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Consider the following unconstrained optimization problem

min f(x)

x ∈ R

Any optimization algorithm starts by an initial point x0 and performs series of iterations to reach
the optimal point x∗. At any kth iteration the next point is given by the sum of old point and the
direction in which to search of a next point multiplied by how far to go in that direction. Thus

xk+1 = xk + αkdk

here dk is a search direction and αk is a positive scalar determining how far to go in that direction.
It is called as the step length. Additionally, the new point must be such that the function value (the
function which we are optimizing) at that point should be less than or equal to the previous point.
This is quite obvious because if we are moving in a different direction where the function value is
increasing we are not really moving towards the minimum. Thus,

f(xk+1) ≤ f(xk)

f(xk + αkdk) ≤ f(xk)

The general optimization algorithm begins with an initial point, finds a descent search direction,
determines the step length and checks the termination criteria. So, when we are trying to find the
step length, we already know that the direction in which we are going is descent. So, ideally we want
to go far enough so that the function reaches its minimum. Thus, given the previous point and a
descent search direction, we are trying to find a scalar step length such that the value of the function
is minimum in that direction. In its mathematical form we may write,

min
α≥0

f(x+ αd)

Since, x and d are known, this problem reduces to a univariate, 1−D, minimization problem.Assuming
that f is smooth and continuous, we find its optimum where its first-derivative is zero, i.e. ∇f(x +
αd) = 0. All we are doing is trying to find zero of a function (i.e. the point where the curves intersects
the x−axis). We will visit some known and some newer zero-finding (or root-finding) techniques.

When, the dimensionality of the problem or the degree of equation increases finding an exact
zero is difficult. Usually, we are looking for an interval 0 ∈ [a, b] so that |a − b| < ε, where ε is an
acceptable tolerance.

1 Bisection Method

In bisection method we reduce begin with an interval so that 0 ∈ [a, b] and divide the interval in two
halves,i.e. [a, a+b

2
] and [a+b

2
, b]. A next search interval is chosen by comparing and finding which one

has zero. This is done by evaluating the sign. The algorithm for this is given as follows: Choose a, b
so that f(a)f(b) < 0

1. m = a+b
2
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1.1 Features of bisection 1 BISECTION METHOD

2. f(m) = 0 Stop and return.

3. f(m)f(a) < 0; b = m

4. f(m)f(b) < 0; a = m

5. |a− b| < ε stop and return.

1.1 Features of bisection

• Guaranteed Convergence.

• Slow as it has linear convergence with β = 0.5.

• At the kth iteration |b−a|
2k

= ε giving total evaluations as k = log( |b−a|
2

)

1.2 Example

Converging f(x) = x
1+x2

with [a, b] = [−0.6, 0.75] and ε = 10−4 .

Number a f(a) b f(b) m f(m)
1 -0.6 -0.441176 0.75 0.48 0.075 0.07458
2 -0.6 -0.441176 0.075 0.07458 -0.2625 -0.245578
3 -0.2625 -0.245578 0.075 0.07458 -0.09375 -0.092933
4 -0.09375 -0.092933 0.075 0.07458 -0.009375 -0.009374
5 -0.009375 -0.009374 0.075 0.07458 0.032813 0.032777
6 -0.009375 -0.009374 0.032813 0.032777 0.011719 0.011717
7 -0.009375 -0.009374 0.011719 0.011717 0.001172 0.001172
8 -0.009375 -0.009374 0.001172 0.001172 -0.004102 -0.004101
9 -0.004102 -0.004101 0.001172 0.001172 -0.001465 -0.001465
10 -0.001465 -0.001465 0.001172 0.001172 -0.000146 -0.000146
11 -0.000146 -0.000146 0.001172 0.001172 0.000513 0.000513
12 -0.000146 -0.000146 0.000513 0.000513 0.000183 0.000183
13 -0.000146 -0.000146 0.000183 0.000183 0.000018 0.000018
14 -0.000146 -0.000146 0.000018 0.000018 -0.000064 -0.000064

Figure 1: The bisection method

If the function is smooth and continuous, the speed of convergence can be improved by using the
derivative information
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2 NEWTON’S METHOD

2 Newton’s Method

In Newton’s method does a linear approximation of the function and finding the x-intercept of that
approximation, thereby improving the performance of the bisection method. Linear approximation
can be done by using Taylor’s series.

f ′(xk+1) = f(xk) + f ′(xk)(xk+1 − xk)
f ′(xk+1) = 0

xk+1 = xk −
f(xk)

f ′(xk)

2.1 Features of Newton’s method

• Newton’s method has a quadratic convergence when the chosen point is close enough to zero.
If the derivative is zero at the root, it has only local quadratic convergence.

• Numerical difficulties occur when the first-derivative is zero.

• If a poor starting point is chosen the method may fail to converge or diverge.

• If it is difficult to find analytical derivation, secant method may be used.

For a smooth, continuous function when proper starting point is chosen, Newton’s method can be
real fast. The convergence of f(x) = x

1+x2
with x0 = 0.5 and ε = 10−4 .

X f(x)
1 0.5
2 -0.333333
3 0.083333
4 -0.001166
5 0

Figure 2: Newton’s method converging with x0 = 0.5

The divergence of f(x) = x
1+x2

with x0 = 0.75 and ε = 10−4 .
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3 SECANT METHOD

1 0.75
2 -1.928571
3 -5.275529
4 -10.944297
5 -22.072876
6 -44.236547
...

...
20 -725265.55757

Figure 3: Newton’s method diverging with x0 = 0.75

Newton’s method to find the minimum uses the first derivative of the approximation an equalling it
to zero.

f ′(xk+1) = f(xk) + f ′(xk)(xk+1 − xk)
f ′′(xk+1) = f ′(xk) + f ′′(xk)(xk+1 − xk)
f ′′(xk+1) = 0

xk+1 = xk −
f ′(xk)

f ′′(xk)

3 Secant Method

When f ′ is expensive or cumbersome to calculate, one can use secant’s method to approximate the
derivative. The derivation of this method comes by replacing first derivative in the newton’s method
by its approximation (finite differentiation), i.e f ′(xk) = fk−fk−1

xk−xk−1
, where fk = f(xk)

xk+1 = xk −
xk − xk−1
fk − fk−1

fk

Just like Newton’s method the secant’s method to find the minimum is given by:

xk+1 = xk −
xk − xk−1
f ′k − f ′k−1

f ′k

Convergence of secant method is super-linear with β = 1.618. The table below shows the secant
method convergence for f = x

1+x2
with -0.6 and 0.75 as initial points
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4 GOLDEN SECTION METHOD

Number xk−1 xk f(xk−1) f(xk)
1 -0.6 0.75 -0.441176 0.48
2 0.75 0.046552 0.48 0.046451
3 0.046552 -0.028817 0.046451 -0.028793
4 -0.028817 0.000024 -0.028793 0.000024

Figure 4: Secant’s method converging with x0 = −0.6;x1 = 0.75

4 Golden Section Method

The table below shows the Golden Section method convergence for f = x
1+x2

with -0.6 and 0.75 as
initial points

Number a b f(a) f(b)
0 -0.6 0.75 -0.08375 0.222146
1 -0.6 0.234346 -0.441176 0.222146
2 -0.6 -0.084346 -0.441176 -0.08375
3 -0.6 -0.281308 -0.441176 -0.26068
...

...
...

...
...

20 -0.6 -0.599911 -0.441176 -0.441146

xmin = −0.599966 f(xmin) = −0.441165

4.1 Another example for golden-section

Consider the function:

f(x1, x2) = (x2 − x21)2 + ex
2
1

You are at the point (0,1).Find the minimum of the function in the direction (line) (1, 2)T using
the Golden-Section line-search algorithm on the step-length interval [0, 1]. Stop when the length of
the interval is less than 0.2. Note: step-length interval could be described by the parameter t, and,
so, all the points along the direction (1, 2)T can be expressed as (0, 1) + t · (1, 2).
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4.1 Another example for golden-section 4 GOLDEN SECTION METHOD

Figure 5: Golden Section method converging for f = x
1+x2

with a = −0.6; b = 0.75

The equation to find new point is defined as:
xk+1 = xk + αkdk
Here, dk = (1, 2) and x0 = (0, 1)

In the initial step length interval [0, 1], let α1 = 0.618 and α2 = 0.382. Thus,
x1 = (0, 1)T + 0.382(1, 2)T = (0.382, 1.764)T ; f(x1) = 3.7753
x2 = (0, 1)T + 0.618(1, 2)T = (0.618, 2.236)T ; f(x2) = 4.9027

Since f(x1) < f(x2), the new step-length interval is [0, 0.618]
α3 = 0.618 ∗ 0.382 = 0.2361
x3 = (0, 1)T + 0.2361(1, 2)T = (0.2361, 1.4722)T ; f(x3) = 3.0637

The new step-length interval is [0, 0.382]
Using the Golden Section search method, the new step length is α4 = 0.382 ∗ 0.382 = 0.1459 
x4 = (0, 1)T + 0.1459(1, 2)T = (0.1459, 1.2918)T ; f(x4) = 2.6357

The new step-length interval is [0, 0.2361]
α5 = 0.382 ∗ 0.2361 = 0.0902
x5 = (0, 1)T + 0.0902(1, 2)T = (0.0902, 1.1804)T ; f(x5) = 2.3824

The new step-length interval is [0, 0.1459]
α6 = 0.382 ∗ 0.1459 = 0.0557
x6 = (0, 1)T + 0.0557(1, 2)T = (0.0557, 1.1114)T ; f(x6) = 2.2314
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Step-length Interval αi = αi−1 ∗ 0.618 x1 x2 f(x1, x2) = (x2 − x21)2 + ex
2
1

[0, .0557] 0.0344 0.0344 1.0688 2.1410
[0, .0344] 0.0213 0.0213 1.0426 2.0865
[0, .0213] 0.0132 0.0132 1.0264 2.0533
[0, .0132] 0.0081 0.0081 1.0162 2.0326
[0, .0081] 0.0050 0.0050 1.0100 2.0201
[0, .0050] 0.0031 0.0031 1.0062 2.0124
[0, .00031] 0.0002 0.0002 1.0004 2.0008
[0, .0002] 0.0001 0.0001 1.0002 2.0004
[0, .0001] 0.00006 0.00006 1.00012 2.0002
[0, .00006] 0.000034 0.00004 1.00008 2.0002
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