T le T
i) dgéi = dah[gBu-onthxlah = {Bu-onthxl
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| " dx, dT da, *

le du d dNa d
hBT4 1 n hBT 1 nN

[ dx, dT da f CaT X,

dK. . . .
b | t T R d a| inrt _ inrt Inrt inrt
) Inertia Term Residu ia 3. + da. 4 T
i) d
K'”” = [fNuphqux aJ

le
= [Njphu,B dx, + fNuph 1B Ldx, a,
0

e e dN,a, du
_ T u 1
- {NuphulBudx fNuph 2

u 1

dx

le
=fNIphulBudx fNuph 1N dx,
0

M dKinrta _ T du 1 1
i) da, - T [fN —=N,dx, a, fN Ndx

d‘<I nrta
d

T

i)
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d d d d
c) Body Force Load Vector Raao _ dReqrs + Reary + Reary

da, da, da,
i) d?;“:b =0
i) ds;q;b " @ fNupghdx lfeNupg an, ahdx fNupgN dx,
ii) Regry

T
2) Continuity Residual d‘l;";”t - %(Kcoma)

dK_ a e '8
) HKeond __d [ho(SThN +hB)dX1a“] - [N} [(SThN +hB)d

dK_, .a e (d e (d
jjy —eom? _ _d [ho[ dulN ‘u B)dxlah] _ fNﬁ(d_)l:lthlBh)dxl

d
3) Thermal Energy Residual q;t;”m - i(K

d
a) Advection with upwinding, ;‘2" - + — -
u h T
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|) dKadvt _ d T e e dT. e .
da,  da, NT(i)pOJl(O)h(O)d—XlJ(O)z
_ NT CdNu( Oe) Uh Oe J Oe 2
= T( E) P T ( ) Xl ( )
= N(€) pCN,(O®) h(O°) 3 0(0°) 2
1
”) dKadvt _ d T e e dT. e .
da, da, NT(i)pOJl(O)h(O)d—XlJ(O)z
dN.(0°) a
= Ni(€) oC———"u 1(oe) T.3(09 2
h Xy
— T e e dT e
= Nr(£) pCN,(0%) 1y (0F) —3(0°) 2
1
I”) dKadvt _ d T e ey . ey .
da,  da; N( €) pCu,(O°) h(0°)-J(0°) -2B,(¢) a,
= NJ( £) pCu,(0°) h(0°) J(0°) 2B( £)
a dK . .a dK . .a dK . .a
b) Advection standard, advt ~ _ advt ™ advt ¢ | advt
da da, da, da;
; dKadvta d e aT
i) da.  da {NT Chd—lN dx, a, fNTpCh_N dx,
o dKged o d | dT le 4T
) da,  da, [NreCu ax. N dx,ap) = {NTpQJld_Xlthxl

dKatha d le T le T
iii) - T fNTpCulhBdel a;| = fNTpCulhBdel
T\o 0

da
¢) Conduction Residual cona® dKeona® T AKong? + dKeona?
da da, da, da.
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i) chonda
da,
H chonda d e T daT e T dT
i) da {BTkE&:Nmmlah _.£BTkE&IN#u1

_dK__a d '+ BT
iii) dcaoid = daT[éBTkhBdelaT] - {BTkhBTXm

d a d a d a d a
d) Newton's Law of Codling Khrew = Kneu + Knew + Koew

da da, da, da;

) dK o @ 0

da,
”) Knewta -

da,

dK a le le
[ d:_[y[N}zaNdelaTJ - [NF-2aN,dx,

T TV 0 0

thhrm + thhrm + thhrm
da, da, da;

d
e) Thermal Load Vedor Iz‘hrm -

The thermal |oad vedor does nat depend onany of the degrees of freedom; therefore, it
does nat contribute to the tangential stiff nessmatrix.

Now that al of the cntributionsto K have been found,the results can be
summarized. The tangentia stiffnessmatrix is best expressed as the assemblage of

submatrices based onthe terms derived above:
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Keql bull Keql bhll Keql bT11 Keql bulz Keql bhlz Keql lez
Kcont i1y Kcont hiy KcontT12
Kthr
m,
KS = . (B.19)
Kqu buZl
Kcont Upy
Kthf”L21 Kthrmrzz
Where the submatrices are:
le le du
Keai v, fBT4nthx fNTphulexl ' fNTph—lNdxl
le
Kearb, fB o, Ndx, fNT Ndx - pngTNdx
du, (¢
T. 1 dn
Rearn, f AN dx,
1 1
dh
KcomungT d—xlN + hB)dxl
le . dul .
Kcont :fN ulB * d_N Xm, Kcont =0 (B.ZO)
1

Kihrm,=PCN(0%) I(OF) 247 ix LN'(£) N(09)

l

Ky e =0QU;(0%) I(0°) 2(;” NT( £) N(O®) + fBTNkﬂdx

K,y 2600, 0%) h( O%) NT( ) B( £) 3(0°) + [ BThk B 20 [ NTNGx,
0 0

dN,  dN,
dx, 7 odx,

1

where: N=[N .. NJ, B-=

If upwinding is not included then:
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'F o dT
K = ——NT

{pCh i Ndx

le
dT dT

K = —NT BNk —
thrm {pCul ax. Ndx +{ kdxldx1

le le le
Kinem = [©Cu;ANBdx, + [BThkBdx, + 2o [N'Ndx,
0 0 0
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B.2 Derivation of 2D Tangential Stiffness Matrices

The derivation of the 2D tangentia stiffness matrices follows the same approach
asfor the 1D matrix. However, the 2D case involves the additional complexities of a
second velocity degree of freedom and an unknown free surface. To simplify the
presentation, the stiffness matrices for the field variables and for the free surface are
derived separately.
Local Tangential Stiffness Matrix for the Field Variables

To express the governing equations in finite element form involves a change of
notation; therefore, the first part of this presentation details the 2D finite element
notation. For three-noded constant stress triangular (CST) elements the velocity vector (u
~ U,), thickness (h) and temperature (T) are expressed in terms of the degree of freedom
vectors (a, a,, a,, a;) and the shape functions (N,, N,, N,):

a=<u

T
11 u21 hl Tl u12 u22 h2 T2 u13 u23 h3 T3>

a, =<u,u,, 00u,u,, 00u,u, 00>
a, -<00h 000h,000h, 0>
a,-<000T,000T,000 T,>

u=<u, u,> =Na
h = Na (B.22)
T = N;a
N,0OOON,OOONOODO
N, =
ONOOONOOONOO
N, =[00N OO0OON, 000N, O]
N, =[00O0ON O0OO0OON 000 N,
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For CST elements the shape functions are equal to the area coordinates (L, L,, L,); that
is, N; = L;, wherei equals 1 to 3.

Therest of finite element notation isintroduced in the context of the constitutive
equation, momentum equation, continuity equation and conservation of energy equation.
Each of these equationsis considered in turn by converting the index notation expression
into afinite element notation equivalent.

i) Constitutive Equation
Opp = 20( gy * £,,5,) (B.23)

The stress and strain vectors are defined as follows;

O11 €11
o =05 ~ O_Oﬁﬁ; € =| &l ~ 80([3; Yio = 2812 (824)
O12 Y12

9 9
ox
0
e = Lu, wherelL =| O Y
2 (B.25)
9 9
X, axl_

- e =B,a, where B, = LN

To relate the stress to the strain a constitutive matrix is introduced as follows;
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420
o =De, where D=n|2 4 0 (B.26)
001
i) Momentum Equation
[V
fésaﬁoaﬁhdgz + féuaphuﬁyﬁdgz - féuaphbadQ (B.27)
Q Q Q

To express this equation in afinite element notation a gradient operator is introduced:

vV - (B.28)

This operator is used to express the gradient of the velocity vector:

ou oX oX
—= - (WD) - v (B.29)
X, au2 au2

x, x,

To express this matrix in terms of the degree of freedom vector the following matrix

expansion isintroduced:
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[ou.  au. ] _
L 1 o 0 9 0
ox, X, X, u, X, u,
= [10] + [0 1]
du, du, Jd [\u, 0 ~d {u,
Wl WZ ax _ axz_ (8.30)
—L u[1 0] + szu[o 1]
=LX1Nua[ 10] + szNua[O 1]
=B, a[1 0] +~ B, a[0 1]
1 2
Finally, avector isintroduced for expressing the accel eration vector:
_ T
b = <g, 0> (B.31)
in which g,, isthe component of the acceleration due to gravity in the x; direction.
iii) Continuity Equation
oh ou
Shf — h—=2(da =0
£ ( U aqu (8:32)

The gradient operator can be used to express the thickness and vel ocity gradients as
follows:

—— ~Vh = B,,a, where B, = VN,

0 (B.33)
® ~v'u = B, ,a where B,, = VN,

iv) Conservation of Thermal Energy Equation

féT chu, —dQ f@kh_dg : féT-ZochQ - [5T24T, do (g 3a
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Once again the gradient operator is used, thistime for the temperature gradient:

oT
= VT = B,a, where B, = VN, (B.35)

With the notation defined, it is now possible to proceed with the derivation of the
tangential stiffness matrix. This derivation follows the same approach as that outlined
above for the 1D case; that is, the derivatives are taken for each residual, each of their

components and with respect to each of the three degree of freedom vectors.

d
1) Equilibrium Residual, ";z*'b - Ly K@ - Ragry
a) Stress Gradient Residual, Wora?  Wyra? | Wyrag? | Ky
da da da, da,
dK, ..a d
i grad _ B,DB hdoa,| = [BiDB hdo
I) dau dau[£ u u u ‘£ u u

dK, ..a d
i gr ad _ T _ T
i) da. dah[gBuothQahJ = £BuothQ
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dK . .
) Myrag® _ d [BinDehda, where D - 1D
da; daTQ n
_ RTA.n dn
= fBuDsthTdQ
Q
dn dT
B/Deh =1
f aT da.
dn dN.a d
B/lDeh=H 17T B/Deh =N
f aT da. O f =h g ae
oo.a dK. .a dK. .a dK. .a
b) |nel'tlaTerm ReSIdual Inrt - rnrt " rnrt " Inrt
da da, da, da,
|) dKI nrt T
Ty fNuph(w ) N, dea,
:fNuph(VuT)TNudQ * o fNuph(VuT)TudQ
d T
= fNuph(vuT) ™N do + T%gNuph(Bxlau[ 10] +B,a,[0 1])uda
N"oh(vu™y ™N d d NToh(B. u.+B. u.)d
fup( U) uQ+Hf up( X1u1+ x2u2) Qau
ugQ
fNuph( vuT) N do + fNIph( B, u,+B, u,) do
Q
i) K”” - fNup(VuT)TuthQah fNup(VuT)TuthQ
|||) K|nrt
T
c) Body Force Load Vector R _ MRegs  dRegy . WReais
da da, da, da,
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dR

eqlb _

) @

dR, d
i glb _ T _ T
i) da, dathuprthah = [NibeN,do

Q

d
2) Continuity Residual ‘l’jc;m - %(Kcoma)

|) d}fjcao.ma ) dcalu(fNE (( Vh) TNu+hBhu)dQ aU) ) fNE (( Vh) TNu+hBhU)dQ

0

Q

chonta d TloT Tiot
i) da, = da, !Nh(v uNh+uth)anh = !Nh(v uNh+uth)dQ
III) chonta _

da,
3) Thermal Energy Residual ¥t~ 9 ¢ K K R
) Therm nergy residu da - ﬁ( advt & cond® T Koy @ thrn‘)
a) Advection, dKadvta _ dKadvta + dKadvta + dKadvta
da da, da, da,

i)

da

u

dK_..a
advt % _ d: [ [NToCh(vT) TNuanuJ = [NFoCh(VT) ™N,do
u\ o Q

dK_. . .a
jiy e __d [NToC(VT) TuN,dea, | = [NfeC(VT) TuN,do
da,| | J

da,
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ClKadvta' d T T T T
ii ) e £NTpChu B.doa.| = !NTpChu B.do

da,
b) Conduwction Residual chonda _ chonda + chonda + chonda
da da, da, da,
i) chonda
da,
. dK_ _a d T ;
ii) d";:d = dah[fBTk(VT)TthQahJ =fBTk(VT)TthQ
Q Q
chonda d T T
ii) da. !BTkhBTanT —!BTkhBTdQ

d a d a d a d a
c) Newton's Law of Codling Khrew = Knew + Kew + Koew

da da, da, da.

) dK o @ i}

da,

K..,a
i) — =™ -0

da,

dK__.a d
i) newt — _ NI-2aN.doa.| = [NI-2aN.do

da, daT[£ T £T T

thhrm 4 thhrm 4 thhrm

d) Thermal Load Ved
) Thermal Load Vedor da, da, Ta.

thhrm _
d

The thermal load vedor does nat depend onany of the degrees of freedom; therefore, it

does nat contribute to the tangential stiff nessmatrix.



Now that all of the contributionsto K have been found, the results can be

summarized. The tangentia stiffness matrix is best expressed as the assembl age of
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submatrices based on the terms derived above:

A
)
I
~ X X X X X X X X" X" X" x

eql bull
eql bU21
cont Uy
thr My,
eql bu31
eql bu41

cont
uz1

thrr’q121
eql buSl
eql bue1

cont
usy

thrr’q131

K K
eql b|J12 eql bh11

K

K
eql buZZ eql bth

K

cont
uiz

Kqu b

Keql b

T11

T21

Where the submatrices are defined as follows:

K

eql b”lS

K

eql b|J14

eql les
Keql b

T23

cont
T13

thrmr33

(B.43)
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Kegin = fBIDButh + fNIph(VUT) N, dQ + fNIph(Bxlul+BX2u2) do
Q Q Q
Kews. = [BuoNode + [Nio(VuT) TuN_de - [NjboN_do
gl b, £ £ £
B TA. . dn
Kegib, = £BuDhsﬁNsdQ
Keont, = [NI{(VR) TN, + 0B, Jdo
Q
= [N{ B.44
Keont, = [NEUB, + 9TUN Jdo (B.44)
Q
COI’]tT - 0
Kthrn”lJ = lepCh(VT) TNudQ
Q
Kinem, = [NepQu(VT) TuNd = [BLk(VT) INdo
Q Q
Kthrmr - lepChUTBSSdQ + fBlSthssdQ + fN-SrZO(NIdQ
Q Q Q

The shape function and shape function gradient matrices used above have the following

definitions:
N, 0N, 0N O
"o N O N, 0 N,
Ny = [N, N, N;]
B, = LN,
B, = LN, (B.45)
sz - szNu
B, = V'N,
B.. = VN
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in which the u represents the matrices associated with velocity vector and the s represents
the matrices associated with the thickness and temperature scalars.
Local Tangential Stiffness Matrix for the Free Surface Calculation

For the two-noded surface elements the velocity vector (u), thickness (h),
temperature (T) and width are expressed in terms of the degree of freedom vectors (a, a,,

a,, a, a,) and the shape functions (N, N,):

8 = <Uy Uy hy Tpw U, Uy, hy T, wy>T
a,=<u,u,, 000u,u,, 000>T
a, =<00h, 0000h,00>"
a,=<000T,0000T,0>"
a,=<0000w 0000 w>"
u=-<u u>"=Na
h =Na
T = N;a
(B.46)
w=Na
dN
:—X:d—xra—Bwa
N,0OOON 0000
N, =

ON0O0O0ON 00O
N, =[00N, 000O0N,O0 0]
N, =[000N, 0000 N, 0]
N,=[0000N 0000 N,]

This discretization can be substituted into the free surface equation to yield the free

surface residual;



Voaen = Kwdtha Rwdth =0
e T dw '8 (B.47)
where K ., = waWlJldS? R = mepzds :
0 1 0

where sisthe distance along the free surface.
The procedure for finding the tangentia stiffness matrix for the free surfaceis the
same as that used above, except that the temperature degrees of freedom have no

influence and there are now width degrees of freedom.

. . d¥ 4 n d
Width Residual, — 0 = (K@ = R,

Kyger? DK BKgpd 0Ky,

a) Tangential from stiffness matrix, =

da da, da, da,,
d a
) IZ“S‘“ = da fNT dW[l 0] N ds a, fNT dW[l 0] N,ds
u
”) dK/\dtha _
da,
i) dKgp@ d 'faT e T
= N1 O]JuBdsa, = [Nwu,B ds
daW daw{ w w { 1-w
b) Tangential for load vector AR = A 4 ARy + AR n
da da, da, da,,
: dR e d e T e T
) 4 " @ [Ni[o1INdsa,| = [NJO 1]N,ds
u u 0 0
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d

ii) Rutn _ 0
da,

i) dRygin 0
da,,

The submatrices derived above can be assembled into alocal 10x10 tangential

stiffness matrix for the determination of the free surface.



