
Tutorial 5 - Feb 11
Advanced SQL and Indexing

Agenda

• Aggregation Function

• Group by/ Having/ Joins/Views

• Indexes

• Questions

Aggregation Functions
• Max, Sum, Count, Min, Avg

• Used with a select clause on a particular attribute

select max(grade)

from student

where id = ‘234’;

Aggregation functions

select avg(age)

from student

where grade >= 11;

Having Clause

Select * from Student

group by age,

Having max(age)> 22 ;

Group by

• The Group by clause can be used to collect data
across multiple records and group the results by
one or more columns.

• It can be used with a Select- From- Where format
query.

• Often used with Aggregation and Having queries

Group By
• select name, id

• from student

• where id IN (‘234’, ‘456’, ‘567’, ‘678’,’789’)

• AND name Like ‘A%’

• group by name;

Order By
• To get the data in a particular column in a sorted

manner order by is used

• You can sort in ascending or descending using the
syntaxes as follows:

• order by asc;

• order by desc;

Views
• Views are tables created which are generally used to

obtain and view intermediary results.

• Views are very helpful while working on large sets of data
involving multiple transformations before obtaining the
final output.

• Syntax for Views are :
Create VIEW Stud AS

 Select name
 From Student
 Where id =‘234’;

Views
• There may be cases where you may not want

another user to see your data. A view can be used
in such an instance.

• The view provides a mechanism to hide certain
data from other users.

• Treat a view as a normal table while querying from
it.

Views
• Example of querying from views:

Select Name From Stud

Where id =‘234’;

This will return the result from the view as long as the view still
exists.

There are two types of views:

• Materialized

• Virtual

Inner Joins

• St

NAME ID Address Grade

Ron 123 12, broadway 10

James 234 32,emerson 11

Andy 345 45, leland 12

Lester 456 56, westdale 10

ID Salary Age

123 4000 34

234 2000 23

345 8000 45

456 5500 20

Student TA

Inner Joins

SELECT name, address, age,salary

FROM student

INNER JOIN TA

ON Student.ID = TA.TID;

Inner Joins
NAME ID Address Age

Ron 123 12, broadway 34

James 234 32,emerson 23

Priya 345 45, leland 45

Lester 456 56, westdale 20

Salary

4000

2000

8000

5500

Outer Joins
• There are 3 types of outer joins

• Left

• Right

• Full

• What are the “left” and “right” tables? The “left”
table is simply the table that comes first in the join
statement

Outer Joins
• The outer join on its on is considered as a natural

outer join

• The left outer join is when all the contents from the
left table is kept as is and the right table is joined to
it.

• The vice-versa happens for the right outer join.

• The full outer join returns all the values from both
the left and right tables.

Left Outer Joins
A
B
C
D

A
B
C
E

A
B
C
D

Left Outer
Join

Right Outer Join
A
B
C
D

A
B
C
E

A
B
C
E

Right Outer
Join

Full outer Join
A
B
C
D

A
B
C
E

A
B
C
D
E

Full Outer
Join

Indexing

• Indexes are data structures used to increase the
speed of accessing the tuples.

• It searches the attributes by the value specified.

• Records are organized by trees or hashing.

Index

• Syntax:

CREATE INDEX Student ON TA(id);

CREATE INDEX Student ON TA(name,

id);

Where not to use indexes?
• Indexes should not be used on small tables.

• Tables that have frequent, large batch update or insert operations.

• Indexes should not be used on columns that contain a high
number of NULL values.

• Columns that are frequently manipulated should not be indexed.

Types of Index
• Clustered vs Unclustered Index

• Primary vs Secondary Index: If search key contains
primary key, then called primary index.

Credit : Dr. Fei Chiang

Balanced vs Unbalanced
Trees

• Every leaf node in every path is at the same distance
from the root node.

Credit: www.stoimen.com

http://www.stoimen.com

Hash Indexes
• Indexes are collected in buckets.

• Hashing Function h(r):

• h(r) = bucket in which (data

• entry for) record r belongs. h looks at the search

• key fields of r.

Questions?

Thank You!

ITB 223, 3-4 pm Thursdays
No tutorials or TA hours for reading week

You can always mail for queries at:
viswaa2@mcmaster.ca

mailto:viswaa2@mcmaster.ca

