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ABSTRACT 

Research investigating factors in the design of tilt-based interfaces 
is presented. An experiment with 16 participants used a tablet and 
a 2D pointing task to compare position-control and velocity-
control using device tilt to manipulate an on-screen cursor. Four 
selection modes were also evaluated, ranging from instantaneous 
selection upon hitting a target to a 500-ms time delay prior to 
selection. Results indicate that position-control was approximately 
2× faster than velocity-control, regardless of selection delay. 
Position-control had higher pointing throughput (3.3 bps vs. 1.2 
bps for velocity-control), more precise cursor motion, and was 
universally preferred by participants. 

Keywords: Fitts’ law, pointing, position-control, velocity-control. 

Index Terms: H.5.2. Information interfaces and presentation 
(e.g., HCI): User Interfaces – evaluation/methodology. 

1 INTRODUCTION 

Tilt control is now available in virtually all mobile devices and 
tablets, and in many game controllers. The ubiquity of this 
technology arises from the low cost of accelerometers coupled 
with the interaction possibilities afforded by the technology. Most 
mobile devices change their display orientation upon rotating the 
device. Many mobile games are tilt-based, for example, racing 
games where the player tilts the device like a steering wheel, and 
“marble maze” games where tilting rolls a ball to simulate gravity.  

Although tilt control intuitively seems natural for the above 
examples, it tends to underperform relative to direct touch [2, 11, 
30], another universal technology. One wonders if game 
developers might intentionally choose tilt to increase game 
difficulty. It is possible that minor changes to the control scheme 
such as using position instead of velocity control could offer 
better user performance. To assess this hypothesis, we used a 
widely accepted paradigm of pointing device evaluation to assess 
tilt performance in a general interaction task.  

Our research focuses on an on-going investigation of human 
performance aspects of tilt control as an interaction primitive. 
Motivated by our previous work [17], the major objective of this 
work is to compare different control modes and different selection 
modes. Specifically, the research described herein is the first to 
compare position-control and velocity-control for tilt-based input 
in a pointing task. 

We also expand our previous work [17] which only compared 
two selection modes: immediate selection when the cursor enters 
the target, and delayed selection after a 500-ms dwell time upon 
target entry. The rationale for the delay is that in any real user 
interface, target disambiguation is required. However, the delay 
duration limits the upper bound of performance. Hence, we look 
at several selection delays to determine a setting that minimally 
impacts performance and does not interfere with the user’s 
subjective impression of the system. 

2 RELATED WORK 

2.1 Tilt-Based Interaction 

Tilt control has long been of interest to HCI researchers. We 
present previous work in several areas. See Table 1.  

2.1.1 UI Tasks 

Early tilt research focused on list/menu navigation [21], scrolling 
[1, 6, 19, 24], document browsing [3], and changing display 
orientation [9]. The cited papers all present implementation 
examples; performance was not quantified. Here, we focus on user 
performance for basic input control using tilt for target selection. 

Wang et al. [27] used vision-based motion tracking instead of 
an accelerometer for tilt control. They proposed several tasks 
using tilt, including a pointing task, game control, and text entry. 
The pointing task, which used Fitts’ law [4], is the closest to our 
evaluation. However, they only investigated 1D cursor control in 
four directions, possibly due to sensor imprecision. Performance 
as indicated by Fitts’ throughput was about 1 bps. The authors 
speculated that accelerometer-based tilt control may offer better 
performance due to lower processing requirements. Other work 
confirms that tilt-based pointing and scrolling conform to Fitts’ 
law, but did not report pointing throughput [22]. Later research 
[17] using accelerometer-based tilt control indicates that, for 
multi-directional pointing, throughput is as high as 2.5 bps. 

2.1.2 Text Entry 

Several researchers investigated tilt for text entry [13, 20, 23, 28]. 
Wigdor and Balakrishnan [28] used device tilt to disambiguate 
letter selection and reported that their technique was faster but 
more error-prone than MultiTap. Unigesture [23] partitioned 
letters into seven “zones” corresponding to seven tilt directions, 
with an eighth zone for SPACE. Like T9, Unigesture uses 
dictionary-based disambiguation to determine the word the user is 
entering. GestText [13] is similar as it partitions text into zones. 
Two options for partitioning were examined, with a matrix-based 
layout (like Unigesture) found to be superior. TiltType [20] is also 
similar, but accesses letter groups via physical buttons and uses 
tilt to disambiguate. The technique was not evaluated, though. 
While these studies suggest promise in tilt-based text entry, how 
well the results generalize to other tasks is unclear. 

2.1.3 Games 

Tilt-controlled games are increasingly common and popular on 
mobile devices. Tilt offers an alternative to touchscreen-based 
controls, which perform poorly relative to physical controls [2, 11, 
30]. This performance discrepancy is largely attributed to the 
absence of tactile feedback in touchscreens [29]. 

Much of the work on tilt control for games is qualitative, for 
example, looking at user experience [5, 26]. However, there is 
also quantitative work [2, 18]. Browne and Anand [2] compared 
tilt to touchscreen controls for a shooting game on an Apple iPod 
Touch. Participants could play the game significantly longer with 
tilt than with touch controls. However, this was in part because 
the virtual buttons did not support multi-touch; i.e., participants 
could not move and shoot simultaneously, unlike with tilt.  
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First Author Tilt Control Device Task Main Findings 

Browne [2] Velocity Smartphone 2D shooter game 
Tilt performed better and more preferred than swiping or 
on-screen buttons 

Gilbertson [5] Velocity Mobile Phone 3D tunnel game Participants had higher scores with tilt than keypad 
Henrysson [7] Velocity Mobile Phone 3D rotation Tilt slower than device motion and keys 
Henrysson [8] Velocity Mobile Phone 3D rotation Tilt faster than touchscreen, slower than keys 

Hynninen [11] Velocity Smartphone 
First-person shooter 
games 

Tilt performed worse than virtual joystick controls on 
touchscreen 

Jones [13] 
Position 
(gestures) 

Wiimote Text entry 
Entry speed of around 5 wpm after four days with two 
difference soft keyboard layouts 

MacKenzie [17] Velocity Tablet ISO pointing task Tilt conforms to Fitts' law, lower performance than mouse 
Medryk [18] Velocity Smartphone Pong-like game Touchscreen (swiping) faster and higher scores than tilt  

Oakley [19] 
Velocity 
and position 

Handheld computer Menu Navigation Tilt using position control faster than velocity control 

Sad [22] Position PDA with tilt sensor Scrolling, pointing Tilt control in both tasks conforms to Fitts’ law 
Sazawal [23] Position Custom Text entry Mainly qualitative, error counts also reported 
Valente [26] Position Mobile Phone Navigation via audio Tilt control feasible for non-visual games 

Wang [27] Velocity 
Mobile Phone, tilt 
from camera 

Multiple tasks, 
pointing 

Fitts' pointing throughput of about 1.1 bps, differences 
based on motion direction 

Wigdor [28] Position Mobile Phone Text entry TiltText 23% faster, about 2x as error prone as multitap 

Table 1: Overview of empirical performance studies on tilt control. 

Other researchers report contradictory results. Medryk and 
MacKenzie [18] found tilt was inferior to touchscreen control: 
Participants had worse game scores and accuracy, and took longer 
to complete levels in a Pong-like game. This may be due to the 
nature of the touch-control. Instead of displaying virtual joysticks 
and buttons, the game was controlled with swipe gestures. 
Similarly, Hynninen [11] found that tilt-control was inferior to 
touch-based virtual joystick control in a first-person shooter game. 

The results on tilt-based gaming are mixed and difficult to 
generalize due to the complexity of the game tasks. The 
effectiveness of tilt control may thus be task-dependent. 

2.1.4 Mobile Augmented Reality 

The power, portability, and availability of multiple sensors 
(including cameras) make smartphones an interesting platform for 
mobile augmented reality (AR). Several studies investigated the 
use of tilt for object manipulation in a phone-based AR system. 
These systems typically use the device’s accelerometers, but 
sometimes instead use the camera to detect device motion [27].  

Henrysson et al. [7] used phone tilt to control 3D object 
rotation, comparing four techniques for single-axis rotation. The 
techniques included two using phone tilt, one using phone 
displacement, and one using keys. They found that the tilt 
methods were slowest. A later study on object rotation [8] 
compared tilt to key/joystick and touchscreen input. Consistent 
with earlier results, the authors found key-based input superior to 
tilt. However, tilt outperformed the touchscreen method, 
suggesting positive benefits in using tilt for input control. 

Other researchers [10] report that moving objects in an AR 
environment using the movement/tilt of the device was faster than 
direct or indirect touch-based interfaces. Selection was slower 
using tilt than direct touch, however. 

2.1.5 Summary 

Of the studies cited above, only Oakley et al. [19] compared 
velocity and position tilt control. They used a menu navigation 
task. We seek to better understand these two control types in more 
general tilt-based interaction. Overall, few studies seem to 
consider position-control at all, likely because velocity-control is 
a more reality-founded control style. Our work is motivated on the 
hypothesis that position-control will offer better performance and 
could be employed in new or re-imagined tilt-based designs. 

2.2 Fitts’ Law and Pointing 

Our evaluation employs Fitts’ law [4], which models the speed-
accuracy tradeoff in rapid aimed movements. The prediction form 
of Fitts’ law is  
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where MT is movement time. The constants a and b are 
empirically derived via linear regression. The log term is the 
index of difficulty (ID, in bits) where A and W are the amplitude 
(distance to the target) and width (target size), respectively. 
Essentially, the model implies that far, small targets are harder to 
hit than near, large targets. Harder tasks take longer, as reflected 
by MT. This has been formalized in an international standard for 
pointing device evaluation, ISO 9241-9 [12]. Figure 1 depicts the 
standard’s 2D pointing task. 

 

Figure 1: ISO 9241-9 2D tapping task with 13 circles (12 targets). 
Arrows indicate the first five targets. 

The standard suggests using “effective” measures for width and 
amplitude to better account for user performance. This offers 
some advantages [15, 25], but effective measures are not used in 
the current study because the task precludes missing targets. 
Consequently, and similar to previous work [17], we instead 
calculate throughput using presented ID and average MT as 
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Figure 2: Samsung Galaxy Note 10.1 tablet running the 
experimental software. 

Finally, while throughput quantifies performance, it does not 
explain performance differences. Hence, we also employ accuracy 
measures (target re-entries, movement variability, and errors) [16] 
to help explain performance differences.  

3 POSITION- AND VELOCITY-CONTROL 

The main factor studied in our experiment is control mode. We 
investigated two options: position-control and velocity-control. 
Both use the tablet tilt but result in dramatically different 
experiences. Velocity-control is reminiscent of marble-maze 
games, as the cursor (a ball) increases its movement speed based 
on the amount of device tilt. Position-control is quite different: 
The farther the device is tilted, the farther from center the cursor 
is positioned. There is a direct correspondence between tilt angle 
and cursor position. Upon leveling the device, the cursor returns 
to the display center. The algorithms to determine ball position in 
each control mode are explained in the Apparatus section. 

Previous work has shown that position-control affords higher 
performance than velocity-control in a tele-manipulation task 
[14]. Also, tilt-based position-control was superior to velocity-
control for menu selection [19] on a mobile phone. There appears 
to be no prior empirical evaluation comparing tilt-based velocity- 
and position-control in general point-select tasks, though. 

4 METHODOLOGY 

4.1 Participants 

Sixteen participants (8 male) took part in the study. Ages ranged 
from 18 to 47 (µ = 25, σ = 7.3 years). All were undergraduate 
students enrolled in an introductory computer course. Participants 
were not regular tilt users – on a five point scale (1 meaning they 
never used tilt control and 5 meaning they used it every day), the 
mean response was a 3.1 (SD = 1.4). 

4.2 Apparatus 

The experiment was conducted on a Samsung Galaxy Note 10.1 
tablet with Google’s Android 4.1.2 (Jelly Bean) OS. See Figure 2. 
The display resolution was 1280  800 pixels and measured 260 
mm (10.1") diagonally. Pixel density was 149 pixels/inch. 

Software was developed in Java using the Android SDK. Tilt 
control used the device's orientation sensor, fusing data from the 
accelerometer, gyroscope, and magnetometer. The sensor sample 
rate was 100 Hz. Two different methods were used to convert 
device pitch and roll to tilt magnitude and tilt angle, resulting in 
the two control modes investigated. 

4.2.1 Calculating Ball Position1 

Both control modes computed tilt magnitude and angle as: 

݃ܽܯݐ݈݅ݐ  ൌ 	ඥ݄ܿݐ݅݌ଶ ൅  ଶ (3)݈݈݋ݎ

݈݁݃݊ܣݐ݈݅ݐ  ൌ asin	ቀ
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These data controlled the ball direction and speed in velocity-
control mode, and the ball position in position-control mode. In 
velocity-control mode, the ball “rolled” according to the tablet tilt. 
The ball velocity (v, in pixels/second) was a linear function of tilt 
magnitude and a programmable tilt gain setting: 

ݒ  ൌ 	݃ܽܯݐ݈݅ݐ	 ൈ  (5) ݊݅ܽܩݐ݈݅ݐ

With each sample, the ball displacement (dBall, in pixels) was 
calculated as the product of the velocity and time since the last 
sample (dt, in seconds):  

݈݈ܽܤ݀  ൌ ݐ݀	 ൈ  (6) ݒ

As an example, if the tilt magnitude was 3° and tilt gain was set 
at 50, then velocity was 3 ൈ 50 = 150 pixels per second. If the 
sample occurred 20 ms after the previous sample, the ball was 
moved 0.02 ൈ 150 = 3.0 pixels in the direction of the tilt angle. 
Based on previous results [17], tilt gain was fixed at 100. 

The second control mode used position- or absolute-control, 
and behaved somewhat like an isotonic joystick. The farther 
participants tilted the tablet, the farther the ball was positioned 
from the home position. “Centering” the tablet – setting it down, 
or otherwise positioning it flat – re-centered the ball. Ball position 
was determined according to the following equations: 

݈݈ܽܤ݀  ൌ ݃ܽܯݐ݈݅ݐ	 ൈ  (7) ݊݅ܽܩݐ݈݅ݐ

ݐ݁ݏ݂݂݋ ൌ ሺ݈݈݀ܽܤ ∗ sinሺ݈݁݃݊ܣݐ݈݅ݐሻ, ݈݈ܽܤ݀ ∗ cosሺ݈݁݃݊ܣݐ݈݅ݐሻሻ	 (8) 

ݏ݋݈݈ܾܲܽ  ൌ center ൅ offset (9) 

The offset vector was added to the center position to determine 
the ball position. Tilt gain for position-control was fixed at 20. 
This resulted in a reasonable or nominal user experience, 
comparable to velocity-control with a tilt gain setting of 100. 

4.2.2 Task and Target Parameters 

The software implemented a variation on the ISO 9241-9 [12] 2D 
targeting task. See Figure 3. The task required tilting the tablet to 
hit the highlighted target with the 20-pixel diameter ball. Three 
target amplitudes (A) were used: 131, 263, and 526 pixels. Three 
target sizes (W) were used: 42, 63, and 105 pixels. See Figure 4. 
Note that the targets were effectively smaller, since the ball had to 
be completely inside the target for selection. Consequently, we 
subtract the ball diameter from the target diameter in the 
calculation of ID.  

The A-W conditions yielded nine combinations of ID calculated 
according to Equation 1 and subject to the modification discussed 
above. IDs ranged from 1.35 to 4.64 bits. For each condition, 
there were 13 targets (12 selections), yielding 12 recorded trials 
per sequence. Each trial ended upon successful selection of the 
target, hence missing targets was impossible. In addition to the 
two control modes detailed above, four target selection delays 
were studied. The first was 0 ms delay. In this mode, selection 
occurred as soon as the ball was completely inside the target. The 
remaining selection modes required keeping the ball (completely) 
inside the target for a specified duration. Extending previous 
work [17], we used three non-zero levels of selection delay: 500, 
400, and 300 milliseconds.  

                                                                 
1 These equations are a fast and accurate simplification of the exact 
equations, which require converting Euler angles to an axis-angle 
representation. The error is < 1 degree for all tilt angles < 45 degrees, 
which is well within the range of angles used. 



 

 

Figure 3: The task performed by participants. (a) A = 131 pixels,  
W = 63 pixels. (b) A = 526 pixels, W = 105 pixels. 

 

Figure 4: The user-controlled ball (cursor) relative to the three 
target sizes used in the experiment. 

4.3 Procedure 

After giving informed consent, the procedure and software were 
demonstrated to participants. The study was performed seated, 
and participants held tablet however they felt comfortable. See 
Figure 5. At the start of the experiment, participants were given 
12 practice trials with each of the extreme selection delays (i.e., 
0 ms and 500 ms) in the starting control mode. At the halfway 
point the control mode changed, and participants were given the 
same number of practice trials with the same selection delays. 

Participants completed a questionnaire after the experiment. 
This included questions on control smoothness, mental and 
physical effort, and general preference of selection delay. 

4.4 Design 

The experiment used a repeated-measures design with the 
following independent variables and levels: 

Control mode: Position, Velocity 
Selection delay:  0, 300, 400, and 500 ms 
Target amplitude: 131, 263, 526 pixels 
Target width:  42, 63, 105 pixels 

Half of the participants started with position-control, and the 
other half started with velocity-control. Control mode switched at 
the halfway point. Selection delay was counterbalanced within 
control mode according to a balanced Latin square.  

The dependent variables were movement time, target re-entries 
(for non-zero selection delays), movement variability, maximum 
tilt angle, and throughput. Results of the post-experiment 
questionnaire are also presented. 

Overall, the experiment took about one hour per participant. 
Each participant completed 2 control modes × 4 selection delays × 
3 amplitudes × 3 widths × 12 selections = 864 trials total, or 
13,824 trials over all 16 participants.  

5 RESULTS 

Statistical reports for movement time (MT), throughput (TP), 
target re-entries (TRE), movement variability (MV), movement 
error (ME), and maximum tilt (MaxTilt) are shown in Table 2. 

 

Figure 5: Participant performing the selection task. 

5.1 Movement Time 

The grand mean for movement time was 2325 ms. There was a 
significant main effect on movement time for both control mode 
and selection delay. See Table 2. Overall, movement times were 
1555 ms for position-control and 3095 ms for velocity-control; 
i.e., movement time was about 50% lower for position-control 
than for velocity-control. A Tukey-Kramer post hoc test indicated 
that 0 ms selection delay was significantly faster than all others, 
while the 300 and 400 ms delays were significantly faster than the 
500 ms delay. See Figure 6. 

 

Figure 6: Movement time by control mode and selection delay. 
Error bars show ±1 SE.  

There was also a significant interaction effect between control 
mode and selection delay on movement time. The difference in 
movement time with the 0 ms delay was more substantial for 
velocity-control than for position-control. 

5.2 Throughput 

Throughput was calculated according to Equation 2. As 
mentioned earlier, effective width and amplitude were unavailable 
since the task precluded missing the targets.  

The main effects and interaction effect for control mode and 
selection delay were significant. See Table 2. Throughput scores 
are shown in Figure 7. Position-control with 0 ms selection delay 
had the highest throughput, at 3.3 bps. For comparison, most ISO-
conforming pointing studies on desktop systems report mouse 
throughput of around 4 to 5 bps [25, Table 4]. Thus, throughput 
for position-controlled tilt input is about 25% lower than for 
mouse input. Conversely, velocity-control had an overall 



 
Effect MT TP TRE ME MV MaxTilt 

Name df F p F p F p F p F p F p 

(C)ontrol Mode 1,15 230.7 * 1115.2 * 30.9 * 53.9 * 23.7 * 1409.1 * 

(S)election Delay 3,15 78.3 * 207.2 * 25.2 * 84.5 * 36.7 * 35.9 * 

C × S 3,45 24.7 * 55.3 * 3.1 .06 23.3 * 15.2 * 48.3 * 

Table 2: Statistical effects for accuracy measures. Control mode and selection delay are main effects, while C × S is the 
interaction. Significant effects are indicated with * for p < .0001. 

 

Figure 7: Throughput by control mode and selection delay. Higher 
is better. Error bars show ±1 SE. 

throughput of 1.2 bps which was significantly lower than position-
control (and about 70% lower than mouse throughput).  

Unsurprisingly, throughput is lower for higher selection delays. 
The worst condition was velocity-control with 500 ms selection 
delay. Even the 300 ms delay was substantially worse than the 
0 ms delay. This suggests that alternative target disambiguation 
techniques may fare better than the delayed timeout used. These 
delays may also be too short for UIs with distracter targets. 

5.3 Accuracy 

Since all trials ended with selection of the target, error rates were 
unavailable for the study. Instead, we examined other accuracy 
measures (target re-entries, movement variability, and movement 
error) which correlate with pointing performance [16]. Statistical 
data for these metrics are reported in Table 2. 

5.3.1 Target Re-Entries (TRE) 

Target re-entries is the count (averaged per 12 selections) of how 
frequently the cursor left and then re-entered the target. In a 
“perfect” selection task, TRE is 0, i.e., there is one target entry. 
TRE gives an indication of control problems, and may be more 
pronounced for smaller targets. See Figure 8 for TRE scores. 

Aside from the results shown in Table 2, there were significant 
interaction effects between control mode and target size 
(F2,30 = 13.1, p < .0001) and between selection delay and target 
size (F4,60 = 18.0, p < .0001) (not given in Table 2). Evidently, 
participants had a much harder time selecting the smallest targets 
with velocity-control than with position-control, and also with 
longer selection delays. The worst overall score resulted from the 
combination of velocity-control, a 500 ms selection delay, and a 
42-pixel target. TREs for this condition exceeded 20 per sequence 
of 12 selections. 

5.3.2 Movement Variability and Movement Error  

In a perfect selection task, the cursor would move in a straight line 
to the target, irrespective of the actual distance along the task axis 
(the line between subsequent targets). Movement variability (MV)  

 

Figure 8: Target re-entries by control mode, selection delay, and 
target size. Lower is better. Error bars show ±1 SE. 

represents this path straightness; the lower the score, the straighter 
the path. Movement error (ME) is the average distance of the 
motion path from the task axis, and may reflect difficulty in 
maintaining an optimal path. Control mode and selection delay 
had significant main effects on both MV and ME. The interaction 
effects were also significant. See Table 2.  

Both movement variability and error were lower with position-
control than velocity-control. Interestingly, velocity-control with 
0 ms delay had the highest scores for both movement variability 
and error. While this suggests participants had more difficulty 
moving the ball in a straight line in this condition, reckless tilting 
of the tablet may be a better explanation. This is discussed further 
in the motion analysis section below. This path inefficiency is 
reflected in the overall higher movement times and lower 
throughput scores reported above. Conversely, position-control 
with 0 ms selection delay was not significantly worse than with 
other selection delays. See Figures 9 and 10. 

Overall, position-control offered superior handling. Participants 
had difficulty keeping the ball close to the task axis with velocity-
control, especially with the 0 ms delay. Motion path analysis (see 
below and Figure 13) corroborates this result. 

5.3.3 Maximum Tilt 

The degree to which participants tilted the tablet was also 
recorded. Note that position-control required a certain amount of 
tilt, as determined by the target distance (relative to the center of 
the tablet) and the tilt gain. With velocity-control, however, the 
amount of tilt depends on the user’s strategy – greater tilt yields 
higher ball velocity. The main effects and interaction effect of 
control mode and selection delay on maximum tilt were both 
statistically significant. See Table 2. 

Tilt angles were significantly and substantially lower for 
velocity-control than for position-control. See Figure 11. 
Velocity-control with 0 ms selection delay exhibited significantly 
larger tilt angles than all other delays for that control mode. 



 

Figure 9: Movement variability by control mode and selection delay. 
Error bars show ±1 SE. 

 

Figure 10: Movement error by control mode and selection delay. 
Error bars show ±1 SE. 

Position-control required approximately twice as much tilt as 
velocity-control. The maximum tilt for position-control across 
selection delays was essentially flat. As noted above, maximum 
tilt with position-control is determined more by target location 
than by user strategy. Despite requiring greater degrees of tilt, 
position-control also offered higher performance. This suggests 
that the degree to which participants tilted the device was not 
directly linked to performance. This is likely linked to the tilt gain 
setting. 

5.3.4 Motion Path 

Figure 13 depicts typical motion paths of the ball in four 
conditions (0 ms and 500 ms selection delays for both control 
modes). Red dots indicate where selections occurred, and the blue 
line indicates the cursor/ball motion path. Velocity-control yielded 
erratic motion, with large target overshoots and corrections. This 
is supported by higher MV and ME scores and overall worse 
performance. Conversely, motion is fairly accurate with position-
control; this likely explains the higher overall performance. 

Line thickness in Figure 13 increases with the amount of tilt 
(i.e., thick lines indicate more tilt than thin lines). With position-
control (Figure 13c and d), lines are thicker farther away from the 
center, as greater tilt is required to position the ball farther from 
the tablet center. Conversely, for velocity-control the lines are 
thinner near targets. Participants were more careful upon 
approaching the target, and reduced the tablet tilt to slow the ball 
movement, improving control for the feedback-guided selection. 
Conversely, when moving the ball between targets, they would tilt 
the tablet to greater degrees to traverse the distance more quickly. 

 

Figure 11: Maximum tilt angle by control mode and selection delay. 
Error bars show ±1 SE. 

Figure 13b (velocity-control with 0 ms selection delay) shows 
the most erratic motions, and are typical of the condition. 
Participants would recklessly tilt the device to quickly traverse the 
distance between targets. This behaviour is especially evident in 
the line thickness near the center of Figure 13b. The movement 
appears somewhat ballistic and frequently resulted in the ball 
moving through the target, followed by a correction to adjust the 
ball’s direction for the next target. 

5.3.5 Subjective Questionnaire Results 

Participants also completed a questionnaire, the results of which 
were compared using t-tests. Position-control scored significantly 
higher in all questions, see Figure 12. These results indicate that 
position-control was also preferred by the study participants. 

Participants also provided comments on the experimental 
conditions. One participant reported that their lower arms were 
more tense while using the velocity mode and that the position 
mode was more relaxing. Another noted, “If I had to use velocity-
control for any real task, I would stop using that app”. These 
comments help explain the difference in participant preference for 
the two control modes, while underlining the measured 
performance differences. 

 

 

Figure 12: Survey responses and statistical reports by question. 
Higher scores are more favorable. Error bars show ±1 SD. 

 



 

Figure 13: Motion paths for (a) velocity-control with 500 ms delay, (b) velocity-control with 0 ms delay, (c) position-control with 500 ms delay, 
and (d) position-control with 0 ms delay. 

The survey also asked participants for their selection delay 
preference. Eleven preferred no selection delay, four preferred a 
300 ms delay, and one preferred a 400 ms delay. It is likely that 
the strong preference for instantaneous selection is simply due to 
the higher performance it offers. Of course, this selection mode is 
not always feasible (e.g., in the presence of distracter targets)..  

6 DISCUSSION AND LIMITATIONS 

Our results suggest that, in applications where there is a choice, 
position-control tilt input is preferred. Overall, participants 
performed better with and generally preferred position-control 
over velocity-control. This may be due to the higher attention 
demand in the velocity-control mode, where constant visual 
attention is required to adjust the ball's motion. Conversely, in 
position-control, attention demand is somewhat lower as 
participants can leverage proprioception without worrying that the 
ball will venture off-course. This is reflected in the analyses of 
motion, movement variability, and error. Attention demand 
differences are also reflected in participants' assessment of higher 
mental effort with velocity-control.  

It is worth noting that position-control is unsuited to situations 
with unbounded scrolling, for example, map or document 
navigation. Position-control is thus dependent on the control 
range. This can be mitigated by increasing the tilt gain or through 
clutching. Of course, after a point the screen simply tilts out of a 
viewable range. Velocity-control does not have this limitation. 

Participants also tended to prefer shorter selection delays. Of 
course, this result is contingent with the task. Typical UIs include 
multiple targets yielding the possibility of selecting the wrong 
target. Our study did not include distracter targets. While 
performance was highest with a 0 ms delay, such a technique is 
clearly impractical for real-world use. Similarly, the some 
selection delays (e.g., 300 ms) may be too short to avoid 
accidental selections. We plan to study this further in an 
experiment that includes distracter targets.  

Finally, we also acknowledge that touch-control is the 
predominant control style on mobile devices. Tilt control is 
typically used only in limited situations, or in conjunction with 
touch. As we did not directly compare these two control styles, we 
can only speculate on performance differences in selection tasks. 
It is likely that touch control would offer superior performance to 
tilt control for the most common interactions in mobile user 
interfaces. That said, we believe that the present investigation 
indicates that position-controlled tilt is worth further 
consideration. It would be interesting to implement position-
control for games which commonly use velocity-control and 
compare scores between these. We are also considering other 
possible uses of position-control tilt, including phone dialers and 
text entry. These are topics for future study, however. 

7 CONCLUSIONS  

We presented a study investigating important aspects of tilt-based 
interaction. This study represents (to our knowledge) the first 
comparison between position- and velocity-control for general 
tilt-based interaction. Results indicate that although it required 
greater amounts of tilt, position-control offered significantly better 
performance than velocity-control and was also strongly preferred 
by participants. Not only was this mode faster and yielded higher 
throughput, it also offered much smoother control as indicated by 
the analysis of several motion metrics.  

The results also indicate that instant selection upon entering a 
target (i.e., 0 ms selection delay) afforded better performance than 
a delayed selection. While this is not surprising, such a selection 
mode is not always practical. For example, some means of target 
disambiguation is required if the cursor must cross other targets to 
reach the intended target. While the selection delays studied here 
suggest faster delays offer better performance, we note again that 
these results must be considered in light of the fact that no actual 
distracter targets were present in our study. 

7.1 Future Work 

The study used nominal gain settings chosen from pilot testing. 
This is one obvious parameter to evaluate further in future work. 
In particular, and as suggested by participants, a dynamic gain 
level is worth considering. 

A long term objective is to further investigate what kinds of 
tasks benefit more from velocity tilt control versus position tilt 
control. For example, one might consider a marble-maze style 
game using position-control, and compare this to velocity-control.  
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