Slater points and Lagrange/Wolfe duals

1 Slater point and Ideal Slater point

- Consider a convex problem with two constraints (1) $x_{1} \leq 0$ and (2) $x_{1}^{2}+x_{2}^{2} \leq 1$. Both of them are regular constraints, one linear and the other nonlinear. Point $(0,0)^{T}$ is a Slater point of this problem, while it's not an Ideal Slater point.
- Consider a convex problem with two constraints (1) $x_{1} \leq-0.5$ and (2) $x_{1}^{2}+x_{2}^{2} \leq 1$. Both of them are nonsingular constraints, one linear and the other nonlinear. Point $(-0.6,0)^{T}$ is an Ideal Slater point of this problem (it is a Slater point as well).

2 Verification of the Slater condition

Check whether the following problem satisfies Slater condition:

$$
\begin{array}{cl}
\min _{x} & f(x)=x^{2} \\
\text { s.t. } & g_{1}(x)=x-x^{2} \geq 0 \tag{1}\\
& g_{2}(x)=x^{2} \leq 0 \\
& x \geq 0
\end{array}
$$

Actually, there is only one feasible point $x=0$, meaning all constraints are singular. However, constraint $g_{2}(x) \leq 0$ is nonlinear, which means that there is no point which satisfies Slater condition for this problem.

3 Wolfe and Lagrange Dual

Consider the following convex optimization problem:

$$
\begin{aligned}
& \min x_{1}+e^{x_{2}} \\
& \text { s.t. } \quad 3 x_{1}-2 e^{x_{2}} \geq 10 \\
& x_{2} \geq 0 \\
& x \in \mathbb{R}^{2} \text {. }
\end{aligned}
$$

Write down the Wolfe dual and Lagrange dual of this problem and show that the optimal value is 5 with $x=(4,0)^{T}$. Note that the Slater condition holds for this example.

Solution:

Wolfe dual: The Wolfe dual is given by

$$
\begin{aligned}
& \sup f(x)+\sum_{j=1}^{m} y_{j} g_{j}(x) \\
& \text { s.t. } \nabla f(x)+\sum_{j=1}^{m} y_{j} \nabla g_{j}(x)=0 \\
& y \geq 0 .
\end{aligned}
$$

which in our case become

$$
\begin{array}{cc}
\sup & x_{1}+e^{x_{2}}+y_{1}\left(10-3 x_{1}+2 e^{x_{2}}\right)-y_{2} x_{2} \\
\text { s.t. } & 1-3 y_{1}=0 \\
& e^{x_{2}}+2 e^{x_{2}} y_{1}-y_{2}=0 \\
x \in \mathbb{R}^{2}, y \geq 0 .
\end{array}
$$

Wolfe dual is a non-convex problem. The first constraint gives $y_{1}=\frac{1}{3}$, and thus the second constraint becomes

$$
\frac{5}{3} e^{x_{2}}-y_{2}=0 .
$$

Now, we can eliminate y_{1} and y_{2} from the objective function. We get the function

$$
f\left(x_{1}, x_{2}\right)=x_{1}-x_{1}+\frac{5}{3} e^{x_{2}}-\frac{5}{3} x_{2} e^{x_{2}}+\frac{10}{3} \Longrightarrow f\left(x_{2}\right)=\frac{5}{3} e^{x_{2}}-\frac{5}{3} x_{2} e^{x_{2}}+\frac{10}{3} .
$$

This function has a maximum when

$$
f^{\prime}\left(x_{2}\right)=-\frac{5}{3} x_{2} e^{x_{2}}=0,
$$

which is only true when $x_{2}=0$ and $f(0)=5$. Hence the optimal value of the Wolfe dual problem is 5 when $(x, y)=\left(4,0, \frac{1}{3}, \frac{5}{3}\right)$.

Lagrange dual: We can double check this answer by using the Lagrange dual:

$$
\begin{array}{cl}
\text { sup } & \psi(y) \\
\text { s.t. } & y \geq 0,
\end{array}
$$

where $\psi(y)=\inf _{x}\left\{f(x)+\sum_{j=1}^{m} y_{j} g_{j}(x)\right\}$.
So,

$$
\begin{aligned}
\psi(y) & =\inf _{x \in \mathbb{R}^{2}}\left\{x_{1}+e^{x_{2}}+y_{1}\left(10-3 x_{1}+2 e^{x_{2}}\right)-y_{2} x_{2}\right\} \\
& =\inf _{x_{1} \in \mathbb{R}}\left\{x_{1}-3 y_{1} x_{1}\right\}+\inf _{x_{2} \in \mathbb{R}}\left\{\left(1+2 y_{1}\right) e^{x_{2}}-y_{2} x_{2}\right\}+10 y_{1} .
\end{aligned}
$$

We have

$$
\inf _{x_{1} \in \mathbb{R}}\left\{x_{1}-3 y_{1} x_{1}\right\}= \begin{cases}0 & \text { for } y_{1}=\frac{1}{3} \\ -\infty & \text { otherwise. }\end{cases}
$$

Now, for fixed y_{1}, y_{2} let

$$
h\left(x_{2}\right)=\left(1+2 y_{1}\right) e^{x_{2}}-y_{2} x_{2} .
$$

Then h has a minimum when

$$
h^{\prime}\left(x_{2}\right)=\left(1+2 y_{1}\right) e^{x_{2}}-y_{2},
$$

i.e., when $x_{2}=\log \left(\frac{y_{2}}{1+2 y_{1}}\right)$. Further, $h\left(x_{2}\right)=h\left(\log \left(\frac{y_{2}}{1+2 y_{1}}\right)\right)=y_{2}-y_{2} \log \left(\frac{y_{2}}{1+2 y_{1}}\right)$. Hence, we have

$$
\inf _{x_{2} \in \mathbb{R}}\left\{\left(1+2 y_{1}\right) e^{x_{2}}-y_{2} x_{2}\right\}=y_{2}-y_{2} \log \left(\frac{y_{2}}{1+2 y_{1}}\right)
$$

Thus, the Lagrange dual becomes

$$
\begin{array}{ll}
\text { sup } & \psi(y)=10 y_{1}+y_{2}-y_{2} \log \left(\frac{y_{2}}{1+2 y_{1}}\right) \\
\text { s.t. } & y_{1}=\frac{1}{3} \\
& y_{2} \geq 0 .
\end{array}
$$

Now we have

$$
\frac{d}{d y_{2}} \psi\left(\frac{1}{3}, y_{2}\right)=\log \left(\frac{3 y_{2}}{5}\right)=0
$$

when $y_{2}=\frac{5}{3}$ and $\psi\left(\frac{1}{3}, \frac{5}{3}\right)=5$.

