Linear Optimization - Tutorial 1

Carlos Suarez
Department of Computing and Software McMaster University

Week of September 13, 2020

About Me

- Carlos Suarez
- Email: suarezhc@mcmaster.ca
- Office Hours: Mondays $4: 30$ pm $-5: 20$ pm
- 4th year Ph.D. student working on research in the area of discrete optimization.
- Hold a M.Eng and a B.Sc from Escuela Superior Politecnica del Litoral.

Linear Optimization Formulation

-

$$
\begin{array}{cc}
\operatorname{minimize} & c_{1} x_{1}+\cdots+c_{n} x_{n} \\
& a_{11} x_{1}+\cdots+a_{1 n} x_{n}=b_{1} \\
\text { subject to } & \vdots \\
& a_{m 1} x_{1}+\cdots+a_{m n} x_{n}=b_{m} \\
& x_{1} \geq 0, x_{2} \geq 0 \ldots x_{n} \geq 0
\end{array}
$$

- Can also be rewritten as:

$$
\begin{gathered}
\min c^{T} x \\
\text { s.t. } A x=b \\
\text { and } x \geq 0
\end{gathered}
$$

Formulations

- For each unit of x_{1}, there must be at least 3 units of x_{2}. $x_{1} \geq 3 x_{2}$ or $x_{2} \geq 3 x_{1}$ or \ldots ?
- A machine can process either: $11 x_{1} \mathrm{~kg}$. per week, or $45 x_{2} \mathrm{~kg}$., or $30 x_{3} \mathrm{~kg}$. per week. What combinations of x_{1}, x_{2} and x_{3} can be loaded in 8 weeks?
$\ldots . \leq 8$ or $\ldots \geq 8$?

Formulations

- There must be exactly 10 gr . of x_{1} for every 15 gr . of x_{2}.
- Ingredient x_{1} must constitute at most 25% of all ingredients X_{1}, X_{2}, and X_{3} ?

Example 1

- Hamilton's Poutine is a delivery food business. The company makes a net income of $\$ 1.00$ for each regular poutine and $\$ 1.50$ for each deluxe poutine sold. The firm currently has 150 pounds of potatoes and 50 pounds of topping mix. Each regular poutine uses 1 pound of potatoes and 4 ounces (16 ounces $=1$ pound) of topping mix. Each deluxe poutine uses 1 pound of potatoes and 8 ounces of topping mix. Based on the past demand per week, Hamilton's Poutine can sell at least 50 regular poutines and at least 25 deluxe poutines. The problem is to determine the number of regular and deluxe poutines they should make to maximize net income. Formulate this problem as an LP problem.

Example 2

- A company makes two products (x_{1} and x_{2}), measured in kg . using two machines (A and B). Each kg. of x_{1} that is produced requires 50 minutes processing time on machine A and 30 minutes processing time on machine B . Each kg . of x_{2} that is produced requires 24 minutes processing time on machine A and 33 minutes processing time on machine B. At the start of the current week there are 30 kg . of x_{1} and 90 kg . of x_{2} in stock. Available processing time on machine A is forecast to be 40 hours and on machine B is forecast to be 35 hours.
The demand for x_{1} in the current week is forecast to be 75 kg . and for x_{2} is forecast to be 95 kg . Company policy is to maximise the combined sum of the units of x_{1} and the units of x_{2} in stock at the end of the week.

Example 3

- Hong Feng makes tables and chairs. Each table can be sold for a profit of $\$ 30$ and each chair for a profit of $\$ 10$. The carpenter can afford to spend up to 40 hours per week working and takes six hours to make a table and three hours to make a chair. Customer demand requires that he makes at least three times as many chairs as tables. Tables take up four times as much storage space as chairs and there is room for at most four tables each week..
- How to solve LP's in Excel using Excel Solver.

