3. Consider the function

$$
f\left(x_{1}, x_{2}\right)=-\frac{x_{1}}{2}+\frac{x_{2}}{3}-\log \left(x_{1}^{2}\right)+\log \left(x_{2}^{2}\right)
$$

(a) Let $x^{0}=(2,2)^{T}$. Apply one step of the gradient (steepest descent) method. To save time, do not do a line search, take the step length of $\lambda=0.5$, but verify that it satisfies Goldstein-Armijo conditions with $\mu_{1}=0.2, \mu_{2}=0.8$.
(b) Let $x^{0}=(2,2)^{T}$. Apply a full Newton step and give $x^{1}$.
(c) Let $x^{0}=(2,2)^{T}$. Calculate the Trust Region search direction with the initial value $\alpha=1$. Let choose $\mu=0.2, \eta=0.9, \gamma_{1}=0.5, \gamma_{2}=2.5$. Would you accept this step in the Trust Region algorithm or $\alpha$ should be changed? If it needs to be changed, should $\alpha$ be increased or decreased?
(d) Compare the function values $f\left(x^{1}\right)$ computed after one iteration of the gradient method in (a), Newton's method in (b) and Trust Region method in (c). Based on that comparison and properties of the function $f\left(x_{1}, x_{2}\right)$, which algorithm is more advantageous for minimizing the function $f\left(x_{1}, x_{2}\right)$. Explain why.

Solution
(a)

$$
\nabla f(2,2)=\left[\begin{array}{c}
-1 / 2-2 x_{1}^{-1} \\
1 / 3+2 x_{2}^{-1}
\end{array}\right]_{(2,2)}=(-3 / 2,4 / 3)
$$

Therefore the descent direction is $(3 / 2,-4 / 3)$

$$
\begin{gathered}
x_{1}=(2,2)+0.5(3 / 2,-4 / 3)=(11 / 4,4 / 3) \\
f\left(x^{0}\right)=-1.0000, \text { and } f\left(x^{1}\right)=-2.3863 \\
f\left(x^{0}\right)-f\left(x^{1}\right)=1.3863 \\
-\lambda_{0} \mu_{1} \nabla f\left(x^{0}\right)^{T} s_{0}=1 * 0.2 *\left((-3 / 2)^{2}+(4 / 3)^{2}\right)=0.4000 \\
-\lambda_{0} \mu_{2} \nabla f\left(x^{0}\right)^{T} s_{0}=1 * 0.8 *\left((-3 / 2)^{2}+(4 / 3)^{2}\right)=1.6000 \\
-\lambda_{0} \mu_{1} \nabla f\left(x^{0}\right)^{T} s_{0}<f\left(x^{0}\right)-f\left(x^{1}\right)<-\lambda_{0} \mu_{2} \nabla f\left(x^{0}\right)^{T} s_{0}
\end{gathered}
$$

The Goldstein-Armijo conditions are satisfied.
(b) Newton step:

$$
\begin{gathered}
x^{1}=x^{0}+s^{0} \\
s^{0}=-\left[\nabla^{2} f(2,2)\right]^{-1} \nabla f(2,2) \\
\nabla f(2,2)=(-3 / 2,4 / 3)^{T} \\
\nabla^{2} f(2,2)=\left[\begin{array}{cc}
2 x_{1}^{-2} & 0 \\
0 & -2 x_{2}^{-2}
\end{array}\right]_{(2,2)}=\left[\begin{array}{cc}
1 / 2 & 0 \\
0 & -1 / 2
\end{array}\right] \\
s^{0}=-\left[\nabla^{2} f(2,2)\right]^{-1} \nabla f(2,2)=(3,8 / 3)^{T} \\
x^{1}=(2,2)^{T}+(3,8 / 3)^{T}=(5,14 / 3)^{T} \\
f\left(x^{0}\right)-f\left(x^{1}\right)=1.4463
\end{gathered}
$$

(c) The trust-region step:

$$
\begin{gathered}
H=\left(\nabla^{2} f+\alpha I\right) \\
H(2,2)=\left[\begin{array}{cc}
3 / 2 & 0 \\
0 & 1 / 2
\end{array}\right] \\
s^{0}=-H(2,2)^{-1} \nabla f(2,2)=(1,-8 / 3)^{T} \\
x^{1}=(2,2)^{T}+(1,-8 / 3)^{T}=(3,-2 / 3)^{T}
\end{gathered}
$$

To determine if the step is good enough, let's check the ratio

$$
\rho_{0}=\frac{f\left(x^{0}\right)-f\left(x^{1}\right)}{f\left(x^{0}\right)-q\left(x^{1}\right)}
$$

actual decrease $=f\left(x^{0}\right)-f\left(x^{1}\right)=f(2,2)-f(3,-2 / 3)=-1.0000-(-5.1972)=4.1972$
predicted decrease $=f\left(x^{0}\right)-q\left(x^{1}\right)=-\nabla f\left(x^{0}\right)^{T}\left(x^{1}-x^{0}\right)-1 / 2\left(x^{1}-x^{0}\right)^{T} \nabla^{2} f(x)\left(x^{1}-x^{0}\right)=2.5278$
$\rho_{0}=$ actual decrease $/$ predicted decrease $=1.6604$ and as $\rho_{0}>\eta$ the step is very good and we accept it. We update $\alpha^{1}=0.5 \alpha^{0}=0.5$.

