Linear Optimization - Tutorial 4

Carlos Suarez
Department of Computing and Software
McMaster University

Week of October 4, 2020

Two phases Simplex Method

$$
\begin{array}{ll}
\max & z=2 x_{1}+3 x_{2}+x_{3} \\
\text { subject to } & x_{1}+x_{2}+x_{3} \leq 40 \\
& 2 x_{1}+x_{2}-x_{3} \geq 10 \\
& -x_{2}+x_{3} \geq 10 \\
& x_{j} \geq 0 \text { for } j=1 \text { to } 3
\end{array}
$$

Standard Form

Introduce slack variables to convert the problem into standard form:

$$
\begin{array}{ll}
\max & z=2 x_{1}+3 x_{2}+x_{3} \\
\text { subject to } & x_{1}+x_{2}+x_{3}+s_{1}=40 \\
& 2 x_{1}+x_{2}-x_{3}-s_{2}=10 \\
& -x_{2}+x_{3}-s_{3}=10 \\
& x_{j}, s_{j} \geq 0 \text { for } j=1 \text { to } 3
\end{array}
$$

Finding a Basic feasible solution

- Simplex method to start needs a initial vertex. In the previous tutorial we used $(0,0,0)$. This time, $(0,0,0)$ does not satisfy the bottom 2 constraints.
- We will form a new problem, introducing artificial variables, to find an initial basic feasible solution(vertex of polyhedron) to our original problem.

Phase I

In order to find a solution(vertex) to start simplex algorithm, consider the artificial minimization problem

$$
\begin{gathered}
\operatorname{Min} \sum_{i=1}^{m} v_{i} \text { or } \operatorname{Max} \sum_{i=1}^{m}-v_{i} \\
\text { s.t. } A x+v=b \\
\text { and } x \geq 0, v \geq 0
\end{gathered}
$$

If there is a feasible solution for this problem, it must be $v=0$. If the original problem has no feasible solution, then $\sum_{i=1}^{m} v_{i}$ is greater than zero.

Phase I problem

max

$$
v=-v_{1}-v_{2}-v_{3}
$$

subject to $x_{1}+x_{2}+x_{3}+s_{1}+v_{1}=40$

$$
\begin{aligned}
& 2 x_{1}+x_{2}-x_{3}-s_{2}+v_{2}=10 \\
& -x_{2}+x_{3}-s_{3}+v_{3}=10 \\
& x_{j}, s_{j}, v_{j} \geq 0 \text { for } j=1 \text { to } 3
\end{aligned}
$$

Let's continue in Excel, for the iterations of Phase I and II(tableaus).

