# Examples of Solving Knapsack Problem Using Dynamic Programming <br> AdvOL @McMaster, http://optlab.mcmaster.ca <br> February 22, 2009. 

1. Consider the following knapsack problem:

$$
\begin{array}{ll}
\max & x_{1}+4 x_{2}+3 x_{3} \\
& x_{1}+3 x_{2}+2 x_{3} \leq 4
\end{array}
$$

Solve the problem for $x_{i} \in\{0,1\}$ using dynamic programming.

Solution. Let $V=[1,4,3]$ and $W=[1,3,2]$ be the array of weights and values of the 3 items respectively. Make a table representing a 2 -dimensional array $A$ of size $3 \times 4$. Element $A[i, j](i=1, \ldots, 3, j=1, \ldots, 4)$ stores the maximal value of items from the set \{item 1 , item $2, \ldots$, item $i\}$ that can be put into a knapsack with capacity $j . A[1, i]$ for all $i$ can be easily filled in. The remaining elements in the table can be calculated in the following way:

$$
A[i, j]= \begin{cases}A[i-1, j] & \text { if } W[i]>j \\ \max \{A[i-1, j], V[i]+A[i-1, j-W[i]]\} & \text { otherwise }\end{cases}
$$

The table is shown below:

|  | $j=1$ | 2 | 3 | 4 |
| ---: | ---: | ---: | ---: | ---: |
| $i=1$ | 1 | 1 | 1 | 1 |
| 2 | 1 | 1 | 4 | 5 |
| 3 | 1 | 3 | 4 | 5 |

The final solution is stored in $A[3,4]$, i.e., the maximum value obtained is 5 (by choosing item 1 and 2).
2. Consider the following knapsack problem:

$$
\begin{aligned}
& \max \quad 0.5 x_{1}+4 x_{2}+3 x_{3} \\
& \\
& \\
& x_{1}+3 x_{2}+2 x_{3} \leq 5
\end{aligned}
$$

Solve the problem for $x_{i} \in Z_{+}$(non-negative integers: $0,1,2,3, \ldots$ ) using dynamic programming.

Solution. The solution is very similar to the previous one except the way the elements of $A$ are updated:

$$
A[i, j]= \begin{cases}A[i-1, j] & \text { if } W[i]>j \\ \max \{A[i-1, j], k V[i]+A[i-1, j-k W[i]]\} & \\ \quad \text { where } k=1, \ldots,\left\lfloor\frac{j}{W[i]}\right\rfloor & \text { otherwise. }\end{cases}
$$

The table is shown below:

|  | $j=1$ | 2 | 3 | 4 | 5 |
| ---: | ---: | ---: | ---: | ---: | ---: |
| $i=1$ | 0.5 | 1 | 1.5 | 2 | 2.5 |
| 2 | 0.5 | 1 | 4 | 4.5 | 5 |
| 3 | 0.5 | 3 | 4 | 6 | 7 |

So the maximum value obtained is 7 (by choosing one item 2 and one item 3 ).

