CS3DB3/SE4DB3/SE6DB3 TUTORIAL

Xiao Jiao Wang
Feb 25, 2015

Relational Algebra

\square IMPORTANT: relational engines work on bags, no set !!!

Union, intersection, and difference

\square Union: U Intersection: \cap
Difference: -
\square Note: Both operands must have the same relation schema.
\square Example 1

	Product		
	Name	Unit	price
:---:			
$\mathbf{R :}$			

R-S

Product Name	Unit price
Melon	800 G

Selection and projection

\square Selection: $\sigma_{c}(R)$

- Picking all tuples of R that satisfy C.
$\square \mathrm{C}$ is a condition that refers to attributes of R .
\square Projection: $\pi_{L}(R)$
$\square \quad \mathrm{L}$ is a list of attributes from the schema of R.
- Constructed by looking at each tuple of R.
- Schema of result contains exactly the fields in the projection list, with the same names that they had in relation R.
- Example 2

R:	Sname	Rating
Yuppy	9	
Lubber	8	
	Guppy	5
Rusty	10	

$\pi_{\text {name, rating }}\left(\sigma_{\text {rating }}>8(R)\right)$

Yuppy 9
Rusty 10

Renaming and Product

\square Products and joins: compositions of relations.
\square Renaming: $\rho_{R 1(A 1, \ldots, A n)}(R 2)$
\square Gives a new schema to a relation.
\square Makes R1 be a relation with attributes A1, ... , An and the same tuples as R2.

- Product: R3:=R1 \times R2
\square Also called cross-product or Cartesian product.
\square Pair each tuple t1 of R1 with each tuple t2 of R2 and concatenation t1 t2 is a tuple of R3.
- \# of tuples in R3 = (\# of tuples in R1)×(\# of tuples in R2)
\square Schema of R3 is the attributes of R1 and then R2, in order.
\square Beware: R1 and R2 have the common attribute A
- In relational algebra, use renaming to distinguish.

Renaming and Product (Cont.)

- Example 3

R 1	Name	Price
(2 tuples)	Melon	800 G
	Apple	120 G

$\mathbf{R 1} \times \mathbf{R 2}$ (2*3=6 tuples)	Name	Price	Fruit	Place	Schema: the attributes of R1 and then R2, in order.
	Melon	800G	Melon	Canada	
	Melon	800G	Lemon	Spain	
	Melon	800G	Apple	France	R1 and R2 have no common attributes.
	Apple	120G	Melon	Canada	
	Apple	120G	Lemon	Spain	
	Apple	120G	Apple	France	

Renaming and Product (Cont.)

- Example 4

R 1	Name	Price
(2 tuples)	Melon	800G
	Apple	$120 G$

R1 \times R2 (2*3=6 tuples)	R1.Name Price R2.Name			Place
	Melon	800G	Melon	Canada
	Melon	800G	Lemon	Spain
	Melon	800G	Apple	France
	Apple	120G	Melon	Canada
	Apple	120G	Lemon	Spain
	Apple	120G	Apple	France

R1 and R2 have a common attribute.

Theta-Join

\square Theta-Join: R3:=R1 \bowtie_{c} R2

- Take the product R1 \times R2.
\square Then apply σ_{c} to the result.
- Example 5

R1 $\bowtie_{\text {Name=Fruit }} R 2$

Name	Price	Fruit	Place
Melon	$800 G$	Melon	Canada
Apple	$120 G$	Apple	France

Theta-Join (Cont.)

- Example 5

				Name	Place
R1	Name	Price		R2	Melon
Melon	Canada				
	Apple	1200 G			Lemon
			Spain		

R1 $\bowtie_{\text {R1.Name=R2.Name }}$ R2

R1.Name	Price	R2.Name	Place
Melon	800 G	Melon	Canada
Apple	120 G	Apple	France

Natural Join

\square Natural Join: R3:=R1 \triangle R2

- Connects two relations by:
- Equating attributes of the same name, and
- Projecting out one copy of each pair of equated attributes.

	Example 6	
	Name	Price
R1	Melon	800G
	Apple	120 G

	Name	Place
R2	Melon	Canada
	Lemon	Spain
	Apple	France

$R 1 \bowtie R 2$

Name	Price	Place
Melon	800 G	Canada
Apple	120 G	France

There are $\mathbf{3}$ columns.

Precedence of relational operators

$\square[\sigma, \pi, \rho]$ (highest)
$\square[\times, \bowtie]$
$\square \cap$
$\square[\cup,-]$

Duplicate Elimination and Sorting

- Duplicate elimination: $\delta(\mathrm{R})$
- Recall: relational engines work on bags.
- Consists of one copy of each tuple that appears in R2 one or more times.
- SQL: SELECT DISTINCT ...
\square Sorting: $\tau_{L}(R)$
$\square \mathrm{L}$ is a list of some of the attributes of R2.
\square Sorted first on the value of the first attribute on L, then on the second attributes of L, and so on.

Grouping and Aggregation

\square Grouping and Aggregation : $\gamma_{\mathrm{L}}(\mathrm{R})$
$\square \mathrm{L}$ is a list of elements that are either

- Grouping attributes
- AGG(A), where AGG is one of the aggregation operators such as SUM, AVG,COUNT, MIN, MAX and A is an attribute.
- An arrow and a new attribute name renames the component
\square Example: $\gamma_{\mathrm{A}, \mathrm{B}, \mathrm{AVG}(\mathrm{C}) \rightarrow \mathrm{X}}(\mathrm{R})$

SQL and relational algebra

\square SELECT A1, A2, ..., An

FROM R1, R2, ..., Rm WHERE P
is equivalent to the multiset relational algebra expression

Don't forget the parenthesis since σ has a higher Precedence than $[x, \bowtie$]
$\prod_{A 1, A 2, \cdots, A n}\left(\sigma_{P}(R 1 \times R 2 \times \cdots \times R m)\right)$

SQL and relational algebra (Cont.)

\square Example 1 Takes (id, course id, semester, year, grade)
Teaches(name, course id, semester, year)
\square Find the IDs of all courses who were taught by an instructor named Jones.

- SQL
- SELECT Teaches.course_id

FROM Takes, Teaches
WHERE name = ‘Jones’ AND Takes.course_id = Teaches.course_id;

- Relation algebra
- WAY 1: $\Pi_{\text {course_id }}\left(\sigma_{\text {name=‘Jones }}\right.$, (Takes \bowtie Teaches)) common attribute

■ WAY 2: $\quad \Pi_{\text {Teaches.course_id }}\left(\sigma_{\text {name=‘Jones }},\left(\right.\right.$ Takes $\bowtie_{\text {Takes.course_id = Teaches.course_id }}$ Teaches $\left.)\right)$

- WAY 3: $\Pi_{\text {Teaches.course_id }}\left(\sigma_{\text {name=‘Jones' }} \wedge\right.$ Takes.course_id = Teaches.course_id $($ Takes \times Teaches $\left.)\right)$

SQL and relational algebra (Cont.)

\square Example 2
\square Works (pname, cname, salary)
\square Find the names of all employees who earn more than every employee of "First Bank".SQL
SELECT pname
FROM Works
WHERE salary >ALL (SELECT salary
FROM Works
WHERE cname= 'First Bank');

- Relational algebra
Assignment:

$$
\text { Result }:=\Pi_{\text {pname }}(\text { Works })-R 1
$$

SQL and relational algebra (Cont.)

\square SELECT A1, A2, AGG(A3) AS AGG3
FROM R1, R2,..., Rm
WHERE P
GROUP BY A1, A2

- Is equivalent to the multiset relational algebra expression $\gamma_{\mathrm{A} 1, \mathrm{~A} 2, \mathrm{AGG}(\mathrm{A} 3) \rightarrow \mathrm{AGG} 3}\left(\sigma_{\mathrm{P}}(\mathrm{R} 1 \times \mathrm{R} 2 \times \ldots \times \mathrm{Rm})\right)$
\square If only display attribute A 1 and AGG3, then $\Pi_{\text {A1,AGG3 }}\left(\gamma_{\text {A1,A2,AGG(A3) } \rightarrow \text { AGG3 }}\left(\sigma_{\mathbf{P}}(\mathbf{R} 1 \times \mathbf{R} 2 \times \ldots \times \mathbf{R m})\right)\right)$

SQL and relational algebra (Cont.)

\square Example 3
\square Takes (student id, course id, semester, year, grade)

- Find the enrollment of each course that was offered in Fall 2009.
- SQL

SELECT course_id, count(*) as enrollment FROM Takes
WHERE year=2009 AND semester='Fall'
GROUP BY course_id;

- Relational Algebra
$\gamma_{\text {course_id, }}$ count $(*) \rightarrow$ enrollment $\left(\sigma_{\text {year }} 2009 \wedge\right.$ semester=${ }^{6}$ Fall" $($ Takes $\left.)\right)$

SQL and relational algebra (Cont.)

- Example 4
\square Takes (student id, course id, semester, year, grade)
\square Find the maximum enrollment in Fall 2009.
\square SQL

$$
\begin{aligned}
& \text { SELECT MAX(enrollment) } \\
& \text { FROM (SELECT course_id, count(*) as enrollment } \\
& \text { FROM Takes } \\
& \text { WHERE year=2009 AND semester='Fall' } \\
& \text { GROUP BY course_id); }
\end{aligned}
$$

\square Relational Algebra
$\mathrm{R}:=\gamma_{\text {course_id, }}$ count(*) \rightarrow enrollment $\left(\sigma_{\text {year=2009 } \wedge \text { semester="Fall" }}\right.$ (Takes)) Result: $=\gamma_{\max (\text { enrollment })}(\mathbf{R})$

