
Position vs. Velocity Control for Tilt-Based Interaction

Robert J. Teather*

McMaster University

I. Scott MacKenzie**

York University

ABSTRACT

Research investigating factors in the design of tilt-based interfaces
is presented. An experiment with 16 participants used a tablet and
a 2D pointing task to compare position-control and velocity-
control using device tilt to manipulate an on-screen cursor. Four
selection modes were also evaluated, ranging from instantaneous
selection upon hitting a target to a 500-ms time delay prior to
selection. Results indicate that position-control was approximately
2× faster than velocity-control, regardless of selection delay.
Position-control had higher pointing throughput (3.3 bps vs. 1.2
bps for velocity-control), more precise cursor motion, and was
universally preferred by participants.

Keywords: Fitts’ law, pointing, position-control, velocity-control.

Index Terms: H.5.2. Information interfaces and presentation
(e.g., HCI): User Interfaces – evaluation/methodology.

1 INTRODUCTION

Tilt control is now available in virtually all mobile devices and
tablets, and in many game controllers. The ubiquity of this
technology arises from the low cost of accelerometers coupled
with the interaction possibilities afforded by the technology. Most
mobile devices change their display orientation upon rotating the
device. Many mobile games are tilt-based, for example, racing
games where the player tilts the device like a steering wheel, and
“marble maze” games where tilting rolls a ball to simulate gravity.

Although tilt control intuitively seems natural for the above
examples, it tends to underperform relative to direct touch [2, 11,
30], another universal technology. One wonders if game
developers might intentionally choose tilt to increase game
difficulty. It is possible that minor changes to the control scheme
such as using position instead of velocity control could offer
better user performance. To assess this hypothesis, we used a
widely accepted paradigm of pointing device evaluation to assess
tilt performance in a general interaction task.

Our research focuses on an on-going investigation of human
performance aspects of tilt control as an interaction primitive.
Motivated by our previous work [17], the major objective of this
work is to compare different control modes and different selection
modes. Specifically, the research described herein is the first to
compare position-control and velocity-control for tilt-based input
in a pointing task.

We also expand our previous work [17] which only compared
two selection modes: immediate selection when the cursor enters
the target, and delayed selection after a 500-ms dwell time upon
target entry. The rationale for the delay is that in any real user
interface, target disambiguation is required. However, the delay
duration limits the upper bound of performance. Hence, we look
at several selection delays to determine a setting that minimally
impacts performance and does not interfere with the user’s
subjective impression of the system.

2 RELATED WORK

2.1 Tilt-Based Interaction

Tilt control has long been of interest to HCI researchers. We
present previous work in several areas. See Table 1.

2.1.1 UI Tasks

Early tilt research focused on list/menu navigation [21], scrolling
[1, 6, 19, 24], document browsing [3], and changing display
orientation [9]. The cited papers all present implementation
examples; performance was not quantified. Here, we focus on user
performance for basic input control using tilt for target selection.

Wang et al. [27] used vision-based motion tracking instead of
an accelerometer for tilt control. They proposed several tasks
using tilt, including a pointing task, game control, and text entry.
The pointing task, which used Fitts’ law [4], is the closest to our
evaluation. However, they only investigated 1D cursor control in
four directions, possibly due to sensor imprecision. Performance
as indicated by Fitts’ throughput was about 1 bps. The authors
speculated that accelerometer-based tilt control may offer better
performance due to lower processing requirements. Other work
confirms that tilt-based pointing and scrolling conform to Fitts’
law, but did not report pointing throughput [22]. Later research
[17] using accelerometer-based tilt control indicates that, for
multi-directional pointing, throughput is as high as 2.5 bps.

2.1.2 Text Entry

Several researchers investigated tilt for text entry [13, 20, 23, 28].
Wigdor and Balakrishnan [28] used device tilt to disambiguate
letter selection and reported that their technique was faster but
more error-prone than MultiTap. Unigesture [23] partitioned
letters into seven “zones” corresponding to seven tilt directions,
with an eighth zone for SPACE. Like T9, Unigesture uses
dictionary-based disambiguation to determine the word the user is
entering. GestText [13] is similar as it partitions text into zones.
Two options for partitioning were examined, with a matrix-based
layout (like Unigesture) found to be superior. TiltType [20] is also
similar, but accesses letter groups via physical buttons and uses
tilt to disambiguate. The technique was not evaluated, though.
While these studies suggest promise in tilt-based text entry, how
well the results generalize to other tasks is unclear.

2.1.3 Games

Tilt-controlled games are increasingly common and popular on
mobile devices. Tilt offers an alternative to touchscreen-based
controls, which perform poorly relative to physical controls [2, 11,
30]. This performance discrepancy is largely attributed to the
absence of tactile feedback in touchscreens [29].

Much of the work on tilt control for games is qualitative, for
example, looking at user experience [5, 26]. However, there is
also quantitative work [2, 18]. Browne and Anand [2] compared
tilt to touchscreen controls for a shooting game on an Apple iPod
Touch. Participants could play the game significantly longer with
tilt than with touch controls. However, this was in part because
the virtual buttons did not support multi-touch; i.e., participants
could not move and shoot simultaneously, unlike with tilt.

* teather@mcmaster.ca
** mack@cse.yorku.ca

First Author Tilt Control Device Task Main Findings

Browne [2] Velocity Smartphone 2D shooter game
Tilt performed better and more preferred than swiping or
on-screen buttons

Gilbertson [5] Velocity Mobile Phone 3D tunnel game Participants had higher scores with tilt than keypad
Henrysson [7] Velocity Mobile Phone 3D rotation Tilt slower than device motion and keys
Henrysson [8] Velocity Mobile Phone 3D rotation Tilt faster than touchscreen, slower than keys

Hynninen [11] Velocity Smartphone
First-person shooter
games

Tilt performed worse than virtual joystick controls on
touchscreen

Jones [13]
Position
(gestures)

Wiimote Text entry
Entry speed of around 5 wpm after four days with two
difference soft keyboard layouts

MacKenzie [17] Velocity Tablet ISO pointing task Tilt conforms to Fitts' law, lower performance than mouse
Medryk [18] Velocity Smartphone Pong-like game Touchscreen (swiping) faster and higher scores than tilt

Oakley [19]
Velocity
and position

Handheld computer Menu Navigation Tilt using position control faster than velocity control

Sad [22] Position PDA with tilt sensor Scrolling, pointing Tilt control in both tasks conforms to Fitts’ law
Sazawal [23] Position Custom Text entry Mainly qualitative, error counts also reported
Valente [26] Position Mobile Phone Navigation via audio Tilt control feasible for non-visual games

Wang [27] Velocity
Mobile Phone, tilt
from camera

Multiple tasks,
pointing

Fitts' pointing throughput of about 1.1 bps, differences
based on motion direction

Wigdor [28] Position Mobile Phone Text entry TiltText 23% faster, about 2x as error prone as multitap

Table 1: Overview of empirical performance studies on tilt control.

Other researchers report contradictory results. Medryk and
MacKenzie [18] found tilt was inferior to touchscreen control:
Participants had worse game scores and accuracy, and took longer
to complete levels in a Pong-like game. This may be due to the
nature of the touch-control. Instead of displaying virtual joysticks
and buttons, the game was controlled with swipe gestures.
Similarly, Hynninen [11] found that tilt-control was inferior to
touch-based virtual joystick control in a first-person shooter game.

The results on tilt-based gaming are mixed and difficult to
generalize due to the complexity of the game tasks. The
effectiveness of tilt control may thus be task-dependent.

2.1.4 Mobile Augmented Reality

The power, portability, and availability of multiple sensors
(including cameras) make smartphones an interesting platform for
mobile augmented reality (AR). Several studies investigated the
use of tilt for object manipulation in a phone-based AR system.
These systems typically use the device’s accelerometers, but
sometimes instead use the camera to detect device motion [27].

Henrysson et al. [7] used phone tilt to control 3D object
rotation, comparing four techniques for single-axis rotation. The
techniques included two using phone tilt, one using phone
displacement, and one using keys. They found that the tilt
methods were slowest. A later study on object rotation [8]
compared tilt to key/joystick and touchscreen input. Consistent
with earlier results, the authors found key-based input superior to
tilt. However, tilt outperformed the touchscreen method,
suggesting positive benefits in using tilt for input control.

Other researchers [10] report that moving objects in an AR
environment using the movement/tilt of the device was faster than
direct or indirect touch-based interfaces. Selection was slower
using tilt than direct touch, however.

2.1.5 Summary

Of the studies cited above, only Oakley et al. [19] compared
velocity and position tilt control. They used a menu navigation
task. We seek to better understand these two control types in more
general tilt-based interaction. Overall, few studies seem to
consider position-control at all, likely because velocity-control is
a more reality-founded control style. Our work is motivated on the
hypothesis that position-control will offer better performance and
could be employed in new or re-imagined tilt-based designs.

2.2 Fitts’ Law and Pointing

Our evaluation employs Fitts’ law [4], which models the speed-
accuracy tradeoff in rapid aimed movements. The prediction form
of Fitts’ law is

ܶܯ ൌ ܽ ൅ ܾ ൈ logଶ ቀ
஺

ௐ
൅ 1ቁ (1)

where MT is movement time. The constants a and b are
empirically derived via linear regression. The log term is the
index of difficulty (ID, in bits) where A and W are the amplitude
(distance to the target) and width (target size), respectively.
Essentially, the model implies that far, small targets are harder to
hit than near, large targets. Harder tasks take longer, as reflected
by MT. This has been formalized in an international standard for
pointing device evaluation, ISO 9241-9 [12]. Figure 1 depicts the
standard’s 2D pointing task.

Figure 1: ISO 9241-9 2D tapping task with 13 circles (12 targets).
Arrows indicate the first five targets.

The standard suggests using “effective” measures for width and
amplitude to better account for user performance. This offers
some advantages [15, 25], but effective measures are not used in
the current study because the task precludes missing targets.
Consequently, and similar to previous work [17], we instead
calculate throughput using presented ID and average MT as

 ܶܲ ൌ
ூ஽

ெ்
 (2)

Figure 2: Samsung Galaxy Note 10.1 tablet running the
experimental software.

Finally, while throughput quantifies performance, it does not
explain performance differences. Hence, we also employ accuracy
measures (target re-entries, movement variability, and errors) [16]
to help explain performance differences.

3 POSITION- AND VELOCITY-CONTROL

The main factor studied in our experiment is control mode. We
investigated two options: position-control and velocity-control.
Both use the tablet tilt but result in dramatically different
experiences. Velocity-control is reminiscent of marble-maze
games, as the cursor (a ball) increases its movement speed based
on the amount of device tilt. Position-control is quite different:
The farther the device is tilted, the farther from center the cursor
is positioned. There is a direct correspondence between tilt angle
and cursor position. Upon leveling the device, the cursor returns
to the display center. The algorithms to determine ball position in
each control mode are explained in the Apparatus section.

Previous work has shown that position-control affords higher
performance than velocity-control in a tele-manipulation task
[14]. Also, tilt-based position-control was superior to velocity-
control for menu selection [19] on a mobile phone. There appears
to be no prior empirical evaluation comparing tilt-based velocity-
and position-control in general point-select tasks, though.

4 METHODOLOGY

4.1 Participants

Sixteen participants (8 male) took part in the study. Ages ranged
from 18 to 47 (µ = 25, σ = 7.3 years). All were undergraduate
students enrolled in an introductory computer course. Participants
were not regular tilt users – on a five point scale (1 meaning they
never used tilt control and 5 meaning they used it every day), the
mean response was a 3.1 (SD = 1.4).

4.2 Apparatus

The experiment was conducted on a Samsung Galaxy Note 10.1
tablet with Google’s Android 4.1.2 (Jelly Bean) OS. See Figure 2.
The display resolution was 1280  800 pixels and measured 260
mm (10.1") diagonally. Pixel density was 149 pixels/inch.

Software was developed in Java using the Android SDK. Tilt
control used the device's orientation sensor, fusing data from the
accelerometer, gyroscope, and magnetometer. The sensor sample
rate was 100 Hz. Two different methods were used to convert
device pitch and roll to tilt magnitude and tilt angle, resulting in
the two control modes investigated.

4.2.1 Calculating Ball Position1

Both control modes computed tilt magnitude and angle as:

݃ܽܯݐ݈݅ݐ ൌ 	ඥ݄ܿݐ݅݌ଶ ൅ ଶ (3)݈݈݋ݎ

݈݁݃݊ܣݐ݈݅ݐ ൌ asin	ቀ
௥௢௟௟

௧௜௟௧ெ௔௚
ቁ (4)

These data controlled the ball direction and speed in velocity-
control mode, and the ball position in position-control mode. In
velocity-control mode, the ball “rolled” according to the tablet tilt.
The ball velocity (v, in pixels/second) was a linear function of tilt
magnitude and a programmable tilt gain setting:

ݒ ൌ 	݃ܽܯݐ݈݅ݐ	 ൈ (5) ݊݅ܽܩݐ݈݅ݐ

With each sample, the ball displacement (dBall, in pixels) was
calculated as the product of the velocity and time since the last
sample (dt, in seconds):

݈݈ܽܤ݀ ൌ ݐ݀	 ൈ (6) ݒ

As an example, if the tilt magnitude was 3° and tilt gain was set
at 50, then velocity was 3 ൈ 50 = 150 pixels per second. If the
sample occurred 20 ms after the previous sample, the ball was
moved 0.02 ൈ 150 = 3.0 pixels in the direction of the tilt angle.
Based on previous results [17], tilt gain was fixed at 100.

The second control mode used position- or absolute-control,
and behaved somewhat like an isotonic joystick. The farther
participants tilted the tablet, the farther the ball was positioned
from the home position. “Centering” the tablet – setting it down,
or otherwise positioning it flat – re-centered the ball. Ball position
was determined according to the following equations:

݈݈ܽܤ݀ ൌ ݃ܽܯݐ݈݅ݐ	 ൈ (7) ݊݅ܽܩݐ݈݅ݐ

ݐ݁ݏ݂݂݋ ൌ ሺ݈݈݀ܽܤ ∗ sinሺ݈݁݃݊ܣݐ݈݅ݐሻ, ݈݈ܽܤ݀ ∗ cosሺ݈݁݃݊ܣݐ݈݅ݐሻሻ	 (8)

ݏ݋݈݈ܾܲܽ ൌ center ൅ offset (9)

The offset vector was added to the center position to determine
the ball position. Tilt gain for position-control was fixed at 20.
This resulted in a reasonable or nominal user experience,
comparable to velocity-control with a tilt gain setting of 100.

4.2.2 Task and Target Parameters

The software implemented a variation on the ISO 9241-9 [12] 2D
targeting task. See Figure 3. The task required tilting the tablet to
hit the highlighted target with the 20-pixel diameter ball. Three
target amplitudes (A) were used: 131, 263, and 526 pixels. Three
target sizes (W) were used: 42, 63, and 105 pixels. See Figure 4.
Note that the targets were effectively smaller, since the ball had to
be completely inside the target for selection. Consequently, we
subtract the ball diameter from the target diameter in the
calculation of ID.

The A-W conditions yielded nine combinations of ID calculated
according to Equation 1 and subject to the modification discussed
above. IDs ranged from 1.35 to 4.64 bits. For each condition,
there were 13 targets (12 selections), yielding 12 recorded trials
per sequence. Each trial ended upon successful selection of the
target, hence missing targets was impossible. In addition to the
two control modes detailed above, four target selection delays
were studied. The first was 0 ms delay. In this mode, selection
occurred as soon as the ball was completely inside the target. The
remaining selection modes required keeping the ball (completely)
inside the target for a specified duration. Extending previous
work [17], we used three non-zero levels of selection delay: 500,
400, and 300 milliseconds.

1 These equations are a fast and accurate simplification of the exact
equations, which require converting Euler angles to an axis-angle
representation. The error is < 1 degree for all tilt angles < 45 degrees,
which is well within the range of angles used.

Figure 3: The task performed by participants. (a) A = 131 pixels,
W = 63 pixels. (b) A = 526 pixels, W = 105 pixels.

Figure 4: The user-controlled ball (cursor) relative to the three
target sizes used in the experiment.

4.3 Procedure

After giving informed consent, the procedure and software were
demonstrated to participants. The study was performed seated,
and participants held tablet however they felt comfortable. See
Figure 5. At the start of the experiment, participants were given
12 practice trials with each of the extreme selection delays (i.e.,
0 ms and 500 ms) in the starting control mode. At the halfway
point the control mode changed, and participants were given the
same number of practice trials with the same selection delays.

Participants completed a questionnaire after the experiment.
This included questions on control smoothness, mental and
physical effort, and general preference of selection delay.

4.4 Design

The experiment used a repeated-measures design with the
following independent variables and levels:

Control mode: Position, Velocity
Selection delay: 0, 300, 400, and 500 ms
Target amplitude: 131, 263, 526 pixels
Target width: 42, 63, 105 pixels

Half of the participants started with position-control, and the
other half started with velocity-control. Control mode switched at
the halfway point. Selection delay was counterbalanced within
control mode according to a balanced Latin square.

The dependent variables were movement time, target re-entries
(for non-zero selection delays), movement variability, maximum
tilt angle, and throughput. Results of the post-experiment
questionnaire are also presented.

Overall, the experiment took about one hour per participant.
Each participant completed 2 control modes × 4 selection delays ×
3 amplitudes × 3 widths × 12 selections = 864 trials total, or
13,824 trials over all 16 participants.

5 RESULTS

Statistical reports for movement time (MT), throughput (TP),
target re-entries (TRE), movement variability (MV), movement
error (ME), and maximum tilt (MaxTilt) are shown in Table 2.

Figure 5: Participant performing the selection task.

5.1 Movement Time

The grand mean for movement time was 2325 ms. There was a
significant main effect on movement time for both control mode
and selection delay. See Table 2. Overall, movement times were
1555 ms for position-control and 3095 ms for velocity-control;
i.e., movement time was about 50% lower for position-control
than for velocity-control. A Tukey-Kramer post hoc test indicated
that 0 ms selection delay was significantly faster than all others,
while the 300 and 400 ms delays were significantly faster than the
500 ms delay. See Figure 6.

Figure 6: Movement time by control mode and selection delay.
Error bars show ±1 SE.

There was also a significant interaction effect between control
mode and selection delay on movement time. The difference in
movement time with the 0 ms delay was more substantial for
velocity-control than for position-control.

5.2 Throughput

Throughput was calculated according to Equation 2. As
mentioned earlier, effective width and amplitude were unavailable
since the task precluded missing the targets.

The main effects and interaction effect for control mode and
selection delay were significant. See Table 2. Throughput scores
are shown in Figure 7. Position-control with 0 ms selection delay
had the highest throughput, at 3.3 bps. For comparison, most ISO-
conforming pointing studies on desktop systems report mouse
throughput of around 4 to 5 bps [25, Table 4]. Thus, throughput
for position-controlled tilt input is about 25% lower than for
mouse input. Conversely, velocity-control had an overall

Effect MT TP TRE ME MV MaxTilt

Name df F p F p F p F p F p F p

(C)ontrol Mode 1,15 230.7 * 1115.2 * 30.9 * 53.9 * 23.7 * 1409.1 *

(S)election Delay 3,15 78.3 * 207.2 * 25.2 * 84.5 * 36.7 * 35.9 *

C × S 3,45 24.7 * 55.3 * 3.1 .06 23.3 * 15.2 * 48.3 *

Table 2: Statistical effects for accuracy measures. Control mode and selection delay are main effects, while C × S is the
interaction. Significant effects are indicated with * for p < .0001.

Figure 7: Throughput by control mode and selection delay. Higher
is better. Error bars show ±1 SE.

throughput of 1.2 bps which was significantly lower than position-
control (and about 70% lower than mouse throughput).

Unsurprisingly, throughput is lower for higher selection delays.
The worst condition was velocity-control with 500 ms selection
delay. Even the 300 ms delay was substantially worse than the
0 ms delay. This suggests that alternative target disambiguation
techniques may fare better than the delayed timeout used. These
delays may also be too short for UIs with distracter targets.

5.3 Accuracy

Since all trials ended with selection of the target, error rates were
unavailable for the study. Instead, we examined other accuracy
measures (target re-entries, movement variability, and movement
error) which correlate with pointing performance [16]. Statistical
data for these metrics are reported in Table 2.

5.3.1 Target Re-Entries (TRE)

Target re-entries is the count (averaged per 12 selections) of how
frequently the cursor left and then re-entered the target. In a
“perfect” selection task, TRE is 0, i.e., there is one target entry.
TRE gives an indication of control problems, and may be more
pronounced for smaller targets. See Figure 8 for TRE scores.

Aside from the results shown in Table 2, there were significant
interaction effects between control mode and target size
(F2,30 = 13.1, p < .0001) and between selection delay and target
size (F4,60 = 18.0, p < .0001) (not given in Table 2). Evidently,
participants had a much harder time selecting the smallest targets
with velocity-control than with position-control, and also with
longer selection delays. The worst overall score resulted from the
combination of velocity-control, a 500 ms selection delay, and a
42-pixel target. TREs for this condition exceeded 20 per sequence
of 12 selections.

5.3.2 Movement Variability and Movement Error

In a perfect selection task, the cursor would move in a straight line
to the target, irrespective of the actual distance along the task axis
(the line between subsequent targets). Movement variability (MV)

Figure 8: Target re-entries by control mode, selection delay, and
target size. Lower is better. Error bars show ±1 SE.

represents this path straightness; the lower the score, the straighter
the path. Movement error (ME) is the average distance of the
motion path from the task axis, and may reflect difficulty in
maintaining an optimal path. Control mode and selection delay
had significant main effects on both MV and ME. The interaction
effects were also significant. See Table 2.

Both movement variability and error were lower with position-
control than velocity-control. Interestingly, velocity-control with
0 ms delay had the highest scores for both movement variability
and error. While this suggests participants had more difficulty
moving the ball in a straight line in this condition, reckless tilting
of the tablet may be a better explanation. This is discussed further
in the motion analysis section below. This path inefficiency is
reflected in the overall higher movement times and lower
throughput scores reported above. Conversely, position-control
with 0 ms selection delay was not significantly worse than with
other selection delays. See Figures 9 and 10.

Overall, position-control offered superior handling. Participants
had difficulty keeping the ball close to the task axis with velocity-
control, especially with the 0 ms delay. Motion path analysis (see
below and Figure 13) corroborates this result.

5.3.3 Maximum Tilt

The degree to which participants tilted the tablet was also
recorded. Note that position-control required a certain amount of
tilt, as determined by the target distance (relative to the center of
the tablet) and the tilt gain. With velocity-control, however, the
amount of tilt depends on the user’s strategy – greater tilt yields
higher ball velocity. The main effects and interaction effect of
control mode and selection delay on maximum tilt were both
statistically significant. See Table 2.

Tilt angles were significantly and substantially lower for
velocity-control than for position-control. See Figure 11.
Velocity-control with 0 ms selection delay exhibited significantly
larger tilt angles than all other delays for that control mode.

Figure 9: Movement variability by control mode and selection delay.
Error bars show ±1 SE.

Figure 10: Movement error by control mode and selection delay.
Error bars show ±1 SE.

Position-control required approximately twice as much tilt as
velocity-control. The maximum tilt for position-control across
selection delays was essentially flat. As noted above, maximum
tilt with position-control is determined more by target location
than by user strategy. Despite requiring greater degrees of tilt,
position-control also offered higher performance. This suggests
that the degree to which participants tilted the device was not
directly linked to performance. This is likely linked to the tilt gain
setting.

5.3.4 Motion Path

Figure 13 depicts typical motion paths of the ball in four
conditions (0 ms and 500 ms selection delays for both control
modes). Red dots indicate where selections occurred, and the blue
line indicates the cursor/ball motion path. Velocity-control yielded
erratic motion, with large target overshoots and corrections. This
is supported by higher MV and ME scores and overall worse
performance. Conversely, motion is fairly accurate with position-
control; this likely explains the higher overall performance.

Line thickness in Figure 13 increases with the amount of tilt
(i.e., thick lines indicate more tilt than thin lines). With position-
control (Figure 13c and d), lines are thicker farther away from the
center, as greater tilt is required to position the ball farther from
the tablet center. Conversely, for velocity-control the lines are
thinner near targets. Participants were more careful upon
approaching the target, and reduced the tablet tilt to slow the ball
movement, improving control for the feedback-guided selection.
Conversely, when moving the ball between targets, they would tilt
the tablet to greater degrees to traverse the distance more quickly.

Figure 11: Maximum tilt angle by control mode and selection delay.
Error bars show ±1 SE.

Figure 13b (velocity-control with 0 ms selection delay) shows
the most erratic motions, and are typical of the condition.
Participants would recklessly tilt the device to quickly traverse the
distance between targets. This behaviour is especially evident in
the line thickness near the center of Figure 13b. The movement
appears somewhat ballistic and frequently resulted in the ball
moving through the target, followed by a correction to adjust the
ball’s direction for the next target.

5.3.5 Subjective Questionnaire Results

Participants also completed a questionnaire, the results of which
were compared using t-tests. Position-control scored significantly
higher in all questions, see Figure 12. These results indicate that
position-control was also preferred by the study participants.

Participants also provided comments on the experimental
conditions. One participant reported that their lower arms were
more tense while using the velocity mode and that the position
mode was more relaxing. Another noted, “If I had to use velocity-
control for any real task, I would stop using that app”. These
comments help explain the difference in participant preference for
the two control modes, while underlining the measured
performance differences.

Figure 12: Survey responses and statistical reports by question.
Higher scores are more favorable. Error bars show ±1 SD.

Figure 13: Motion paths for (a) velocity-control with 500 ms delay, (b) velocity-control with 0 ms delay, (c) position-control with 500 ms delay,
and (d) position-control with 0 ms delay.

The survey also asked participants for their selection delay
preference. Eleven preferred no selection delay, four preferred a
300 ms delay, and one preferred a 400 ms delay. It is likely that
the strong preference for instantaneous selection is simply due to
the higher performance it offers. Of course, this selection mode is
not always feasible (e.g., in the presence of distracter targets)..

6 DISCUSSION AND LIMITATIONS

Our results suggest that, in applications where there is a choice,
position-control tilt input is preferred. Overall, participants
performed better with and generally preferred position-control
over velocity-control. This may be due to the higher attention
demand in the velocity-control mode, where constant visual
attention is required to adjust the ball's motion. Conversely, in
position-control, attention demand is somewhat lower as
participants can leverage proprioception without worrying that the
ball will venture off-course. This is reflected in the analyses of
motion, movement variability, and error. Attention demand
differences are also reflected in participants' assessment of higher
mental effort with velocity-control.

It is worth noting that position-control is unsuited to situations
with unbounded scrolling, for example, map or document
navigation. Position-control is thus dependent on the control
range. This can be mitigated by increasing the tilt gain or through
clutching. Of course, after a point the screen simply tilts out of a
viewable range. Velocity-control does not have this limitation.

Participants also tended to prefer shorter selection delays. Of
course, this result is contingent with the task. Typical UIs include
multiple targets yielding the possibility of selecting the wrong
target. Our study did not include distracter targets. While
performance was highest with a 0 ms delay, such a technique is
clearly impractical for real-world use. Similarly, the some
selection delays (e.g., 300 ms) may be too short to avoid
accidental selections. We plan to study this further in an
experiment that includes distracter targets.

Finally, we also acknowledge that touch-control is the
predominant control style on mobile devices. Tilt control is
typically used only in limited situations, or in conjunction with
touch. As we did not directly compare these two control styles, we
can only speculate on performance differences in selection tasks.
It is likely that touch control would offer superior performance to
tilt control for the most common interactions in mobile user
interfaces. That said, we believe that the present investigation
indicates that position-controlled tilt is worth further
consideration. It would be interesting to implement position-
control for games which commonly use velocity-control and
compare scores between these. We are also considering other
possible uses of position-control tilt, including phone dialers and
text entry. These are topics for future study, however.

7 CONCLUSIONS

We presented a study investigating important aspects of tilt-based
interaction. This study represents (to our knowledge) the first
comparison between position- and velocity-control for general
tilt-based interaction. Results indicate that although it required
greater amounts of tilt, position-control offered significantly better
performance than velocity-control and was also strongly preferred
by participants. Not only was this mode faster and yielded higher
throughput, it also offered much smoother control as indicated by
the analysis of several motion metrics.

The results also indicate that instant selection upon entering a
target (i.e., 0 ms selection delay) afforded better performance than
a delayed selection. While this is not surprising, such a selection
mode is not always practical. For example, some means of target
disambiguation is required if the cursor must cross other targets to
reach the intended target. While the selection delays studied here
suggest faster delays offer better performance, we note again that
these results must be considered in light of the fact that no actual
distracter targets were present in our study.

7.1 Future Work

The study used nominal gain settings chosen from pilot testing.
This is one obvious parameter to evaluate further in future work.
In particular, and as suggested by participants, a dynamic gain
level is worth considering.

A long term objective is to further investigate what kinds of
tasks benefit more from velocity tilt control versus position tilt
control. For example, one might consider a marble-maze style
game using position-control, and compare this to velocity-control.

ACKNOWLEDGEMENTS

Thanks to the anonymous reviewers for their helpful suggestions
on improving the paper. This work was supported by NSERC.

REFERENCES

[1] J. F. Bartlett, Rock'n'Scroll is here to stay, IEEE Computer Graphics

and Applications, 20, 2000, 40-45.

[2] K. Browne and C. Anand, An empirical evaluation of user interfaces

for a mobile video game, Journal of Entertainment Computing, 3,

2012, 1-10.

[3] P. Eslambolchilar and R. Murray-Smith, Tilt-based automatic

zooming and scaling in mobile devices – a state-space

implementation, Proceedings of Human Computer Interaction with

Mobile Devices and Services - MobileHCI 2004, (Berlin: Springer,

2004), 120-131.

[4] P. M. Fitts, The information capacity of the human motor system in

controlling the amplitude of movement, Journal of Experimental

Psychology, 47, 1954, 381-391.

[5] P. Gilbertson, P. Coulton, F. Chehimi, and T. Vajk, Using “tilt” as an

interface to control “no-button” 3-D mobile games, Computers in

Entertainment (CIE), 6, 2008, 38.

[6] B. L. Harrison, K. P. Fishkin, A. Gujar, C. Mochon, and R. Want,

Squeeze me, hold me, tilt me! An exploration of manipulative user

interfaces, Proceedings of the ACM SIGCHI Conference on Human

Factors in Computing Systems - CHI '98, (New York: ACM, 1998),

17-24.

[7] A. Henrysson, M. Billinghurst, and M. Ollila, Virtual object

manipulation using a mobile phone, Proceedings of the International

Conference on Augmented Tele-Existence - ICAT 2005, (New York:

ACM, 2005), 164-171.

[8] A. Henrysson, J. Marshall, and M. Billinghurst, Experiments in 3D

interaction for mobile phone AR, Proceedings of the ACM

Conference on Computer Graphics and Interactive Techniques in

Australia and Southeast Asia - GRAPHITE 2007, (New York: ACM,

2007), 187 - 194.

[9] K. Hinckley, J. Pierce, M. Sinclair, and E. Horvitz, Sensing

techniques for mobile interaction, Proceedings of the ACM

Symposium on User Interface Software and Technology - UIST

2000, (New York: ACM, 2000), 91-100.

[10] W. Hürst and C. van Wezel, Gesture-based interaction via finger

tracking for mobile augmented reality, Multimedia Tools and

Applications, 62, 2013, 233-258.

[11] T. Hynninen, First-person shooter controls on touchscreen devices:

A heuristic evaluation of three games on the iPod touch, M.Sc.

Thesis,Department of Computer Sciences, University of Tampere,

Tampere, Finland, 2012, 64 pages.

[12] ISO, ISO 9241-9 Ergonomic requirements for office work with

visual display terminals (VDTs) - Part 9: Requirements for non-

keyboard input devices: International Standard, International

Organization for Standardization, 2000.

[13] E. Jones, J. Alexander, A. Andreou, P. Irani, and S. Subramanian,

GesText: Accelerometer-based gestural text-entry systems,

Proceedings of the ACM SIGCHI Conference on Human Factors in

Computing Systems - CHI 2010, (New York: ACM, 2010), 2173-

2182.

[14] W. S. Kim, F. Tendick, S. R. Ellis, and L. W. Stark, A comparison of

position and rate control for telemanipulations with consideration of

manipulator system dynamics, IEEE Journal of Robotics and

Automation, 3, 1987, 426-436.

[15] I. S. MacKenzie and P. Isokoski, Fitts' throughput and the speed-

accuracy tradeoff, Proceedings of the ACM SIGCHI Conference on

Human Factors in Computing Systems - CHI 2008, (New York:

ACM, 2008), 1633-1636.

[16] I. S. MacKenzie, T. Kauppinen, and M. Silfverberg, Accuracy

measures for evaluating computer pointing devices, Proceedings of

the ACM SIGCHI Conference on Human Factors in Computing

Systems - CHI 2001, (ACM, 2001), 9 - 16.

[17] I. S. MacKenzie and R. J. Teather, FittsTilt: The application of Fitts'

law to tilt-based interaction, Proceedings of the 7th Nordic

Conference on Human-Computer Interaction - NordiCHI 2012,

(New York: ACM, 2012), 568-577.

[18] S. Medryk and I. S. MacKenzie, A comparison of accelerometer and

touch-based input for mobile gaming, International Conference on

Multimedia and Human-Computer Interaction - MHCI 2013,

(Ottawa, Canada: International ASET, 2013), 117.1-117.8.

[19] I. Oakley and S. O'Modhrain, Tilt to scroll: Evaluating a motion

based vibrotactile mobile interface, Eurohaptics Conference and

Symposium on Haptic Interfaces for Virtual Environment and

Teleoperator Systems, (New York: IEEE, 2005), 40-49.

[20] K. Partridge, S. Chatterjee, V. Sazawal, G. Borriello, and R. Want,

TiltType: Accelerometer-supported text entry for very small devices,

Proceedings of the ACM Symposium on User Interface Software and

Technology - UIST 2002, (New York: ACM, 2002), 201-204.

[21] J. Rekimoto, Tilting operations for small screen interfaces,

Proceedings of the ACM Symposium on User Interface Software and

Technology - UIST '96, (New York: ACM, 1996), 167-168.

[22] H. H. Sad and F. Poirier, Evaluation and modeling of user

performance for pointing and scrolling tasks on handheld devices

using tilt sensor, Advances in Computer-Human Interactions - ACHI

2009. (New York: IEEE, 2009), 295-300.

[23] V. Sazawal, R. Want, and G. Borriello, The Unigesture approach:

One-handed text entry for small devices, Proceedings of Human

Computer Interaction With Mobile Devices - MobileHCI 2002,

(Berlin: Springer, 2002), 256-270.

[24] D. Small and H. Ishii, Design of spatially aware graspable displays,

Extended Abstracts of the ACM SIGCHI Conference on Human

Factors in Computing Systems - CHI '97, (New York: ACM, 1997),

367-368.

[25] R. W. Soukoreff and I. S. MacKenzie, Towards a standard for

pointing device evaluation: Perspectives on 27 years of Fitts' law

research in HCI, International Journal of Human-Computer Studies,

61, 2004, 751-789.

[26] L. Valente, C. Sieckenius de Souza, and B. Feijo, Turn off the

graphics: Designing non-visual interfaces for mobile phone games,

Journal of the Brazilian Computer Society, 15, 2009, 45-58.

[27] J. Wang, S. Zhai, and J. Canny, Camera phone based motion

sensing: Interaction techniques, applications and performance study,

Proceedings of the ACM Symposium on User Interface Software and

Technology - UIST 2006, (New York: ACM, 2006), 101-110.

[28] D. Wigdor and R. Balakrishnan, TiltText: Using tilt for text input to

mobile phones, Proceedings of the ACM Symposium on User

Interface Software and Technology - UIST 2003, (New York: ACM,

2003), 81-90.

[29] L. Zaman and I. S. MacKenzie, Evaluation of nano-stick, foam

buttons, and other input methods for gameplay on touchscreen

phones, International Conference on Multimedia and Human-

Computer Interaction - MHCI 2013, (Ottawa, Canada: International

ASET, 2013), 69.1-69.8.

[30] L. Zaman, D. Natapov, and R. J. Teather, Touchscreens vs.

traditional controllers in handheld gaming, Proceedings of the

International Academic Conference on the Future of Game Design

and Technology - FuturePlay 2010, (New York: ACM, 2010), 183-

190.

